
Sponsored by
Pace University

June 6-9, 1995 • New York City

School of Computer Science and Information Systems

In Cooperation with:
American Association for Artificial Intelligence (AAAI)
Association for Computing Machlnery/SIGART (ACM/SIGART)
Society for the Management of Al Resources and Technology - Financial Services (SMART-F$)
International Association of Knowledge Engineers (IAKE)
Society for Quantitative Ana sfs (SQA)

Mathematics and Al • Wall Street

Proceedings

The Third Annual
International Conference on

Artificial Intelligence Applications
on Wall Street

Dr. Roy S. Freedman, Editor

Proceedings

The Third Annual
International Conference on

Artificial Intelligence Applications
on Wall Street

Dr. Roy S. Freedman; Editor

June 6 - 9, 1995 • New York, New York

Sponsored by:
Pace University

School of Computer Science and Information Systems

In Cooperation with:
American Association of Artificial Intelligence (AAAI)

Association for Computing Machinery/SIGART (ACM/SIGART)
Society for the Management of AI Resources and Technology - Financial Services (SMART-F$)

International Assocation of Knowledge Engineers (JAKE)
Society for Quantitative Analysis (SQA)

Published by the Software Engineering Press

Copyright© 1995 by the Software Engineering Press. All rights reserved. Abstracting or reprinting is permitted with
credit to the source. Copying without fee is permitted provided that the copies are not made or distributed for direct
commerical advantage and credit to the source is given.

Order from:
Software Engineering Press
973C Russell Avenue
Gaithersburg, MD 20879

ISBN 0-938801-09-0

Cover Design: Dawn Graphics, Washington, D.C.

Logistics: International Association of Knowledge Engineers (IAKE)

Printed in the United States

Chairman's Introduction

Ils disent queles eclipses presagent malheur, parce que les malheurs sont ordinaires,
de sorte qu'il arrive si souvent du mal, qu'ils devinent souvent; au lieu que s'ils
disaient qu'elles presagent bonheur, ils meutiraient souvent. Ils ne donnent le
bonheur qu'a des rencontres du ciel rares; ainsi ils manquent peu souvent a deviner.

They say that eclipses predict bad luck. But bad luck is common, so that when bad
things happen, they frequently predict it. On the other hand, if they would say that
eclipses predict good luck, they would often be lying. They only attribute good
luck to rare heavenly conjunctions; therefore they fail less often in prediction.

Blaise Pascal (1623-1662), Pensees, no. 173.

The Third International Conference on Artificial Intelligence Applications on Wall Street is
organized to continue the momentum generated from the conferences held in 1991 and 1993. Our
goal is to provide a serious international forum where the newest applications of knowledge-based
technologies for trading, asset allocation, and regulation can be discussed and evaluated.

The last two years have emphasized the fact that we live in a world full of risk. In some sense,
risk is a statistical description of danger - an attribute that rational beings seek to minimize.
Predicting natural (earthquakes, hurricanes, famine), political (war, terrorism), and financial
disasters are difficult, to say the least, unless one is as pessimistic as Pascal. His point is that
since disasters happen so often, then on average, any indicator will predict one. On the other
hand, a description of risk purely in terms of mathematical expectation is misleading, since this
sense of risk replaces the risk of an individual with the risk of an average. This is what can get
investors into trouble.

Over the past year, we have seen how the risks associated with currency devaluation, interest rate
movements, and leverage in derivative markets led to near-disasters for some market participants
investors, and governments. Some of these situations could have been avoided if the dangers
associated with these instruments were made more comprehensible. I believe that one of the
responsibilities of conferences like this is to help make financial risk understandable.

This conference could not have happened without the help of numerous people. I first want to
acknowledge the support of this year's sponsor, the Pace University School of Computer Science
and Information Systems, and in particular, Dean Susan Merritt and Professor David Sachs.
Thanks to Susan Atwell of Pace for smoothly coordinating the paper submission and review
process. I also want to acknowledge the help of the cooperating societies and supporting
publications; our paper session and panel session chairs; our invited speakers; and of course, our
international Program Committee, who did a thorough job in carefully reviewing the many
submitted papers. Special thanks to Pat White of Systemsware Corporation, for her diligence in
preparing for this international event and for publishing the quality Proceedings. At Inductive
Solutions, I want to thank Marie De Luca and Stacy Pennebaker for their help in organizing the
program.

Roy S. Freedman
Program Chairman - AI/WS-95
Inductive Solutions, Inc.
New York City. June, 1995

Program Committee

Program Chair: Roy S. Freedman, Inductive Solutions

Chidanand Apte, IBM

Michael Benaroch, Syracuse University

John DeSaix, NASD

Rinaldo DiGiorgio, Sun Microsystems

Don Dueweke, New York Stock Exchange

Susan Garavaglia, Dun & Bradstreet

Mike Gargano, Pace University

Arnold Gia-Shuh Jang, Springfield (Hong
Kong)

Ypke Hiemstra, Vrije Universitei
(Amsterdam)

Ken Kleinberg, Gartner Group

Yuval Lirov, Lehman Brothers

Joseph Mathai, Fidelity Investments

Ross Miller, General Electric

Dan Schutlzer, Citibank

Stephen Slade, New York University Stern
School of Business

Kar Yan Tam, Hong Kong University of
Science and Technology

Milton White, DATANAMICS, Inc.

Takahira Yamaguchi, Shizuoka University
(Japan)

Bradford Leach, New York Mercantile
Exchange

Table of Contents

Infrastructure Modeling

Modeling Business Applications with the OODB Ownership Relationship
Oscar Yang, James Geller, and Yehoshua Perl; New Jersey Institute of
Technology; Michael Halper, Kean College . 2

An Application of Artificial Intelligence - Simulating the Business Environment
Bryan Knower, Michael Gargano and Frank Marchese, Pace University 11

ALCOD: An IDSSfor Stock Market Surveillance
Peter Goldschmidt, The University of Western Australia 24

New Developments in Software Patent Protection
Mikhail Lotvin, Pennie & Edmonds; Richard Nemes, Pace University 36

Advanced Forecasting Techniques

Multicriteria Associative Memory Approach for Nonlinear System Parameter Estimation
Hany Gobreial, The Aerospace Corporation ... 42

Forecasting Currency Exchange Rates: Neural Networks and The Random Walk Model
Eric W. Tyree and Alan Long, City University (London) 53

Trading S&P 500 Stock Index Futures Using a Neural Network
JaeHwa Choi, University of Michigan; Myung K. Lee, Tong Yang Futures, America;
Moon-Whoan Rhee, Towson State University 63

Expert Systems and Hybrid Approaches

A Multi-Component Approach to Stock Market Predictions
Tim Chenoweth and Zoran Obradovic, Washington State University 74

Intelligent Model Discovery for Financial Time Series Prediction Using Non-Linear Dynamical
Systems Theory and Statistical Methods

Oscar Castillo, lnstituto Tecnologico de Tijuana; Patricia Melin, CETYS Universidad
Tijuana ... 80

Risk Management

Optimal Mixtures of Classifiers for Financial Distress Prediction
Ignacio Olmeda and Eugenio Fernandez, Universidad de Alcala (Spain) 92

An Expert System For Adjusting Marine Underwrititng at Claim Point
Suzanne S. Shafik and Mohamed R Hassan, Misr Insurance Center; Ahmed Rafea,
Cairo University . 100

Cost Effective Classification for Credit Decision-Making
Grigoris Karakoulas, National Research Council Canada . 108

The GE Compliance Checker: An Expert System for Mining Investment-Quality Loans
Sue Bynum, Robert Noble, and Cheri Todd, GE Capital Mortage Corporation; Ben Bloom,
Inference Corporation . 117

Data Analysis, Modeling, and Representation

Software for Data Analysis With Graphical Models
Wray L. Buntine, Research Institute for Advanced Computer Science at NASA Ames
Research Center; H. Scott Roy, Heuristicrats Research, Inc 136

Summarizing Time Series Data for Optimizing the Settings of Technical Indicators
George K. Georgiou and Bon K. Sy, Queens College and The Graduate
School and University Center of the City University ofNew York; David B. Sher, Nassau
Community College of the State University of New York 146

A News Categorization System for Traders and Analysts
L. Gilardoni, P. Prunotto, and G. Rocca, Quinary SpA; F. Deotta and A. DiCresce,
Euromobiliare S.I.M. SpA (Italy) ... 151

A Knowledge-Based System for Early Warning of Balance of Payments Crises in Emerging
Market Countries

Theodore D. Raphael, Mystech Associates; John Varley, Nathan Associates, Inc 158

Optimization: Portfolios and Profit

A Genetic Algorithm Approach to Optimizing Portfolio Merging Problems
William Edelson, Long Island University; Michael L. Gargano,
Pace University ... 168

Genetic Algorithms for Predicting Individual Stock Performance
Sam Mahfoud and Ganesh Mani, LBS Capital Management, Inc.. 17 4

Two Experiments in the Stability of Stock Statistics
Burton Rosenberg, University of Miami ... 182

Improving Neural Network Models

Neural Network Model Performance: Comparing Results in Photo Finish Situtations
Susan Garavaglia, Dun & Bradstreet Information Services. 190

Financial Classification: Performance of Neural Networks in Leptokurtotic Distributions
Ravi Krovi, Southern Arkansas University; B. Rajagopalan and Ned Kumar,
University of Memphis; A. Chandra, North Carolina A&T University 199

Training Robust Neural Nets by Minimizing Weights - Not Errors
Patrick J. Lyons and Santanu Kar, St. John's University 203

Fundamental and Value Strategies

Predicting Quarterly Excess Returns: Two Multilayer Perceptron Training Strategies
Ypke Hiemstra, Vrije Universiteit; Amsterdam; Christian Haefke, Institute
for Advanced Studies (Vienna) .. 212

Automated Understanding of Financial Statements Using Neural Networks and Semantic Grammars
James Markovitch, Dun and Bradstreet Information Services•. 218

Using Neural Networks to Predict the Degree of Underpricing of an Initial Public Offering
Steven Coy, Ravikumar Balasubramanian, Bruce L. Golden, Ohseok Kwon and Heshmat Beirjandi
University of Maryland . 223

Bank Failure and Categorization - A Neural Network Approach
Walter Miller, David T. Cadden, and Vincent Driscoll, Quinnipiac College 232

Derivatives

A Genetic-Based Approach to the Analysis of Derivative Securities
Sergio Scandizzo, Laboratorio di Urbanistica e Pianificazione Territoriale Universita
Federico II di Napoli (Italy) ... 238

Forecasting Currency Futures Using Recurrent Neural Networks
Paoli Tenti, A & A Financial Management (Switzerland) 243

Designing Financial Swaps with CLP (R)
Evan Tick, University of Oregon . 253

Fast Cost-Effective Computations of Derivatives
Roy S. Freedman, Inductive Solutions, Inc.; Rinaldo DiGiorgio, Sun Microsystems 263

Trading Floor Support

Intelligent Help for Wall Street
Dimitri Rotov, BFR Systems ... 272

Calypso Goes to Wall Street: A Case Study
Arash Baratloo, New York University; Partha Dasgupta, Arizona State University;
Zvi M. Kedem, New York University; Dimitri Krakovsky, New York University
and Lehman Brothers .. 276

Notification and Contact Management for Distributed Systems Support
Boris Grinfeld, Yuval Lirov, Andy Sherman, and Frank Wadelton,
Lehman Brothers . 285

Intelligent Batch Testing of Distributed Interactive Applications
Aaron Goldberg and Yuval Lirov, Lehman Brothers . 292

Author's Index ; • ; 297

Paper Session: Infrastructure Modeling

Chair: Rinaldo DiGiotgio, Sun Microsystems

Modeling Business Applications with the
OODB Ownership Relationship

Michael Halper
Dept. of Math & Computer Science

Kean College of New Jersey
Union, NJ 07083 USA

Yehoshua Perl, Oscar (Ou) Yang, James Geller
CIS Department and CMS

Abstract

Ownership is a very important relationship in
the business world. It is endowed with rich seman­
tics and various complexities with respect to both
the owner and the property that is owned. In this
paper, we present a formal model of "ownership"
relationships in the context of an Object-Oriented
Database (OODB) system. As our motivation, we
employ three scenarios involving various ownership
relationships that exhibit a wide range of distinc­
tions. Essential aspects of ownership relationships
are their related transactions such as sale, lease, and
donation. Since certain of these can be applied with
respect to specific kinds of ownership, while others
cannot, we need to explicitly model this behavior in
order to properly represent ownership in an OODB
system. The ownership relationship, at times, ex­
hibits inheritance behavior, where the values of cer­
tain attributes are derived with respect to it. With
these issues in mind, we have identified and formally
defined various characteristics (which we call the di­
mensions) of ownership. Our ownership model in­
corporates all these to capture the functionality of
ownership's transactions and inheritance.

1 Introduction

Ownership is a very important relationship in the
business world. It is endowed with rich semantics
with respect to the owner and the property that is
owned. As used in the corporate world, ownership
can exhibit a hierarchical structure. For example,
one company can own other companies.

Because of its complexity, modeling ownership
in the context of a database system can be an ex­
tremely difficult task. In this paper, we introduce
an "ownership" relationship model that can be inte­
grated into an Object-Oriented Database (OODB)
system. The use of this relationship greatly facili­
tates the problem of modeling real-world ownership
and of enforcing its associated constraints.

2

New Jersey Institute of Technology
Newark, NJ 07102 USA

To motivate the need for an ownership relation­
ship and to see what kinds of problems one might
encounter when trying to model it, we shall employ
three example scenarios, pictured in Fig. 1, 2, and
3. Corresponding database schemata are included in
the Figures, which have been drawn using our OOd­
ini graphical notation [9]. Ownership is denoted by
a bold, dotted arrow. This symbol was chosen for
the mnemonic association between the dots and the
"o" in "ownership."

Let us now describe these scenarios. In the first
one, Jim and his business partner David own a man­
ufacturing business that produces an item for which
Jim holds a patent. The business resides in a build­
ing which Jim owns and for which a bank, First
Nat'l Trust, holds a lien. Jim and David have a
joint business bank account. Jim rents his house
from Tom. Jim also uses a car that is legally owned
by his business. A car owned by Jim is used by
his son John. Jim and David each have individual
bank accounts and investment portfolios, consisting
of corporate stocks and government bonds. In addi­
tion, each possesses a life insurance policy and the
appliances in their homes.

In the second scenario, Chrysler owns Jeep, Ply­
mouth, and Dodge, each of which in turn owns
subsidiaries, manufacturing plants, industrial equip­
ment, etc. Dodge and Mitsubishi jointly own the Ea­
gle Corporation. Chrysler, being a public company,
issues stock that is owned by shareholders who are
persons or other corporations.

The third scenario deals with an individual in­
vestor. Here, Jack owns several portfolios of invest­
ments, including stocks, bonds, and mutual funds.
Together, these portfolios represent all of Jack's in­
vestments.

Against these scenarios, one is liable to carry out
any of the various transactions associated with own­
ership, such as sales, leases, or donations. Such
transactions are often restricted due to complex con­
straints. For example, under some circumstances,
the sale of an object might be disallowed. Owner­
ship also exhibits "inheritance" behavior, where val-

Copyright © 1995 Software Engineering Press

······················~ • : .(U.S. Savings Bond)
•••• ('"-llit1_e_insurance ____ po_licy ___ #_X_2'"'"' : :

• • • • • • • • • • • • • •• o : : l • { Business Bank Account 00076345)
___ __, • : : • : • • • • • • • • • • • • • • • • • • .(life insurance policy#Y30)

Fust Nat'! Tl118t : o O
O o : :

• • •
.. David : :

•
: resickt_in
• •

(barucAcct#SSS) ••••= (baruc
0

Acct#369)

1··································· •
• • • • (6 month T-bill)

john

Bonda VIN#777

uses

• •
Patent#A908

baaed_on

....

............................ •

•
building

~--'--~· • small_ • • business •

.

patent • •
resides_in '---,--,----1~ :

.___.....:;;;_ _____ ,___. •: · ... ·:
•••••••••• • • uses

household
appliance -

• • produced_!,f 0

lbmtk_~unt I ~ 00

stock

issues

CO!p018ti0Jl

•

1
life_ins~arv;e

1
:

policy ••••

product

car

based_on

• • • • • • •► ownership relationship

I r relationship "r" I

~----------------J
Figure 1: Instance and schema diagrams for first scenario.

ues of certain attributes of objects can be derived
from other attributes via ownership relationships.
We note that an investor's net worth can be deter­
mined directly from the values of his or her portfo­
lios.

As can be gathered from the above, dealing with
the issues of ownership can be very complex. To
model such behavior in the context of a traditional
relational database system [3, 4] would require that
some programmer write programs (apart from the
database system itself) to ensure that all business
transactions are carried out in accordance with the
semantics of ownership. However, if one were to
bypass such programs, then no guarantee could be
made about the database's integrity. Certain "ille­
gal" ownership transactions may be allowed to com­
mit, leaving various constraints violated and the

Copyright © 1995 Software Engineering Press

database in an invalid state.

In an OODB system, the programmer could in­
corporate the additional constraint satisfaction code
into the methods of any classes that participate in
ownership relationships. However, this would still
require manual programming labor. Furthermore,
the correctness of the. code would be very difficult to
verify given all the subtleties of ownership. Ensuring
that the programmer has properly accounted for all
the necessary constraints in the program code would
be nearly impossible.

In order to avoid such ad hoc programming ap­
proaches and remove the burden from the program­
mer, we present an ownership relationship model
that expands and enhances an existing OODB data
model. This relationship serves to encapsulate the
rich semantics of ownership and its related trans-

3

•• •
GJ

(A1r)
• •

Dealership

• •
I diiion I

assembly_
factory

•

dealership

issues

r----------------1
1

- SUBCLASS_OF I

• • • • • • ► ownership relationship

relationship "r"
I I ·- ---------------_,

Figure 2: Instance and schema diagrams for second scenario.

171 ~ • • • .• : ·· . • • •• • •• •• • •• • • e e
stock (bond) (mutual fund) portfolio portfolio portfolio ~ porfolio

Figure 3: Schema and instance diagrams for third scenario.

actions. Using it, one can declaratively specify the
desired behavior and then allow the OODB system
to enforce it. In this sense, the ownership relation­
ship is a "semantic relationship," meaning that its
interpretation does not lie solely "in its name" [13)
but rather in its constraint-satisfaction and inheri­
tance mechanisms. In this light, our ownership re­
lationship can be viewed as a modeling primitive of
an OODB system with built-in semantics. In previ­
ous research, the IS-A (or SUBCLASS) relationship
[2, 12) and the PART-OF relationship [6, 7, 8, 10, 11)
have been modeled as semantic relationships.

The remainder of this paper is organized as fol­
lows. In Section 2, we discuss the legal definition
of ownership. In Section 3, we formally define the

4

ownership relationship and describe its "character­
istic" dimensions, which capture the wide range of
distinctions exhibited by ownership. Section 4 con­
tains concluding remarks.

2 Definition of Ownership

When we describe a state of "ownership," we
must, in general, include the following three features:
(1) The owner, (2) the property that is owned, and
(3) the characteristics of the relationship between
the two. We are interested in identifying what types
of objects can fill the roles of (1) and (2), and what
the characteristics that distinguish the various kinds

Copyright@ 1995 Software Engineering Press

of ownership are.
According to Webster's Dictionary, ownership is

defined as follows:

1. The state or fact of being an owner.

2. Proprietorship; Legal right of property; Legal
or just claim or title (to something); in law,
the right to use for one's own advantage some
property.

The owner referred to above can, by law, be a nat­
ural person, a corporation, or an organization. The
latter two are, in general, referred to as legal entities.
Under the law, legal entities are vested with certain
powers, some of which are also held by natural per­
sons. Others, like the power to exist in perpetuity,
are unique to legal entities. In our databases, we see
that Jim as a natural person owns his business. The
Chrysler Corporation as a legal entity owns Dodge.
In Fig. 1, bank, smalLbusiness, and corporation are
legal entities. All "owner" classes in Fig. 2, except
person, represent legal entities.

Ownership of an item is often distributed among
persons and legal entities. E.g., Jim and David to­
gether own a business J&D Lightings, and a busi­
ness bank account. Also, the Eagle Corporation is
a joint venture of Chrysler and Mitsubishi. We de­
scribe such a situation as joint ownership. It is le­
gitimate for a person and a company to jointly own
a property. The ownership need not be divided into
equal portions. Stock holdings partition the owner­
ship of a public company into various percentages.
Jim, e.g., owns thousand shares of Chrysler.

In law, property means the rights which one has in
anything subject to ownership, whether it be mobile
or immobile, tangible or intangible, visible or invisi­
ble. Ownership is used synonymously with rights in
property. Thus, a person is said to be the owner of
a property if he has certain rights in it. The term
ownership is often used to indicate that one has the
"highest rights" [1] in a property, but it may be used
even when one does not have all the rights; thus, we
say that a person is an owner of a house even though
he has rented it to a tenant who has exclusive rights
to the use of the house during the term of the lease
[1].

A property can be classified as real, intellectual,
or personal. A real property refers to the rights that
one has in land or things closely related to it. An in­
tellectual property is the rights held on an idea (e.g.,
the design of an invention) or a creative work (such
as a musical composition or a novel). For such prop­
erty, the rights apply to a potentiality-no claim is
made on any tangible item. Copyrights and patents

Copyright© 1995 Software Engineering Press

are the ordinary forms of intellectual property. Per­
sonal property encompasses everything that is not a
real or intellectual property.

As examples, Jim's business resides in a build­
ing which is his real property. The patent (num­
ber A908) for the Long-Life Bulb is his intellectual
property. Bank account 369 and the car used by
John are his personal property. In Fig. 1, the class
building denotes a real property. Patent is an intel­
lectual property. The remainder of the "property"
classes represent personal properties. In Fig. 2, the
only real property is manufacturing_plant. The rest
are personal properties.

One characteristic of the ownership relationship
itself centers around the existence of a legal docu­
ment that verifies the owner's rights to a property.
A copyright owner, e.g., is granted a legal certificate
giving him exclusive rights to possess, make, publish,
and sell copies of his intellectual production, or to
authorize others to do so. In contrast, the owner of
a household item does not have a legal document to
support his ownership, but he has the right to use it
as he pleases. We call ownership of the former kind
documented and ownership of the latter kind undoc­
umented. So, Jim's patent is documented, while his
ownership of a toaster oven is undocumented.

In Fig. 1, the following ownerships (written
as: owner class-property class) are among those
that can be classified as documented: bank-mort­
gage, person-building, person-smalLbusiness, per­
son-bank_account, person-patent, and smalLbusi­
ness-car. The relationship between the classes per­
son and household_appliance is undocumented. All
ownerships in Fig. 2 are documented.

As a final distinction, some kinds of ownership are
acquired by operation of law, while some others are
not. We call ownership of the former kind de jure
and ownership of the latter kind de facto.

3 Ownership as an OODB Semantic
Relationship

3.1 Transactions and Inheritance

As noted above, the most crucial aspects of own­
ership are the constraints that it imposes on its re­
lated transactions such as sale and lease. Certain
transactions can be applied to specific kinds of own­
ership, while others cannot. For example, in the
case of exclusive ownership, the owner can sell his
belonging without restriction (and thus the trans­
action "sale" can be applied freely), while for joint
ownership an owner cannot sell the property without

5

the consent of the other owners (so the use of "sale"
must be controlled). When a person has accepted an
offer to sell his house, he cannot accept another of­
fer, even though he is still the owner, until that time
when the first offer becomes invalid. We call own­
ership of. this kind action-limited. Similarly, when
one has bought a stock option, the ownership of it
may expire after a certain period of time if it is not
exercised. In this case, we say that the ownership
is time-limited. Likewise, when one has ownership
of some property like a car or a house, it cannot be
sold without its supporting documentation.

Let us consider some of these complexities of own­
ership transactions in the context of our example
scenarios. If Jim wants to sell the business, he needs
the consent of David, his partner. If David wants to
buy half of the business's building from Jim, then
he must have the consent of First Nat'l Trust which
owns the mortgage. What would happen if David
wanted to sell his half of the company to a new
partner? Depending on the partnership agreement,
he may need Jim's approval. With respect to their
joint checking account, do both Jim and David need
to sign every check together? Clearly that depends
on the nature of the account. What about the sale
of properties that are being used by others? For ex­
ample, can Tom sell the house that he is renting to
Jim? Yes, but the new owner would be unable to
occupy the house until the lease expired. Is John
allowed to sell his father's car? No, because even
though he is using the car, he does not possess the
proper ownership documentation required to sell it.

Aside from the transactions, the ownership rela­
tionship plays a vital role in more accurately mod­
eling various application domains via its inheritance
mechanism, which allows values of certain attributes
to be propagated across it. For example, Jack's net
worth (i.e., his "value") can be determined directly
as the sum of the values of the portfolios that he
possesses. Consider also that to calculate Chrysler's
profits for 1994, the profits of Dodge, Plymouth,
and Jeep must be added together. Furthermore, the
profits of Dodge must take into account the profits
of Eagle. In all these examples, a value propagation
between properties and owners is required.

From the above we see that to properly support
transactions and inheritance with respect to owner­
ship, we need to explicitly model the different char­
acteristics (which we call the dimensions) of the
ownership relationship. Our investigation has re­
vealed six important dimensions. In this section,
we will first formally define the ownership relation­
ship and its constituent dimensions. Thereafter, we
will examine two of the dimensions, exclusiveness

6

and value propagation, in some detail. We will then
briefly describe the others.

3.2 Formal Definition of the Ownership
Relationship

Let E(C) denote the extension of a class C, i.e.,
the set of all its instances. The ownership relation­
ship between a property class B and an owner class
A (denoted OB,A) is defined as the following septu­
ple:

where 0~ is a relation from E(B) to E(A). The pair
(b, a) E 0~ indicates that the instance b of class B is
the property of (i.e., is owned by) the instance a of
class A. We will ordinarily express this fact as bO~a.
The remaining elements of the septuple are the six
characteristic dimensions, whose names are Legal­
ity, Documentation, Limitation, Exclusiveness, De­
pendency, and Value Propagation, respectively. For
each, we list its domain in the following:

,\ E { de jure, de facto},

/3 E { registration-docum 'ted, transfer-docum 'ted,

undocum 'ted},

a E { action-limited, time-limited,

action&time-limited, unlimited},

X E { exclusive, free-joint, percentage-joint,

global-percentage-joint},

6 E { owner-to-property, nil},

v E { up, down, up Trans, down Trans,

up&down, nil}.

The values of both 6 and v may be nil, indicat­
ing that the particular characteristic (dependency or
value propagation) is inapplicable. For lack of space,
formal descriptions of only two dimensions will be
given. The rest of the dimensions are described for­
mally in [5, 14]. (In [14], we had only four dimen­
sions and the notion of transactions is not connected
to the dimensions of ownership.) For the following
definitions, assume an ownership relationship OB,A·

Definition 1: Va E E(A), let P0 A(a) = {b I b E
B .

E(B) I\ bO~a}. P0 A(a) is called the property set of
a with respect to <JB,A, i.e., the set of instances of
B which are properties of a.

Definition 2: Vb E E(B), let N0 A(b) = {a I a E
B

E(A) I\ bO~a }. N0 A (b) is called the owner set of b
B•

with respect to the ownership OB,A, i.e., the set of
instances of A of which b is a property.

Copyright© 1995 Software Engineering Press

•
X
• • •

X
•
IRA

portfolio#13

~ I peraon
i
•
X
• IRA__porfolio

IRA
portfolio#577

Figure 4: An example of exclusive ownership.

~ r;
•
•

(~35765)
• • I bank_a~t

• • • • ••• bank_account

(01874825471)

Figure 5: Jointly owned bank accounts.

3.3 Exclusiveness Dimension

Ownership can be classified as exclusive or joint.
In other words, a property may be owned by one
owner or jointly owned by several owners. The for­
mal definition for the exclusive ownership relation­
ship follows:

Definition 3: For the ownership relationship OB,A,

x = exclusive implies that Vb E E(B), IN0 ~(b)I ~ 1.
In other words, a property cannot have more than
one owner.

To represent this graphically, we add an X to the
dotted arrow to denote eXclusive (Fig. 4).

Those ownership relationships which are not ex­
clusive are referred to as joint, in which case a prop­
erty may be either jointly owned freely, i.e., there is
no explicit partition of the rights of the joint own­
ers in the property (e.g, a joint bank account is
freely shared by a couple-we call this free joint),
or jointly owned such that each owner takes a cer­
tain percentage of the ownership (e.g., husband and
wife each own 50% of their house-we call this per­
centage joint). We call the case where all owners
have the same percentage equal joint. Although the
exclusiveness dimension has been included in some
OODB models (e.g., SHOOD [11) and our part rela­
tionship model [7, 8)), percentage joint is unique to

Copyright© 1995 Software Engineering Press

ownership. Percentage joint plays an important role
in economic activities. A shareholder has the right
to receive his percentage of dividends.

In our graphical notation, a plain dotted arrow in­
dicates free joint (Fig. 5). Percentage joint and equal
joint are denoted by labels of P and =, respectively
(Fig. 6).

Definition 4: For the ownership relationship OB,A,

x = free-joint implies that Vb E E(B), OB,A does
not impose any constraints on INnA(b)I. That is,
each instance b may have any numbir of owners.

Definition 5a: For the ownership relationship
OB,A, x = percentage joint implies that Vb E E(B),
each of its owners a has an associated number Pb,a

(0 < Pb,a ~ 100) indicating a's percentage of own­
ership of b. The percentages Pb,a associated with all
the owners of b must total 100%.

Definition 5a defines the percentage joint owner­
ship relationship when the property class has only
one associated owner class. At times, the ownership
of an object may be distributed among owners from
different classes. This case is defined as follows.

Definition 5b: The ownership relationships OB,Ai,

OB,A 2 , ••• , OB,A,. are global percentage joint if Vb E
E(B), each of its owners (regardless of their classes)
own percentages of b totaling 100%.

7

Person ~o=~~ ~ AT&T)

• • ... (General_Food)
Company

• •so I 6 • • • • • • • • • • • • • •
•1• 40 •• 20 •.30 • • • • • • • • :60 • • • • • • •• • • • • • •

Stock

•• • •
(AT:U) •

•
~

•
• 100

• ••
(GE ,·· Stock

Figure 6: Stocks are owned (percentage) jointly by person and company.

To better understand Definition 5b, refer to Fig­
ure 6, where Ostoclc,Person and Ostoclc,Company are
two global percentage joint relationships. For any
instance of class Stock, the ownership is distributed
among its owners such that each of them takes a
certain percentage and the sum of the percentages
is 100%. In Figure 6, the IBM stock owners are Os­
car and Cecilia of class Person, and AT&T of class
Company, with 20, 30, and 50 percent of the owner­
ship, respectively.

3.4 Value Propagation Dimension

There are times when a certain feature of a prop­
erty is naturally assimilated as a feature of its owner,
or vice versa. E.g., the address of a person may be
modeled as the address of his house rather than as
an intrinsic attribute of the person. Likewise, the
name that appears on the passport can be taken
to be the name of its owner. In the former case,
the value of address, rather than being duplicated,
should be stored solely with the house and propa­
gated upward on demand. Address, in this sense, is
a derived attribute of person.

As another example, Jack's net worth can be de­
termined directly from his portfolios. Specifically,
Jack's net worth (denoted as his "value") is just the
sum of the values of his various portfolios. As these
fluctuate on a minute-to-minute basis, so too should
Jack's worth. Therefore, it does not make sense to
store this value statically. Rather, it should be de­
rived dynamically from the appropriate sources on
demand. The ownership relationship can automat­
ically (i.e., without the need for manual program­
ming) perform the necessary retrieval and computa­
tion.

Definition 6: Let 7rB: E(B) -+ r be an attribute

8

of B. The ownership relationship OB,A is said to be
invariant upward propagating if it defines a property
7rB on the class A such that the value of 7rB for an
instance a E E(A) is identically the value of 7rB for
that b E E(B) which is owned by a.

For example, if the property address is propa­
gated from the class house to the class person, then
the ownership relationship would define the property
address on class person as follows:

dd ()
_ { address(b),

a ress a - d fl d un e ne ,
if3b E P0 A(a),

B

otherwise.

Thus, the address of a person is identically that of
the house that he or she owns. Invariant propagation
in the other direction is defined analogously (see [5]).

Transformational upward value propagation is de­
signed to take contributions for the value of the
propagated (or inherited) attribute from any num­
ber of objects that are owned. The multiple values
are transformed into a single value of the attribute's
data type.

Definition 7: Let 7rB: E(B) -+ r be an attribute
of B. The ownership relationship OB,A is said to be
transformational upward propagating if it defines a
property 7rB on the class A such that the value of
7rB for an instance a E E(A) is derived by applying
some transformation collectively to the values of 7rB
for all b E E(B) such that b is owned by a.

Here, instead of being identical to a value at a sin­
gle "property" object, the value of the propagated
attribute is derived through a transformation of val­
ues from many owned objects. For the example of
the net worth of an individual, the propagated prop­
erty value would have the following definition:

Copyright© 1995 Software Engineering Press

... -----... ...-----

,: .. !1_4~~~', !~~)
value g&1n

Jack

t . .
(value) • • • • • • • t (gain)

• t (value) : t (gain) t
.• • •.

(gain) • • • t (value) : t (gain) • • • t (value)

• ----~·- --------- ..
portfolio

stock
portfolio

$50,000 $3,000

value gain

$10,000

value gain value gain

Figure 7: An example of value propagation.

I () _ { I::7=1 value(bi),
va ue a - d fi d un e ne ,

'vi, value(bi) defined
otherwise,

where a is an investor and b1, b2, ... , bn are his port­
folios. The above is shown graphically in Fig. 7,
where we also show the specific example of Jack
obtaining his net worth from his three portfolios.
Another derived attribute, an investor's total gain
(which is just the sum of the gains of the portfolios),
is shown in the figure as well.

3.5 Additional Dimensions

Due to space limitations, we mention the issues
of several other dimensions only briefly. For details,
see [5, 14). The dependency dimension regulates the
semantics of deletion of owner class A or property
class B. It defines when deletion of one should cause
deletion of the other. Ownership can be either 4oc­
umented, or undocumented. Documented ownership
always has a supporting legal document, while un­
documented ownership does not.

Some kinds of ownership are acquired "by opera­
tion of law," i.e., through a formal legal procedure.
We call such ownership de jure. Others are not, and
are called de facto. These are the values for the
legality dimension. Ownership is often used to indi­
cate the "highest rights," but it may be used when
one does not have all the rights. In other words,
ownership may be limited in some aspects. For ex­
ample, if the owner of a house has accepted an offer
to sell that house to someone, then he cannot sell
it to some other person, even though he is still the
owner, unless the offer becomes invalid.

Copyright© 1995 Software Engineering Press

4 Conclusion

We have addressed the issue of representing own­
ership relationships in OODBs with a model that
captures a variety of semantics. In particular, we
have distinguished a number of aspects for the roles
of the owner and property in such relationships.
These aspects define notions like exclusive and joint
owners. Formal definitions for various ownership re­
lationships were presented. To complement these,
we have presented graphical symbols for each of
the ownership relationships which expand the OO,.­
dini graphical schema representation language for
OODBs [9]. We have also investigated the inter­
action between the various ownership transactions
and the ownership relationship's characteristic di­
mensions. We plan to integrate the ownership rela­
tionship that we have defined here into a commercial
OODB system.

Acknowledgment

We thank Stewart Klein for reading an earlier
version of this paper and for his many important
remarks regarding the legal issues surrounding own­
ership.

References

[1] R. Anderson, W. Kumpf, and R. Kendrick.
Business Law - Principles and cases. South­
Western Publishing Co., Cincinnati, OH, 1971.

[2] R. J. Brachman. What IS-A is and isn't: An
analysis of taxonomic links in semantic net­
works. Computer, 16(10):30-36, Oct. 1983.

9

[3] E. F. Codd. A relational model of data for large
shared data banks. Commun. ACM, 13(6):377-
387, 1970.

[4] C. J. Date. An Introduction to Database Sys­
tems, volume 1. Addison-Wesley Publishing
Co., Inc., Reading, MA, fourth edition, 1986.

[5] J. Geller, M. Halper, 0. Yang, and Y. Perl.
Exploring the semantics of ownership relation­
ships. In preparation, 1995.

[6] M. Halper. A Comprehensive Part Model and
Graphical Schema Representation for Object­
Oriented Databases. PhD thesis, CIS Depart­
ment, New Jersey Institute of Technology, 1993.

[7] M. Halper, J. Geller, and Y. Perl. An OODB
"part" relationship model. In Proceedings of
the First International Conference on Informa­
tion and Knowledge Management, pages 602-
611, Baltimore, MD, 1992.

[8] M. Halper, J. Geller, and Y. Perl. Value propa­
gation in object-oriented database part hierar­
chies. In Proceedings of the 2nd Int 'l Confer­
ence on Information and Knowledge Manage­
ment, pages 606-614. Washington, DC, 1993.

[9] M. Halper, J. Geller, Y. Perl, and E. J.
N euhold. A graphical schema representation for
object-oriented databases. In R. Cooper, editor,
Interfaces to Database Systems, pages 282-307.
Springer-Verlag, London, 1993.

[10] W. Kim, E. Bertino, and J. Garza. Com­
posite objects revisited. In Proc. of the 1989
ACM SIGMOD International Conference on
the Management of Data Portland, Oregon, ap­
peared as SIGMOD RECORD, pages 337-347,
1989.

[11] G. T. Nguyen and D. Rieu. Representing de­
sign objects. In AI in Design'91. Butterworth­
Heinemann Ltd., 1991.

[12] A. Snyder. Encapsulation and inheritance in
object-oriented programming languages. In
Proc. OOPSLA-86, pages 38-45, 1986.

[13] W. A. Woods. What's in a link: Foundations
for semantic networks. In D. G. Bobrow and
A. M. Collins, editors, Representation and Un­
derstanding, pages 35-82. Academic Press, New
York, NY, 1975.

10

[14] 0. Yang, M. Halper, J. Geller, and Y. Perl. The
OODB ownership relationship. In Proceedings
of the Int 'l Conf. on Object Oriented Informa­
tion Systems, pages 389-403, London, England,
1994.

Copyright© 1995 Software Engineering Press

AN APPLICATION OF ARTIFICIAL
INTELLIGENCE - SIMULATING THE

BUSINESS ENVIRONMENT

By

Bryan Knower, Michael Gargano, and
Frank Marchese.

I. INTRODUCTION

This study uses an artificial life paradigm . We
developed a model of a localized business
environment in an attempt to study long term
business trends. The study investigated the
relationship of non living dynamic systems to
living ones. This was done using a model called
CORPWORLD.

The model can be conveniently divided into three
main component parts, namely: Artificial Life,
Genetic Algorithms, and Corporate Behavior.

We will take up each of these topics in tum and
discuss them in relation to each other. The main
focus of this paper is the application of such a
model to a simulated business environment.

II. BACKGROUND FOR THIS
EXPERIMENT

The background for this experiment was a
simulation of an artificial life system, called the
Kreecher Simulation, inspired (and very loosely
based) on the work of Thomas Ray. 11

THE KREECHER SIMULATION

History:

Each individual (known as a Kreecher) competed
with all the others based on simple interaction
rules. The simulation accommodated three
different genotypes, namely Passive, Coercive, and
Destructive. All Kreechers were born with a
specific vitality quotient. This indicator was
depleted every cycle unless a particular individual
was chosen via genetic selection for reproduction.
Any genotype could reproduce. If selected, the
vitality quotient of that individual was enhanced
and the genotype was propagated via crossover
with the genetic string of the Kreecher selected in

Copyright@ 1995 Software Engineering Press

the previous cycle. The simple rules for interaction
were:

• Passive Kreechers actively avoided
opponents, and had no direct effect on them.

• Coercive Kreechers transformed the
genotypes of opponents to their own. The
sphere of influence was limited, and meeting
was random.

• Destructive Kreechers actively sought out
opponents and destroyed them. The sphere
of influence was limited but destructive
types tended to migrate towards densely
populated areas of the simulation grid.

RESULTS OF THE KREECHER SIMULATION

It appeared that populations of different types
became dominant, ruled, and then decayed in a
surprisingly cyclic manner. When a specific
genotype became dominant, others tended to
become suppressed, showing swings in population
levels and vitality well below the stabilization level
of the dominant genotype. As the dominant
genotype decayed another would come up to take
its place, and this process would go on indefinitely
except in the case of a population explosion within
the destructive genotype. Such an event led to
mass destruction and eventually total extinction.
The ordering of the dominance cycles showed no
pattern, so that it was impossible to predict which
genotype would become dominant next. Seeding
the simulation with a passive genotype tended to
produce the best results (i.e .. consistently long
simulation runs with no chaotic disintegration), in
the long term, while the other genotypes tended to
produce random divergent behavior, probably
based on their predatory behavior patterns.

An average run consisted of approximately five to
ten thousand generations, within which the cyclic
dominance behavior was readily evident. (A
generation was one iteration of the simulation
process). In the extreme long term, a pattern of
chaotic behavior interspersed with long stretches of
stable behavior became evident. In addition, long
periods of cyclic behavior were interspersed with
short periods of random chaotic behavior during
which no dominant genotype could be identified.

11

III. ARTIFICIAL LIFE

Artificial Life is the study of man-made and
non-living natural systems that exhibit behaviors
characteristic of natural living systems. In order to
simulate a living system, certain fundamental
characteristics of living systems are assumed. The
CORPWORLD model attempts to preserve the
sense underlying these assumptions in the
following propositions:

PROPERTIES OF LIFE

• Life is a pattern in space time rather than a
specific material object.

• Self representation must be present.
• The organism should have a metabolism.
• Functional external interaction should be

present.
• The organisms should eventually stabilize

under most perturbations.
• Evolution must be present.

Evolution is taken to be present given the following
characteristics;

HEREDITY- Offspring are similar to their parents.
VAR/ABILITY- Offspring are not identical to their

parents or to each other. The two
characteristics are complimentary. (i.e ..
the copy process must produce unifonnly
similar offspring but not consistently
identical ones over the life of the process.).

Both the Kreecher simulation and the
CORPWORLD simulation satisfy these conditions.

IV. GENETIC ALGORITHMS

Genetic algorithms are selection procedures that
work via evolutionary fitness and mutation. They
are often used in the solution of optimization
problems, and can be part of the machine learning
process. In general, genetic algorithms incorporate
a selection mechanism, coupled with a crossover
mechanism and a mutation process.

The genetic algorithms used in the CORPWORLD
simulation are simple. They use fitness functions
to select the fittest individual and/or genotype at a
specified point in time.

CROSSOVER

12

Genetic crossover is minimal in the model due to
the fact that in a corporate environment, healthy
corporations do not necessarily incorporate the
behavior of successful corporations that have gone
before them, especially in the area of corporate
behavior. In CORPWORLD, therefore, crossover
is restricted to the transference of genotype
characteristics to off spring during reproduction,
and transference of individual assets between peers
during mergers or takeovers.

MUTATION

Mutation (in the model), transforms individuals
from one genotype to another, and occurs during
birth, reproduction, and even randomly on an
infrequent basis. The four possibilities in the
character matrix are: Conservative, Hyperactive,
Expander and Virulent. Mutation ensures that
variation exists in the execution of the various
dynamic processes making up the life of the
individual, and that the copying process in the
genetic mechanism contains random imperfections,
ensuring that it does not become a simple template
function.

V. THE CORPWORLD MODEL

RATIONALE

The question of whether the principles of artificial
life, (as they were demonstrated in the Kreecher
Simulation), could be used to explore simulated
interactions in a corporate environment, formed the
basis of the experiment. It was decided to model
four basic genotypes which would, (hopefully),
incorporate variations in corporate behavior
dynamics. Certain characteristics were immediately
evident as dominant candidates for selection such
as the raider mentality, acquisition of ailing
companies by healthy ones, mergers in the face of
increasing competition from large adversaries,
traditionalism and conservative management, and
aggressive entrepreneurship.

We decided to incorporate the raider mentality into
a representation called the Virulent genotype; the
expansion within a supportive market type
corporation was represented by an Expander
genotype; the traditional conservative management
oriented type was represented by a Conservative

Copyright© 1995 Software Engineering Press

genotype, and the aggressive entrepreneurship type
was represented by a Hyperactive genotype.
Acquisitions and mergers were incorporated (in
various degrees), into the common behavior
patterns of all the aforementioned genotypes.

STRUCTURE

The simulation environment is a two dimensional
plane on which individual corprobes exist and
interact. Each corprobe is located at a specific
point on the x,y plane. Its grid coordinates identify
it uniquely. A corprobe's sphere of influence is the

grid area within which the corprobe's presence has
an effect on the market share of others, and within
which its performance is affected by them. The
further a competitor is from the center of a
corprobe's sphere of influence, the lesser the effect
it is likely to have on that corprobe's performance.
A corprobe's health and vitality are measured by a
rating known as the Financial Soundness Index
(FSI). The higher the rating, the healthier the
individual. Corprobes born via reproduction inherit
the characteristics and vitality of their parents
while those born via random birth inherit the
characteristics and vitality of the initial seed
population.

The following variable parameters can be used to
control and limit the simulation.

• Percentage of each type as a fraction of one
hundred percent.

• Size of initial seed population.
• Number of time steps to run or infinite

horizon option.
• The option to re-seed the population if

extinction approaches.
• Tum on (or off) a file trace with adjustable

trace points.
• Turn on (or off) the graphical display with

adjustable display points.

The system allows sampling of statistical data over
a moving average of cycles which can be set to a
desired level. Statistics are updated every cycle.
Statistical data is also dumped to a file trace if this
option has been turned on. In addition, the output
trace prints out data points to a disk file or printer
at fixed time intervals that can be varied. A
summary of statistics for the entire run is written to
a disk file in addition to the trace data. This

Copyright© 1995 Software Engineering Press

summary is broken down by genotype and shows
average values per cycle for FSI levels, production
costs, marketing expenditure, and population
levels.

GENOTYPES

lncn:uing ...

EXPANDER VIRULENT

CONSERVATIVE HYPERACTIVE

lncrc.ulng aggn:nlon

fig 1. Genotype Interrelationships

The four genotypes are differentiated by the
strength (or weakness) of two characteristics called
the Risk Factor, and the Aggression Factor. (Fig
1).

Expander

The Expander genotype uses aggressive marketing
to expand market share. Expanders have a high risk
factor coupled with a low aggression factor.

Conservative

The Conservative genotype keeps production well
within demand. Both risk factor and aggression
factor are low for this genotype.

Virulent

The Virulent genotype is destructive in nature and
tends to keep production at high levels most of the
time. Both risk and aggression factors are high in
this genotype. Profits for the Virulent genotype are
usually at the expense of other neighboring
genotypes via decrease of market share.

Hyperactive

The Hyperactive genotype is a crossbreed between
the Expander and the Conservative. It has a low
risk factor coupled with a high aggression factor.

13

VARIABLE PARAMETERS

The Reproduction Threshold

The Reproduction Threshold controls the point any
corprobe must reach before it can reproduce.

The Takeover Threshold

The Takeover Threshold is the point at which
corprobes are deemed to be failing, and are tagged
as candidates for take over. (Corprobes which are
tagged and not taken over during the current cycle,
are deemed bankrupt.).

The Merge Threshold

The Merge Threshold is a level that s aspiring
corprobes need to reach in order to successfully
take over a vulnerable corprobe. Increasing the
Merge threshold makes it harder for a selected
candidate to qualify for the take over process, and
can lead to an increased failure rate and vice versa.

The Resource Multiplier

The Resource Multiplier is a factor in calculating
consumer demand for the product of a corprobe. It
is analogous to the initial number of customers per
square area for a specified market, and is fixed for
each run of the system. Current consumer demand
for a particular corprobe's product is calculated
using the Resource Multiplier, the number and
location of other corprobes within the active
corprobe's sphere of influence, and other factors.
Current consumer demand is inversely related to
the population density within the active corprobe's
sphere of influence.

The Random Mutation Frequency

Random Mutation Frequency determines the
probability that a corprobe will mutate during the
current cycle. The actual probability of mutation is
a function of the healthiness of the current
genotype. Increasing the Random Mutation
Frequency can lead to chaotic behavior.

The Random Birth Frequency

Random Birth Frequency determines the
probability that a new corprobe will enter the
system arbitrarily. Random Birth Frequency is
intended to model new entrants to a market and
also serves the purpose of rejuvenating the
population.

14

The Selection Ratio

The Selection Ratio determines what percentage of
the population (excluding the bestcorprobe),
executes a standard cycle. Those corprobes not
selected have their assets depleted via depreciation
and become weaker relative to those that
successfully execute a standard cycle.

THE LIFE CYCLE

Each cycle consists of a selection via fitness
function of the healthiest individual in the
population. The indicator used is the Financial
Soundness Index (FSI) which tracks the vitality of
an individual corprobe. The selected individual
executes an enhanced cycle. A random sampling of
the remaining population execute a standard cycle.
All corprobes have their assets depreciated by a
fixed percentage each cycle. This depletion models
overhead costs, which are incurred regardless of
production.

SELECTION VIA FITNESS

The method used in the selection process for the
CORPWORLD model is a biased roulette wheel.
In the case of selection of the fittest individual, the
fitness function assigns weights based on the health
of each individual. (Health is given by the
Financial Soundness Index indicator (FSI) for each
individual). In the case of selection of the fittest
genotype, the fitness function assigns weights to
each genotype based on the cumulative health
index of the individuals belonging to that genotype.

THE ENHANCED AND ST AND ARD CYCLES

Cost of production is calculated for both the
healthiest selected individual and those selected via
random sampling of the population remainder. This
cost is based on Current asset level, Current
demand level, Characteristic type, and Market
Factors. Consumer demand for active corprobe's
product during the current cycle is given by

Consumer Demandf- f(Gridsize,
ResourceMultiplier)

Once Consumer Demand has been determined, the
projected production figures, (Estimated Sales), for
each corprobe are calculated. Estimated Sales for
the active corprobe is given by

Copyright© 1995 Software Engineering Press

Estimated Sales~ f(Cost, MarkUp)
Cost ~ f (Marketing, Research&Development)
Marketing~ f(Current_Liquid_Assets,Risk,

Aggression, Financial_Soundness_lndex)
Research&Development ~ f(Liquid_Assets, Risk,

Aggression, Financial_Soundness_lndex)

Penalties are incurred for overproduction, ensuring
that indiscriminate expansion does not occur. Also,
random market fluctuations are simulated by

additions to or subtraction from asset level
recalculations for the active individual. New asset
levels for the corprobe are calculated by

Liquid_Assets ~ f(Cost, Sales, Diversity, Quality,
PreviousSales,
Random_Market_Fluctuations)

Quality ~ f(Liquid_Assets, Sales,
Research&Development)

Diversity~ f(Marketing, Quality, Sales)

Fixed assets are also subject to fluctuation due to
market conditions, and are depreciated at a rate

• given by the variable parameter Depreciation. If
fixed assets fall below a specific level they are
renewed via transfers from liquid assets. The
Financial Soundness Index is recalculated for the
new asset levels and a revised sphere of influence
is also established. These are given by

Financial_Soundness_lndex ~ f(TotalAssets)
GridSize ~ f(Financial_Soundness_lndex)

This process constitutes a standard cycle and is
executed by both the healthiest selected individual
and the random sampling of the population
remainder based on the variable parameter Select
Ratio. The healthiest selected individual also
executes a special reward procedure which
enhances its asset levels and hence its FSI and
related sphere of influence. In addition, the selected
individual is also made eligible for reproduction.
Those corprobes that do not execute any form of
the business cycle do not earn profit for the current
cycle but incur depreciation and overhead costs.

THE TAKEOVERMECHANISM

Every cycle, those corprobes whose liquid asset
levels fall below the Takeover Threshold are
marked as vulnerable and open for acquisition. For
each of these individuals, an acquirer is selected.
The selection is based on the strength of the

Copyright© 1995 Software Engineering Press

Financial Soundness Index, ensuring that only the
healthiest individuals are selected as acquirers. A
prospective acquirer must have adequate resources
to complete the acquisition. Adequate resources are
indicated by comparison with a threshold known as
the Merge Threshold. The acquirer must minimally
have liquid assets at the level of this threshold to
acquire the target corprobe. A corprobe can
acquire only a single target during a single cycle.
This prevents a single individual from acquiring
the assets of all failing corprobes for a single cycle.
If a merger cannot go through because the selected
acquirer has insufficient resources to complete the
procedure the target corprobe goes bankrupt and is
removed from the system during the next business
cycle.

THE REPRODUCTIVE MECHANISM

During each life cycle, the corprobe that is selected
as the healthiest individual (i.e .. the corprobe that
executes an enhanced cycle), is also made eligible
to reproduce. In order for reproduction to take
place, the selected corprobe must have a liquid
asset level of Reproduction Threshold or greater. If
the selected corprobe, (the parent), meets this
criteria, a fresh node is added to the active corprobe
list and given the same behavior characteristics as
the parent. Asset levels for the child corprobe are
based on a percentage of the parent corprobe's asset
levels and are therefore linked to the parent health
index. Newly created corprobes can mutate directly
after birth, ensuring that the copy process is not a
template function but a variable process. Entry to
the mutation procedure does not imply that
mutation takes place. Parent corprobes undergo a
reduction in asset levels to reflect the energy
expended in the creation of a new individual.
Corprobes can also be added via the Random Birth
mechanism.

VI. RESULTS AND CONCLUSIONS

The simulation was run at varying Resource
Multiplier levels ranging from one thousand
through one million. Also, thresholds were varied
to find out if there was significant behavior change
at differing threshold levels. In all cases, a single
parameter was varied while others were held
constant, in order to measure the amount of change

15

in a controlled situation. Data was sampled via a
moving average to smooth out short term
anomalies as well as to observe long term trends.
One hundred runs were done with each parameter
set, and the results were averaged over the life of
that specific run to smooth out random fluctuations.

We discovered that in the Resource Multiplier
range of four thousand to twelve thousand, there
was a steady, consistent increase in population
growth, along with corresponding increases in FSI
levels for all four genotypes. (See Appendix A: fig
1-2). Growth varied among the genotypes, but the
overall picture showed a linear increase that was
relatively consistent over all four types. Beyond
this point, the population remained stable while FSI
levels, which had increased dramatically towards
the latter portion of the range, dropped to about a
half of their peak value, and stabilized in a cyclic
pattern. (See Appendix A: fig 3-4). The system
stabilized at the transition point and levels
remained consistent thereafter. Varying thresholds
(such as the Reproduction Threshold and the
Takeover Threshold) produced an amplitude shift,
with the focus of the shift being concentrated in the
population graph. (See Appendix A: fig 5-6). In all
cases studied, varying the parameters did not
essentially change the shape of the initial growth
curve or the consequent transition point. Effects
were mainly visible in the stabilization levels
produced thereafter.

We think that the above results indicate that the
model optimizes the population levels of the
available genotypes for a specific resource level
(i.e .. consumer demand) and a particular set of
controls (the various thresholds and limits). The
model was able to optimize over an extremely
large range of values for the Resource Multiplier.
The tested range ran from four thousand to one
million. The statistical data indicated that large
increases in the Resource Multiplier showed up as
correspondingly large up-shifts in the graph as a
whole.

The growth curve leading to the transition ledge is
analogous to a youthful dynamic market which
gradually becomes saturated over time. We think
that the transition ledge indicates the point of
market saturation. The dramatic plunge in FSI
levels, from the transition point to stabilization

16

levels is indicative of companies that invested too
heavily in growth and expansion at the tail end of
the market expansion curve, and were forced to pay
a penalty when predicted demand did not meet
expectations.

From the heights of the peaks in the FSI graph
levels, it can be seen that the different genotypes
show different growth patterns. The Conservative
genotype shows the lowest peaks on average, and
this indicates its nature. The Expander genotype
generally has the highest average peaks, (indicative
of its nature) and therefore shows more fluctuations
in health over time. Overall, it would seem that the
Conservative genotype is less susceptible to market
fluctuations than the other three types, and that the
Expander and Hyperactive genotypes have
consistently larger market share. The model seems
to show that the amount of risk undertaken is
directly proportional to overall market share and
vulnerability to market fluctuations.

Further experiments were conducted, in which the
simulation was run with the absence of a particular
genotype until a specific time frame was reached.
As before, the system stabilized itself for the
existing three genotypes. After stabilization, the
absent genotype was introduced, and mutation and
birth procedures were allowed to make use of this
genotype. The system soon restabilized itself for
the new configuration, albeit at a lower level from
the one established earlier. (See Appendix A: fig
7-8). Introduction of a fresh genotype to a stable
system resulted in the incorporation of the new
genotype into the environment matrix at the cost of
production decreases and health index depletion in
the existing gene pool. In the context of the
corporate environment, the model seems to imply
that new entrepreneurs with characteristics widely
differing from those already established, can find a
niche in the marketplace, with the result that there
is less market share for everybody, and a decreased
likelihood of extended growth.

Changes in the threshold parameters tended to
make the system less stable under extreme
conditions. For example, increasing the
Reproduction Threshold, the Merge Threshold, and
the Takeover Threshold simultaneously produced a
situation where it was harder for a corprobe to
reproduce itself, and also harder to take over the

Copyright@ 1995 Software Engineering Press

resources of a failing corprobe. Additionally,
corprobes failed at a higher rate. In such a case, the
rate of entropy for the system as a whole, tended to
be higher than the rate of growth, leading
eventually to population depletion, or market crash,
(i.e .. failure of simulation due to inadequate
number of corprobes, or inadequate number of
healthy ones).

Raising the Reproduction Threshold made it more
difficult for corprobes to reproduce, but those that
did were correspondingly stronger than in a
situation where the threshold was lower. Since
reproducing corprobes supported their new
offspring by direct asset transfer, the new
corprobes, mostly of the same genotype as the
parents, were correspondingly stronger financially
and healthwise. The result was higher PSI levels
for the genotype as a whole, with the PSI graph
plots showing higher peaks corresponding to
increased corporate stability.

VII. SUMMARY

In conclusion, it was observed that
CORPWORLD does effectively model certain
aspects of the corporate environment and the
behavior of corporations within the limitations
imposed by simulation's design. It can be viewed as
a prototypical model that can explore behavior
patterns in the corporate environment using such
tools as Artificial Life and Genetic Algorithms.
Further enhancements to the model, in order to
make realistic projections regarding specific
markets would involve:

• Maintaining a gene pool of successful
phenotypes, which could be used to
incorporate true genetic breeding. In this
case, genetic evolution would be directed
towards the best possible survivor in an
environment.

• Changing the genotype over time to enable
it to adapt more flexibly to its environment
than at present. This would be a
pre-requirement for genetic evolution. In
particular, the Risk Factor and Aggression
Factor could be made continuously variable,
and active over a wider range.

• Changing the behavior patterns for each
genotype to more aggressively reflect its

Copyright© 1995 Software Engineering Press

nominal characteristics. In particular, the
Virulent genotype could be designed to
actively seek out targets within its sphere of
influence, while the Expander genotype
could be altered to factor in the healthiness
of adversaries as well as its own, within its
sphere of influence .

• Giving individual corprobes rudimentary
intelligence, at least to the level of being
able to make minor adjustments (such as
adjusting sales and production to population
levels), to its immediate environment based
on its perception of that environment.

• Making resources (consumers) migratory,
rather than fixed, as at present.

• Linking corprobes over relative distances on
the grid, based on their familial links. This
would include the ability to move assets
back and forth between nodes of a larger
distributed corporation.

• Making production a function of multiple
variable markets rather than a single fixed
one.

• Being able to consider many different types
of environments based on economic
variables.

CORPWORLD has the potential to become a
valuable tool for experimentation and exploration
of various corporate environments.

17

18

SELECTED BIBLIOGRAPHY

1. Ackley, D. H., and M. S. Littman.
Leaming From Natural Selection in
an Artificial Environment. In
Proceedings of the International Joint
Conference on Neural Networks, Nol.
I, Theory Track, Neural and Cognitive
Science Track, (Washington, DC,
Winter 1990) Hillsdale, NJ: Lawrence
Erlbaum Associates, 1990.

2. Beer, Randall D., Hillel J. Chiel, and
Leon S. Sterling. An Artificial Insect.
Scientfic American, Vol. 79.
September-October, 1991.

3. Cariani, P. Emergence and Artificial
Life. The Proceedings of an
Interdisciplinary Workshop on the
Synthesis and Simulation of Living
Systems held 1990, in Los Alamos,
New Mexico. Volume X. California:
Addison-Wesley Publishing
Company, Inc. 1992.

4. Dawkins, R. The Evolution of
Evoluability. In Artificial Life, ed. C.
Langton. The Proceedings of an
Interdisciplinary Workshop on the
Synthesis and Simulation of Living
Systems held 1987, in Los Alamos,
New Mexico. Volume VI. California:
Addison-Wesley Publishing
Company, Inc. 1989.

5. Doolittle, W. F., and C. Sapienza.
Selfish Genes, the Phenotype
Paradigm and Genome Evolution.
Nature 284 (1980): 601 - 603.

6. Farmer, J. D., and A. Belin. Artificial
Life: The Coming Evolution. The
Proceedings of an Interdisciplinary
Workshop on the Synthesis and
Simulation of Living Systems held
1990, in Los Alamos, New Mexico.
Volume X. California:
Addison-Wesley Publishing
Company, Inc. 1992.

7. Goldberg, David E. Genetic Algorithms
in Search, Optimization and Machine
Leaming. New York:
Addison-Wesley Publishing
Company, Inc. 1989.

8. Gould, S. J., and N. Eldredge.
Punctuated Equilibria: The Tempo
and Mode of Evolution Reconsidered.
Paleobiology 3 (1977): 115 - 151.

9. Knower, B., and F. Marchese. The
Kreecher Simulation: An Experiment
in Simulated Artificial Life.
Unpublished manuscript (1992).

10. Langton, Christopher G., ed. Artificial
Life. The Proceedings of an
Interdisciplinary Workshop on the
Synthesis and Simulation of Living
Systems held 1987, in Los Alamos,
New Mexico. Volume VI. California:
Addison-Wesley Publishing
Company, Inc. 1989.

11. Langton, Christopher G., Charles
Taylor, J. Doyne Farmer, and Steen
Rasmussen, eds. Artificial Life II. The
Proceedings of an Interdisciplinary
Workshop on the Synthesis and
Simulation of Living Systems held
1990, in Los Alamos, New Mexico.
Volume X. California:
Addison-Wesley Publishing
Company, Inc. 1992.

12. Smith., J. Maynard. Mathematical
Ideas In Biology. Cambridge:
Cambridge University Press, 1968.

13. Volterra, V. Variations and
Fluctuations of the Numbers of
Individuals in Animal Species Living
Together. In Animal Ecology, edited
by R. N. Chapman, 409 - 448. New
York: McGraw-Hill, 1976. •

14. Wilson, E. D., and W. H. Bossert. A
Primer of Population Biology.
Stamford, CN: Sinauers, 1971.

Copyright© 1995 Software Engineering Press

AN APPLICATION OF ARTIFICIAL INTELLIGENCE - SIMULATING
THE BUSINESS ENVIRONMENT

Appendix

By
Bryan Knower, Michael Gargano, and Frank Marchese.

Copyright@ 1995 Software Engineering Press

Pace University
(212) 346-1336

19

111,

...
1'3,

i: n,.
0
-~ llUI,

;,l
iU 151,

.-1

::i 1:1,.

~
0 115,

~
111,

...

...

u.

,..,

~ 11 .

.-1

I)
) ,.
I)

.-1 ,.
1-1

~ ..
~

..

,.

20

APPENDIX A

P~p._... I. .ar,_ -t:. i ~-.,,-type,,

6.500

S,5 15,S

Resou~ce Leue1 dai1y $ va1ues in 000s

@1j Exp :=I Con 1111111 Vir ~ H9p

fig 1. Population levels with resource levels varying from 5000 to 6500.

Resource

Ea Exp

FSI LEVELS - TVPE

G.Sk

••
dai1y $ ua1ues in BBBs

'!!il C:m iii IJ i>• 1Z] l·l!,1p

fig 2. FSI levels with resource levels varying from 5000 to 6500.

Copyright © I 995 Software Engineering Press

APPENDIX A

POPULATION - TYPE

REsac:>LLr-c::c~ 1~ -1 Sk ?'Sk

...
1'18,

....
i:: 118,

0 ,,.
1ll8,

+I
~ 1'8, ...
~ 118 ,

~
0 ,8,

~
...
...

8 ,

18 18
15

• 8 •• 45 " .. " .. 58 18 ,.
Resource Level daily s values in 000s

~ Exp ~ Ci:Yn • fJ i"' ~ Hyp

fig 3. Population levels with resource levels varying from 5000 to 75,000.

FSI LEVELS - TVPE

7Sk

115,

111,

, . .
i? "· ...
G) 15.
:)
G) ...

4j

;
~q
-

,,,.'i
f~,·:
lt'~ r.::

f~
...

58
00 " · ~

..
~ :·~'

"·
., . # ~

11.

8, ,.
a u H • H .. n

Resource Level daily S values in 000s

EiJ E x p ~ (,,:,r, IS V ir• [SJ H~:i>

fig 4. FSI levels with resource levels varying from 5000 to 75,000.

Copyright © I 995 Software Engineering Press 21

22

550.

508.

450.

= 408.

0 350.
11'4

+i
~

308.

1111 250.

::i
~ 200.

0
~ J.50.

J.00.

50.

0.
J. 3 5

2 4 6

~ R.Th

APPENDIX A

TOTAL POPULATION CURVES

7 9 l.J.
a J.0

Clock

- 111

~

/ -~·

./~ ~
,,,,,,,,, _,,,,/

,..,../
/

l.3 J.5 J. 7 J.9 2J. 23 25 27 29
J.2 J.4 J.6 J.8 20 22 24 26 28 30

cycles in "'BBBs

• H. '1'l1 ·•• i .. 5M • R. Tl1 - 211

fig 5. Total population levels at three levels of the Reproduction Threshold. (IM, 1.5M, 2M).

TOTAL POPULATION CURVES

550.

508.

450.

= 408.

0 350.
•1'4

+i 300.
~

1111 250.

::i
~ 209.

0
~ J.50.

J.00.

50.

0.
J. 3 5 7 9 J.J. J.3 J.5 J. 7 J. 9 2J. 23 25 27 29

2 4 6 a 1.0 J.2 J.4 J.6 1.a 20 22 24 26 20 30

Clock cycles in "'BBBs
[:fil T . Th "' 1.00k m T . Th ·.-.-. 4801<

fig 6. Total population levels with Takeover Threshold stepped at 100k, 150k and 200k.

Copyright © 1995 Software Engineering Press

APPENDIX A

FSI 1-..... -1 30k>

111,1

111,1

1•.1

1'1,1

181,1

1?1,1 ..

151,1

1.Y,I

····v'···· TOT

fig 7. FSI levels with one genotype with-held until 50,000 clock cycles.

PCJopllA. 1.a.. t. i CJo...-..,,,,,,t.l!::IP- 1- -1 30k>

51,1

15,1

o.1,.,..,..,,..,.,,.,...,.,...,,,...,.....,.........,....,_,_,.,.....,....,...,..,.,.,.,......,.,.,,...,,,......,.,,,-1-,-===========-==========,,.,
1 a 3 •

5
11

1
l!I '1iil31l~rl11a1'al'az23al~l'aa2~i1

3a
33

3i
5
315

31
:ia

3
',,.

41
u~ia .. l?VJ¥J5i

1
sa

5~l5sl1a5'15:\33el5
u

61a15
'1J\t

1
,~

5.,;',1l'aJ\l3
aJia

111
e11

6
',~

1,i:1,l~l',11
Clock cycles in 000~s

--+.-- Exp; Hyp ····v···· TOT

fig 8. Population levels with one genotype with-held until 50,000 clock cycles.

Copyright © I 995 Software Engineering Press 23

ALCOD: An IDSS for Stock Market Surveillance

Peter Goldschmidt
The University of Western Australia,

Department of Accounting and Finance
Nedlands, Western Australia 6907. Email:

1 pgold@ecel.uwa.edu.au

Abstract

ALCOD is a cooperative multi-agent intelligent
decision support system to assist stock market
surveillance teams in the classification of
alerted non-compliant events transacted on the
exchange. ALCOD facilitates the review of the
classifications. The system combines heuristic,
approximate and causal reasoning and is
centred around a relational database which is
used as a control blackboard.

1. INTRODUCTION

1.1 Stock Market Surveillance and
Decision Processes

Major international capital market providers
currently use various sutveillance techniques to
ensure that the market participants are well
informed and that illegal activities are detected,
Keyes (1991). The stated mission of the
Australian Stock Exchange (ASX) is "to
provide, for the benefit of all participants, the
most internationally competitive and fair market
for financial securities and derivatives so as to
enhance Australia's position as a regional
financial centre. "2

When the ASX was reorganised in 1989, the
need for a formal market sutveillance function
was recognised. Prior to this date, equities

1
We gratefully acknowledge the cooperation

of the Surveillance Division of the
Australian Stock Exchange.
The author is indebted to Professor Philip
Brown , The Department of Accounting and
Finance and Dr Paul Hadingham, The
Department of Computer Science, The
University of Western Australia for their
advice and encouragement.

2 ASX Annual Report (1994, p. 2).

24

market sutveillance was divided among the ASX
Companies and Membership Divisions, the
federal National Companies and Securities
Commission (NCSC) and the Corporate Affairs
Commissions and the six separate states, the
Australian Capital Territory, and the Companies
Office of the Northern Territory. The
sutveillance Division was an outgrowth of the
reorganisation.

The Surveillance Division's role is to monitor
the market to ensure trading is fully informed
As a result, it may detect unusual patterns of
market behaviour that might instance market
manipulation, insider trading and similar
practices. Once an unusual pattern is detected,
if no adequate explanation is found and there
appears to have been a breach of the ASX rules,
it is reported to the Exchange's Companies
Division (if a listed company is involved), ASX
Membership Division (if a broker is involved),
or the Derivatives Division (if derivatives are
involved). Where there appears to have been a
breach of the law, the matter is reported to the
federal government body that administers the
corporations law, namely the Australian
Securities Commission (ASC).

When it was formed, the Surveillance Division
commenced a program that combined computer-

• based decision support systems to analyse
market events, with communications software,
text retrieval and graphics. This program
resulted in the Surveillance of Market Activity
(SOMA) and related subsystems such as real­
time monitoring of market events, news display,
market replay,
and alerts' history. The SOMA system
originated from the NYSE's STOCK WATCH
system and has been modified for the Australian
context.

The SOMA system is evolutionary, to keep pace
with improvements in sutveillance methods,
changes in technology, and evolving market
behaviour. The complete SOMA system is
written in Cobol and C and runs on PCs
supported by a Local Area Network.

Copyright © 1995 Software Engineering Press

Figure 1. How ASX Surveillance Works
Source: ASX Surveillance Division

News
Screen

Tradlno
Summar1e1

Marut
Information

lnvesllQado
History

Copyright © 1995 Software Engineering Press

Transactto Tlldlno
Summann

25

Toe Surveillance Monitoring System at the ASX
comprises two components: i) the automated
system for the initial monitoring, and ii) the
market analyst's review, comprising the
subsequent decision processes. The automated
system generates an "alert", the structured
component, which a market analyst then
scrutinises, the unstructured component. An
alert is generated when there is an occurrence in
the trading of a security that is outside pre-set
values of any of a number of parameters. If the
market analyst isolates unexplained unusual
patterns of market behaviour and concludes an
investigation is justified, the details are
forwarded to the assistant manager of
Surveillance who then determines if an
investigation is required. If one is required, the
report is sent to an investigating analyst who
calls for brokers' records, conducts an analysis
of all the available data, and decides whether a
report of the activity to the relevant regulator is
warranted (Berry and Yanco, 1990).

1.3. The Surveillance Operations Tasks

Toe SOMA model monitors between 50,000 and
80,000 trading entries per day and includes
priorities that are determined by the type of alert
generated For example, when there is a volume
type alert (e.g., when there is an extraordinarily
large volume of trades), the number of days
since the stock was previously traded will be a
factor that contributes to the choice of the alert's
priority. Surveillance operations con be broken
down into a sequence of steps as follows.

• Once the automated system detects unusual
market activity, it produces an alert. The
type of alert depends on the nature of the
unusual activity.

• SOMA separates the alerts into those that
relate to one of the top 96 liquid stocks3

and
the rest (about another 1,000 stocks), which
are classified as illiquid stocks. An analyst
is responsible for each category. Liquid
stocks are, by their nature, well researched
by market participants. They make up a
large part of the market index and can be

3 Market capitalisation and value of trades are
the metrics used to measure liquidity.

26

seen as representing "the market". Alerts
generated by events are sent to the one
market analyst for scrutiny. Alerts for the
illiquid stocks, which make up the bulk of
the alerts, are sent to an assistant market
analyst who is supervised by a market
analyst. To reduce the number of rejected
alerts, all alerts are now prioritised into two
categories: viz., primary and secondary
alerts. Primary alerts are those that are
maintained for scrutiny and subsequently
recorded in an alerts history file for
referral. Secondary alerts are recorded in an
alerts history file for reference, if necessary,
at a later date.

• At the start of analysis, the assistant market
analyst is presented with graphic user
interface (GUI), displaying the current alerts
generated by the primary system, keyed by
ASX code.

• When the assistant market analyst selects a
stock code for which there is an alert, she is
presented with the report that details why
the alert was generated

• Toe assistant market analyst then adds
comments to the GUI, using as a guide a set
of questions that are documented in her
manual. The answers to these questions
determine whether the alert is to be rejected
or accepted for further scrutiny. They
relate, for example, to issues of price or
volume movements compared to previous
movements of that stock and to the
movement in the relevant share index, or the
presence of company announcements,
brokers' newsletters, etc. Reference is made
to charts of the past trading patterns of the
stock and the index, the stock alert history,
news services, and other information that
may be of interest. Comments are added to
the alert (via the GUI) on anything that the
assistant market analyst believes may help
the market analyst in reviewing the alert.

• Toe assistant market analyst compares the
stock's price and volume movements with its
history and with movements in the relevant
index, in addition to the comparisons made
by the automated system.

• Toe assistant market analyst (when
possible) inputs alert codes. These codes
flag the alert status as judged by the
assistant. They may indicate, for example,

Copyright © 1995 Software Engineering Press

that the alert is "not for analysis", "watch"
or "in line with sector".

• If, at this stage of the review, an alert
identifies a significant change in the market
for a stock that is unexplained by news and
other market infonnation, then the
circumstances are referred to ASX
Companies Division personnel. They
contact the relevant company or broker(s)
should they deem it necessary.

• The next step of surveillance is conducted
by the market analyst, who also has access
to a database containing points of interest
relating to news items, brokers'
recommendations, public newsletters and
journal recommendations, online charts, the
response from the ASX Companies Division
personnel or the ASX Membership Division
(if either is applicable), and alert history
files. On occasion she may alter the alert
codes entered by the assistant analyst

• If there is an unexplained pattern of trading
it is brought to the market analyst's attention
for further inquiry. After conducting a
detailed analysis including (for example, an
analysis of who bought and who sold, and
an evaluation of the value of the transactions
of the trading concerned proportionate to the
stock's capitalisation) a report is prepared
for the surveillance assistant manager (the
senior analyst) who then determines if an
investigation is justified If so, the report is
forwarded to a surveillance investigator who
conducts an inquiry into the matter.

2.1. THE ALCOD SYSTEM

The ALCOD System [ALCOD], is an Intelligent
Decision Support System [IDSS], Hotzman
(1989), Gottinger and Weiman (1992), and
Marzano (1992), developed to assist the
surveillance team in classifying the alerts
generated by the SOMA system. ALCOD
functions in a complex environment where the
information used by the analysts is often highly
context sensitive in high volume.

ALCOD uses Multi-Agent Technology, Bond
and Gasser (1989), Bird (1993), Jin and Levitt
(1993), Morrison (1993), O'Valle (1994), to
reflect the multi-agent surveillance team, as well
as Fuzzy Modelling, Evidence Combining,

Copyright© 1995 Software Engineering Press

Zadeh (1978,1983,1986), Yager (1983,1987)
and Torasso and Console (1987, 1989a, 1989b),
and the concept of Blackboard Control
Architecture, Hayes-Roth (1985), Mookerjee
and Chaturvedi (1993) to model aspects of the
surveillance team's decision making tasks.

ALCOD's primary function is to suggest an
appropriate alert code, and to present the
evidence supporting this suggested code. One of
the results of ALCOD is the generation of an
audit trail of the decisions made by the team.
This trail is being used for fine-tuning the
ALCOD system, and potentially can be used for
reviewing the threshold levels in the SOMA
system, for case-based reasoning to evaluate
historical alerts, codes and evidence, O'Leary
(1992), Gamer and Chen, (1992) and Mott
(1993), as the decision outcomes are retained,
and as a training tool for novice analysts.

2.2. Initial Monitoring

As mentioned, the initial monitoring facilitates
structured decision making and is done by the
real-time procedural, SOMA system. The
threshold levels of SOMA can be adjusted each
trading session by altering the start-of-day
threshold parameters. SOMA produces 40
different types of alert reports including the alert
details. This output is converted to produce
input for ALCOD.

Typical alert reports include, for example: Sale
Price versus Close of any of the last n Days,
Sale Price versus Previous Close, Volume of n
Days versus Past n Day Volume, and Today's
Volume over n% of Issued Capital:

2.3. Secondary and Subsequent
Monitoring and Decision Processes

The alerts generated by SOMA identify
suspected breaches in compliance. However as
the threshold levels have a high granularity, the
alerts need to be evaluated to determine if they

27

N
00

()
0

~
~­
:r
@

~
Vl

"' 0

~
~

I
~·

i'
"ti

~
"'

FIGURE 2. The ALCOD System Schematic

Trading
Signal

SOMA

Alert
Details

Static
reference

database•

Dynamic
reference

database••

Blackboard
[RDBMS)

and
Control
Rules

ALCOD
IDSS

ALCOD
IDSS

ALCOD
IDSS

ALCOD
IDSS

ASSISTANT ANALYSTS

GUI*""

ANALYSTS

GUI ...

SENIOR ANALYSTS

GUI* ..

ASSIST ANT MANAGER

au,-

LOWEST

L
E
V
E
L

0
F

E
X
p
E
R
T
I
s
E

HIGHEST

EXTERNAL
INFORMATION

LEGEND

Static reference database
Brokers research
Security master list
Alert history and control parameters

" Dynamic relerence database
Blackboard rule base and Audi I lrall ol
decision processes

... GUI
Presents:

(1) Alert report detaUs and history
(2) Boolean end linguistic variables and
(3) Alert codes plus supporling evidence

are true positive alerts or false positives. Due to
the temporal and context sensitive nature of the
infonnation required to evaluate each alert
report in this complex environment, it is
necessary for the analysts to use a large amount
of infonnation that may correspond to or
conflict with the alert under review. The
decision process involves the accumulation of
evidence based on this infonnation. This
evidence is used to classify the alert. There are
24 different classifications of an alert, each
requiring supporting evidence.

Typical classifications include, for example:
Analysis Commenced, On-Market Buy Back
Scheme, Investigation Commenced, Media
Article, Company Announcement, Portfolio
Adjustment, Watch, Watch and Ring Companies
Department, In-line with Underlying Security,
Substantial Shareholding Notice and Not for
Analysis, for various reasons, such as
insufficient volume, insufficient price, in-line
with industry classification or in-line with
market index.

Surveillance team members use internal and
external information, as well as historical cases
which include an alert code as well as its
supporting evidence. Consequently, the analysts
are typically faced with large amounts of
temporal and context sensitive infonnation, both
directly and indirectly related to the event under
scrutiny. This may lead to inconsistencies in the
analysts' decision making and evidence
production. Additionally analysts may present
biases which manifest as inconsistencies over
time and as inconsistencies between the analysts
in the team.

Under this complex decision making
environment, the decision makers can be assisted
in their decision processing by computerised
decision support systems [DSS], Gory and
Scott-Morton (1971), Sprague (1980), Sprague
and Watson (1986), Sviokla (1986), Silver
(1990) and Todd and Benbassat (1990). The
goal of this DSS is to assist the decision maker
in matching events generated by an external
agent, to known, or suspected, patterns of
anomalous, agent behaviour. This goal can be
seen as the tenninal hypothesis supported by
subgoals or node hypotheses. The objective of

Copyright © 1995 Software Engineering Press

this DSS is to minimise the inconsistencies
discussed above and to impose a nonnative
framework for the combination of
complementary and conflicting evidential
infonnation. This nonnative framework also
assists the analyst in the management of the high
volume of related external information.

2.3.1. ALCOD Model Dynamics

After initial alert generation (produced using
quantitative methods with coarse-granule
thresholds), the first task of the team i$ to
determine if an alert is feasible. This and
subsequent decisions are based on team
members' expert determinations (supported by
evidence) to classify the alert. The alert's
classification is then reviewed by more senior
members of the team, who use the alert code as
a basis to review the evidence consistent with the
assigned code. They may add, modify or
disprove this evidence. The result of the review
process is the retention or modification of the
code plus evidence.

To assist in evaluating the information relevant
to an alert, and to generate the evidence,
ALCOD combines prototypical knowledge
representation with heuristic, approximate and
causal reasoning and evidence combination
methodologies. This allows for combining
heuristic and deep reasoning. The techniques
used are discussed in detail in Torasso and
Console (1989a).

Our basic model uses non-monotonic reasoning
to apply defeasible logic on frame-based,
Minsky (1975), knowledge structures. The
fuzzy modelling and related evidence combining
techniques are used in preference to the
Bayesian framework measure of the strength of
evidence, the likelihood ratio, because of the
limitations with respect to the use of likelihood
ratios as inputs which constrain the evidence
aggregation. For details see Krishnamoorthy
(1993). Additional justifications for the
techniques used can be found in Torasso and
Console (1989a), pp 3-26.

29

30

Figure 3. The frame Substantial Shareholder Notice, Short Term
Price Movement (prototypical and control knowledge parts)

FRAME: Substantial Shareholder Notice [SSN]

TRIGGERS
Today's Price versus Previous Close

RM=l.0
NECESSARY FINDINGS
The level of importance of an SSN being lodged recently to the price move
<Vl,0.75> <1,0.5> <Sl,0.25> <NI,0.0>

RM=l.0
SECONDARY FINDINGS
The level of importance a particular broker being responsible for all or most of today's
volume to the price move
<El,1.0> <Vl,0.75> <1,0.5> <Sl,0.25> <Nl,0.0>

RM=0.9

The level of importance of a particular broker having layers
of bid and asks, and being noted in the history
<El,1.0> <Vl,0.75> <I,0.5> <Sl,0.25> <NI,0.0>

RM=0.05

The level of importance of the company having been queried in the last few months
about the top 20 shareholder because of an increase in the volume of trading AND
this volume attributed to changes in the top 20 shareholders, to the price move
<El,1.0> <Vl,0.75> <1,0.5> <Sl,0.25> <NI,0.0>

RM=0.5

The level of importance to the price move of enquiries by ASX to the company about
an announcement (including periodic reports)
<El,1.0> <VI,0.75> <1,0.5> <SI,0.25> <Nl,0.0>

RM=0.05

VALIDATION RULES
confum if SSN (timing, level of importance)

in context -
RM=l.0

AL TERNA TE HYPOTHESES
confnn .if alert previously classified as SSN (timing, level of importance)

in context -
RM=l.0

DEFAULT SPECIALISATION
The level of importance of an SSN being lodged recently to the price move
<EI,1.0>

RM=l.0

Copyright © 1995 Software Engineering Press

Knowledge representation [KR]

On the heuristic level, which is hierarchically
organised, the KR is in the form of frames which
contain structural knowledge slots, prototypal
knowledge slots and control knowledge slots.
The higher heuristic levels are coarse
classification hypotheses whereas the lower
levels are more specific. These high and lower
levels are connected by a specialisation
relationship connecting the frames that represent
general classification hypotheses to frames
representing more specific hypotheses.

Structural knowledge is fanned by these
generalisation and specialisation slots which
describe a frame's position in the system. The
specialisation slots contain the names of the
classification hypotheses that are more specific
than the one under consideration. The
generalisation slot indicates the hypotheses
generalising the one under consideration.

Prototypical knowledge is divided into
subdivisions containing primary or necessary
conditions, and secondary conditions. The
primary conditions need to be satisfied in order
for an hypothesis to be confinned The
secondary conditions are a variation on Cravetto
et. al. (1985) sufficient conditions, which
establish the hypotheses under consideration
when a sufficient condition is met As these
sufficient conditions are often difficult to define,
they have been replaced by secondary
conditions, which allow for the completion of
primary conditions by describing more specific
conditions that are not strictly necessary.

Control knowledge may have up to five slots:
Triggers, Validation Rules, Associated
Hypotheses, Alternate Hypotheses and Default
Specialisation.

• Triggers are rules that need to be satisfied
by actual data before a frame is instantiated.

• The slot Validation Rules contain
production rules that involve specific data to
confirm or reject the instantiation of a
frame.

• The slot Associated Hypotheses contains a
list of those hypotheses that are associated
with the current one and the slot Alternate

Copyright © 1995 Software Engineering Press

Hypotheses contains a list of those
hypotheses that are alternative to the current
one.

• The Default Specialisation slot contains a
list of specialisations that are more common
when a generic classification can be
established. When a frame corresponding to
a generic classification can be established by
actual data and no specialisation frame can
be triggered, this default specialisation can
be used.

Relevance measures and evidence formulation

In order to weigh the importance of data or
conditions on data, we use the concept of
relevance measures [RM]. The RM metrics
associated with each atomic condition in a
complex condition lies on the [0,1] interval. An
RM of 1 has the maximum relevance and
conversely the minimum RM is 0. RMs are
elicited from the experts as part of the initial
knowledge acquisition, and are built into the
system.

When data is input by the user in the fonn of a
boolean variable, i.e. True or False, linguistic
variables [L V] are associated with each positive
response. There are five LVs ranging from
extremely important, [EI] to not important, [NI].
These LVs are then combined with the RM to
produce an evidence measure for each element
concerned. Elements associated with the same
classification goal are then combined to form an
'evidence chunk'. The control knowledge,
heuristic knowledge, causal and approximate
reasoning are used to evaluate the global degree
of evidence for the hypotheses under
consideration. The end result is the required alert
code, plus its supporting evidence.

The Multi-Agent Component

ALCOD is centred around a relational database
which contains the output from SOMA, and the
reference databases. The RDB is also used as a
blackboard on which results and various
controlling parameters are recorded, and by

31

32

Figure 4. Influence of Relevance Measures on Evidence Evaluation
Adapted from: Torasso and Console (1989a, 1989b).

The combination of the relevance measures and the level of importance, takes the form of a
connective,

[CONNECTIVE: DEV x DRM ➔ DEV

where ~V represents the domain of evidence, i.e. the level of importance, and DRAf is the
domain of relevance measures. The 'corrected' evidence obtained by applyingfcONNECTIVE
to the pair <obseived_evidence, RM) of a fact is the same as that used in the fuzzy evaluation
of the complex condition. The general requirements for the connective function are shown in
(1) and (2) for the two cases of AND and OR connectives respectively.

(1)

fANn(e,0)=1
fANn(e,l)=e
fAND(O,m)=l-m (2)
f ANDCl,m)=l
f AND(e,m)'2:,e if O <e <1 and O <m <1

fOR(e,0)=0
fOR(e,l)=e
foR(O,m)=O
fORCl,m)=m
f OR(e,m)5.e if O<e <l and O <m <1
f AND(e,m)=m*e+(l-m)

The first operand of both f AND and fOR represents the obseived evidence of an atomic
condition and the second one the relevance measure of the finding occurring in the atomic
condition.

To constrain the form of the formulae which definefAND and foR we use the functions (3)
which satisfy (1) and (2). We are also experimenting with function (4).

fAND(e,m)= m*e + (1-m)

(3) fOR(e,m)=m*e

2 2 2
fANn(e,m)=e (m -m)+e(2m-m)+(1-m)

(4)
2 2 2

foR(e,m)=e (m-m)+m e

Once the revised evidence degree has been evaluated for the elementary conditions, we use (5),
(6) and (7) to combine the elementary evidence to form a chunk of evidence.

(5) e(AND (T1 T2 ... T n)) = a+P * <P-a)

n n

where a= II e(T;) and 13 = min e(Tj)
j=l j=l

e(NOT T) = 1 - e(T) (6)

(7) e(OR (T1 T2 ... Tn)) = e(NOT (AND ((NOT T1) (NOT T2) ... (NOTT n))))

Copyright © 1995 Software Engineering Press

Figure 5. A Heuristic Approach to Evidence Combination
Adapted from: Torasso and Console (1989a, 1989b).

To combine the evidence degrees of the related knowledge chunks to fonn the global evidence
degree of the terminal hypothesis, the starting point is the Bernoulli fonnula (8).

However, as this considers the degrees of evidence as the same with no single value having a
privileged position we proceed from (9) to fonnulate (10) to distinguish between the primary
and secondary findings.

where the parameter 11. represents the degree of privilege.

(perfect privilege)

(unfair privilege)

with ei < X < 1 when O < A < 1

By varying 11. we can obtain an evidence combination scheme which assigns more or less
predominance to the evidence obtained

Finally to evaluate the overall global degree of evidence of the hypothesis under consideration
we use (11) to combine the degrees of evidence of the separate knowledge chunks obtained
from the primary evidence e(P), the secondary evidence e(S), the exclusion rule e(ER) and the
comfirmation rule e(CR)

(11) e(H) = ((e(P) +u e(S)) Of (1 - e(ER)] +u e(CR)).

Copyright @ 1995 Software Engineering Press 33

which team members' communicate their results.
The homogeneous and heterogeneous
components constitute the multi-agent
architecture; that is, i) the Analysts, ii) the
KBSs, iii) the Blackboard, and iv) the
Databases.

Once an alert code plus supporting evidence has
been assigned to an· alerted stock, the
information is passed to the next team member
for review. Modifications to this result can be
performed either by manually editing this output
or by using the hedging strategies. The results
of each team member are added to the decision
audit trail.

EXTENSIONS AND FUTURE RESEARCH

Further research is currently being conducted or
planned including; increasing the range of L Vs
to include three points within each L V, temporal
case-based reasoning to evaluate historical
classifications and evidence, natural language
processing of company announcements, the
incorporation of a cost function to evaluate the
risk of further analysis, and· issues related to
extending the analysis-team-wide modelling to
include modelling the investigation task .

CONCLUSION

ALCOD is a proof of concept prototype
currently under review by the Surveillance
Division of ASX. The system is built using
Smart Elements/Nexpert and MSAccess. It is
PC based.

Preliminary real-time testing was conducted over
a five day period on alert report, 'sale price
compared to the previous close'. Oassifications
generated by a senior analyst were compared
with those generated by ALCOD. The results
showed that in 38 cases out of 50 reviewed,
76%, the ALCOD result agreed with the
analyst's determination. In two cases, 4%, the
analyst modified her classification to that
recommended by ALCOD. In the remaining 10
cases, 20%, ALCOD ranked the analyst's
recommendation as second with a difference in
the degree of evidence between first and second

34

being less than 11 % . Further system
development and fine-tuning is currently being
conducted.

The ALCOD system is discussed in detail in
Goldschmidt (forthcoming), and is used as an
illustrative example of the concept of
compliance monitoring for anomaly detection in
a complex environment.

Bibliography

Berry, J. and G. Yanco, (1990). "Attacking
Abuses in the Australian Stock Market
". Journal of the Securities Institute of
Australia.

Bird, S., (1993). "Toward a taxonomy ofmulti­
agent systems". International Journal of
Man-Machine Studies. (39), 689-704.

Bond, A.H., and L. Gassers, (eds.), (1988).
Readings in Distributed Artificial
Intelligence, Morgan Kaufman, San
Mateo, CA.

Cravetto, C., Lesmo, L., Molino, G., and P.
Torasso, (1985). "LITO2: A
Frame Based Expert System for
Medical Diagnosis in Hepatology". In
(I. De Lotto, M. Stefanelli eds.):
Artificial Intelligence in Medicine,
North-Holland, 107-119.

Garner, B., and F. Chen, (1992). "Case-Based
Interaction for Fraud Detection in
EDP". In Proceedings of International
Conference on Information Processing
& Systems, Beijing, China.

Goldschmidt, P.S., (forthcoming). "Compliance
Monitoring for Anomaly Detection in a
Complex Environment using Multi­
Agent Technology". PhD Dissertation,
The University of Western Australia.

Gory, G.A. and M.S. Scott-Morton, (1971). "A
Framework , for Management
Information Systems". Sloan
Management Review, 13(1), 55-70.

Gottinger, H.W., and P. Weiman, (1992).
"Intelligent Decision Support Systems".
Decision Support Systems, North­
Holland, (8), 317-332.

Copyright © 1995 Software Engineering Press

Hayes-Roth, B., (1985) "A Blackboard
Architecture for Control". Artificial
Intelligence 26(3), 251-321.

Hotzman, S., (1989). Intelligent Decision
Systems, Readings MA: Addison­
Wesley.

Jin, Y. and R.E. Levitt, (1993). "i-AGENTS:
Modelling Organisational Problem
Solving in Multi-Agent Teams".
Intelligent Systems in Accounting,
Finance and Management. (2), 247-270 ..

Keyes, J., (1991). "Intelligent Financial
Intelligence", Financial & Accounting
Systems, (7), 12-15.

Krishnamoorthy, G., (1993). "Discussion Of
Aggregation of Evidence in Auditing: A
Likelihood Perspective". Auditing:
Practice and Theory. (12), Supplement,
161-166.

Marzano, G., (1992). "IDSSs Opportunities
and Problems: Steps to Development of
an IDSS". AI & Society. (6), 115-139.

Mookerjee, V., and A.R.Chaturvedi, (1993). "A
Blackboard Control Architecture for
Model Selection and Sequencing",
European Jml. of Information Systems,
2(1), 3-14.

Morrison, J., (1993). "Team Memory:
Information Support for Business
Teams". HICSS-26
(Proceedings of the 26th Annual Hawaii
Int. Conf. on Systems Sciences),
Wailea, Hawaii, 4, 122-131.

Mott, S., (1993). "Case Based Reasoning:
market applications and fit with other
technologies". Expert Systems with
Applications, 6(1), 97-104.

O'Leary, D., (1992). "Case-Based Reasoning
and Multi-agent Systems for
Accounting Regulation Systems with
Extensions". Journal of Intelligent
Systems in Accounting, Finance and
Management, 1(1), 41-52.

O'Valle, A., (1994). "Using Heterogeneous
Multi-Agent Technology for Expert
Systems Design and Development".
Proceedings of the 1994 World
Conference on Expert Systems.

Silver, M., (1990). "Decision Support Systems:
Directed and Nondirected Change".
Journal of Information Research, 1(1),
47-70.

Copyright © I 995 Software En~ineering Press

Sprague, R., (1980). "A Framework for the
Development of Decision Support
Systems", MIS Quarterly, 4(4), 1-26.

Sprague, R.H., and H.J. Watson (Eds.), (1986).
Decision Support Systems: Putting
Theory into Practice. Prentice-Hall,
Engelwood Cliffs, NJ.

Todd, P. and I. Benbassat, (1991). "An
Experimental Investigation of the
impact of Computer Based Decision
Aids on Decision Making". Journal of
Information Research, 2(2), 87-115.

Torasso, P. and L. Console, (1987). "Causal
Reasoning in Diagnostic Expert
Systems", in Proc. V. Int. Conf. on
Applications of Artificial Intelligence,
Orlando, 598-605.

Torasso, P. and L. Console, (1989a).
Diagnostic Problem Solving. North
Oxford Academic, London.

Torasso, P. and L. Console, (1989b).
"Approximate Reasoning and
Prototypical Knowledge", Int. Jrnl. of
Approximate Reasoning. 3(2), 157-177.

Yager, R., (1983). "Quantified Propositions in
a Linguistic Logic". International
Journal of Man-Machine Studies, (19),
195-227.

Yager, R., (1987).
Reasoning
Knowledge".
(31), 99-112.

"Using Approximate
to present Default
Artificial Intelligence.

Zadeh, L., (1978). "Fuzzy Sets as a Basis for a
Theory of Possibility". Fuzzy Sets and
Systems. (1), 3-28.

Zadeh, L., (1983). "The Role of Fuzzy Logic in
the Management of Uncertainty in
Expert Systems". Fuzzy Sets and
Systems. (11), 199-227.

TRADEMARKS

DOS, Windows, and MSAccess are trademarks
of Microsoft Corp,
Smart Elements / Nexpert is a trademark of
Neuron Data.

35

NEW DEVELOPMENTS IN SOFIWARE PATENT PROTECTION1

Mikhail Lotvin
Pennie & Edmonds

1155 Avenue of the Americas
New York, New York 10036-2711

Richard Nemes
Pace University
One Pace Plaza

New York, New York 10038-1502

In the first proceedings of this conference,
in which we presented a paper dealing with
patent protection of financial software, we
discussed those patents that afford exclusive
rights to developers of software systems and
their underlying financial applications. Since
then, many patents for financial software
applications have issued, and the importance
of software patents in general has been
growing with increased recognition of their
value.

Recently, software patents have been
given extensive coverage in the press. To cite
an example, Stac Electronics won a $120
million jury verdict against Microsoft for
infringement of data compression patents.
(Subsequently, however, the case was settled
with Microsoft paying millions to Stac.) This
case once again underscores the great
potential value of software patents. Similarly,
controversy surrounding a patent issued to
Compton's New Media, who claimed exclusive
rights to searches in multimedia text/graphics
environments, attracted a great deal of
attention. In response to pressure from
industry, the Patent Office, on its own motion,
which is unusual, initiated proceedings to
reexamine this patent. In addition, largely in

response to the computer industry's reaction
to this patent, the Patent Office held public
hearings concerning software patents.

In our previously mentioned paper, we
stressed that although software is entitled to
patent protection (including software for
financial applications), the courts continue to
struggle with the problem of distinguishing
patentable subject matter from so-called
"mathematical algorithms" and from abstract
ideas, both of which are not patent
protectable.

In the early 1980's, the United States
Court of Appeals for the Federal Circuit was
created as a unified appellate jurisdiction for
patent-related cases. Although the Supreme
Court can, at its discretion, review the
opinions of that court, it rarely does so, and
therefore the decisions of the Federal Circuit
constitute the most important body of patent
law. Between 1982 and 1989 the Federal
Circuit issued only two decisions relating to
patentability of software, namely In Re Iwasha
and In Re Grahams , both discussed in our
previous paper. In 1992 it came out with
another decision, Arithmia Research
Technologies, Inc. v. Corazonix Corporation,
and in 1994 it issued a whopping four

1 This paper represents the opinions of the authors and not necessarily those of the organizations with which they
are associated.

36 Copyright© 1995 Software Engineering Press

decisions related to the patentability of
software.

Particularly relevant subject matter was
discussed in the 1994 case In Re Schrader,
where the Court addressed the patentability of
a method for competitively bidding on
auctioned items. and in In Re Trovato, which
analyzed patent claims concerning a purely
graph-theoretic algorithm. In In Re
Warmerdam the patentability of software for
a "bubble hierarchy" was discussed, and in In
Re Alappat the Court considered the
patentability of an anti-aliasing oscilloscope
system. Although these cases do not display
much consistency and clearly articulated
guidance is nowhere to be found. a discussion
of these decisions ought to provide some
guidance to software developers.

Before analyzing these new decisions and
discussing their relevance to the protection of
AI systems for financial and business
applications a few words regarding patents in
general are in order. A patent typically
consists of two main parts: a detailed
disclosure of the invention, which is a detailed
description of its embodiment intended to be
understood by persons "skilled in the art,"
and the claims. which define the scope of
intellectual property that is subject to patent
protection. While the disclosure is detailed
and specific. the claims, on the other hand,
are written as broadly as possible, subject of
course to originality and clarity requirements.
Many factors are considered in determining
whether a given invention is entitled to a
patent, the most important being novelty and
non-obviousness. While these factors are
common to all areas of technology, software
has an additional dimension, namely, the
fundamental question regarding the
patentability of software in the first place.
Even though software is a main-stream branch
of engineering, in the 1970's and early 80's it
was confused with mathematics and abstract
ideas, both of which are not entitled to patent
protection. (Mathematics, in particular. is
considered a phenomenon of nature that is
always in the public domain.) This cast a

Copyright © 1995 Software Engineering Press

shadow on the entire area of software
technology.

Turning now to the cases cited above, in In
Re Warmerdam the Federal Circuit
considered the claims to an algorithm and
data structure for implementing collision
detection using "a bubble hierarchy." The
invention is an improved technique for
detecting the perimeter of an object using a
hierarchically structured logical "bubble,"
which contains lower-level bubbles of smaller
diameter, each of which encloses a portion of
the object. The algorithm successively
intercepts the object with bubbles moving
down the hierarchy. and if at the lowest level
at least one bubble is "burst", the program
determines that a collision would occur.
Those claims addressed to a method of
generating a data structure were rejected.
The court held that the method constituted a
mathematical procedure and simply
manipulated "abstract ideas." A claim
directed to a "data structure" generated in
accordance with the method of the invented
algorithm was deemed to mean "nothing more
than another way of describing the
manipulation of ideas." (One of the reasons
that the court was confused regarding the
term "data structure''. was that the patent
application did not define the actual bubble
data structure.) Interestingly, the court found
that the claim directed to a machine having a
memory that contains data representing a
bubble hierarchy using this method was in fact
statutory. The court in footnote 6 stated "our
predecessor court has recognized that the
storage of data in a memory physically alters
the memory and thus in some sense gives rise
to a new memory."

In analyzing this decision, it appears that
the failure to articulate an area of application
was an important factor. Had the claims
referred to an application, particularly to
physical actions for which the algorithm was
obviously intended, the chances of success at
the Patent Office would have been greater.
Clearly, this court was confused by the term
"data structure" and did not make the

37

connection to physical memory (i.e RAM)
arranged in a certain way, which is how
computer scientists view data structures.

In In Re Trovato the Federal Circuit
addressed patentability of a heuristic for
determining the shortest path in a graph. Its
broadest claims relate to (a) storing a
configuration space data structure, and (b)
propagating cost waves in the configuration
space data structure to fill the configuration
space data structure with cost values according
to a space variant metric. The claims were
found nonstatutory by the Federal Circuit.
The court concluded that "Trovato does not
claim to have invented a new kind of
computer which the recited mathematical
algorithm controls. Nor do they claim that
the recited mathematical algorithm has been
combined with a new memory controlling a
computer known to the art. Putting Trovato's
claims in their most favorable light, the most
they provide is a systemic way in which to
compute a number representing the shortest
part. A new way to calculate a number
cannot be recognized as statutory subject
matter."

Regarding "data structures," in In Re
Lowry (1994), the Federal Circuit determined
that a claim directed to data structure is
proper. It characterized the data structure as
a physical entity:

Data models define
permissible data structure -­
or ganiza ti onal structures
imposed upon the data used
by the application program -­
compatible with particular data
processing systems. Data
structures are the physical
implementation of a data
model's organization of the
data. Data structures are
often shared by more than one
application program.

Thus, several decisions issued at
approximately the same time came out with

38

opposing conclusions regarding the meaning
of "data structure." This means that, in
general, the notion of data organization can
be patented; care should be taken, however,
to explain in a patent application that the
reference is to the physical organization of a
computer's memory. In inventions related to
Al, where the innovation is entirely in
software, care should be taken to explain in
great detail that what takes place is not
abstract, but rather that a machine under
software control is directed to perform a new
function. Although the disclosure is supposed
to be addressed to "a person skilled in the
art," for pragmatic reasons it is advisable to
provide specifications that are at a much lower
level than is customarily done when addressing
programmers. This means that though all
educated programmers know what a data
structure is, the patent office and courts might
not, so a prudent patent application writer will
provide careful explanation of such notions
using physical terms.

In In re Schrader the Federal Circuit
rejected as unpatentable a method of
conducting auctions. The claims essentially
covered a way of determining an optimal
combination of bids. The Federal Circuit held
that the claims of this patent were directed to
"a mathematical algorithm," which is not
under the current laws subject to patent
protection. The claim was drafted in purely
logical terms and did not discuss any physical
implementations whatsoever. Had this claim
included a description, even at the most
elementary level, showing how computers are
used in auction environments, the outcome
might have been different.

In Arithmi Research Technology v.
Corazonix Corporation the Federal Circuit
found that a method for analyzing
electrocardiographic signals in order to
determine certain characteristics of heart
function was patentable. Though the process
of analyzing electrocardiographic signals was
implemented entirely in software, nevertheless,
the court found that the claimed steps of "
'converting', 'implying', 'determining' and

Copyright@ 1995 Software Eng½1eering Press

'comparing' are physical process steps that
transform one physical, electrical signal into
another." One of the reasons that the court
was persuaded that this software claim was
patentable is that it was directed to a well
articulated practical application. In addition,
this court took a more liberal approach to
software claims in general, stating that
"computers came to be generally recognized
as devices capable of performing or
implementing process steps, or serving as
components of an apparatus, without negating
the patentability of the process or the
apparatus."

In In Re Alappat the Federal Circuit
addressed patentability of an anti-aliasing .
algorithm used for high quality oscilloscope
displays. In essence, the invention amounts to
a mathematical transformation of input
voltage data into display output data that
represents screen pixel intensities. Although
the invented procedure could easily be
implemented as a program, the patent
application was artfully drafted in that its
disclosure showed circuitry (AND, OR,
NAND gates; ROM, ALU, etc.) instead of
program code. The ·claims, however, were
written strictly along software lines, making no
explicit mention of circuit components. The
court was persuaded that the disclosed circuit
elementscorresponded to the elements of the
software claim and found that the claim
related to statutory subject matter. The court
was also persuaded that this claim clearly
recited its intended application, i.e., a
rasterizer for creating a smooth wave form.
In the conclusion of the majority opinion, the
court stated that "a computer operating
pursuant to software may represent patentable
subject matter ... In any case, a computer,
like a rasterizer, is apparatus not
mathematics."

Several minority opinions were entered in
this case that disputed the patentability of the
invention. One minority opinion drew the
analogy between a general-purpose computer
and a player piano, with software being the
counterpart to the piano roll, . which merely

Copyright © 1995 Software Engineering Press

provides the guiding pattern underlying the
piano's operation. The argument said that a
melody encoded on a piano roll cannot be
patented, and similarly software, intrinsically,
cannot be patented. Clearly, the majority
opinion was not influenced by this argument,
and to the contrary, it confirmed that a
computer programmed in accordance with
software is considered a new machine,
provided that it is new in view of other
requirements of patent law, such as novelty
and non-obviousness.

This decision illustrates again that
describing the underlying physical structure of
an invention in detail helps in achieving
patentability. Whether the hardware is
described as a low-level circuit as in Allapart
or as high-level computer architecture, such
descriptions increase the chance that the
patent examiner or the court will not object to
software claims. This is especially true in view
of the other cases that were rejected because
the courts did not see sufficient physical basis.

What about AI systems? Since these tend
to be high-level applications, frequently
compnsmg, essentially, only number
crunching, it is imperative that one describe
an underlying hardware platform, even to a
minimal degree (e.g. simple block diagram),
when applying for a patent. It is also
important, as indicated earlier, to provide an
area of application and to connect the abstract
(data structures, mathematical formulas, etc.)
to physical structures. By carefully structuring
patent applications it is possible to obtain

• practical patent protection for AI inventions.

39

Paper Session: Advanced Forecasting Techniques

Chair: Kar Yan Tam, Hong Kong University of Science and Technology

MULTICRITERIA ASSOCIATIVE
MEMORY APPROACH

FOR NONLINEAR SYSTEM
PARAMETER ESTIMATION

Hany S. Gobreial, Ph.D.

The Aerospace Corporation
P.O. Box 92957 •

Los An~eles, CA 90009-2957
t 310) 336-6420

SHORT ABSTRACT

A multicriteria associative memory
{MAM} approach is proposed to encode
associations between a set of stimulus
vectors constituting a matrix S and a
corresponding set of response vectors
constituting a matrix R. Kohonen (1988}
originally suggested that a "memory" matrix
M be constructed such that MS is as close as
possible to R in the least-squares sense. The

A +
solution to this problem is M = RS , where

+ '
S is the Moore-Penrose generalized inverse
of S. Unfortunately, though, when calculated

this way, M has low robustness to noise. The
MAM approach suggested here increases
robustness by separately assessing costs of
the deviation of MS from R and for the sizes
of elements in M.

The major application of this MAM
approach is to gain a priori information for
nonlinear dynamical systems, such as the
Solow-Swan Economic Growth Model, in
order to initialize an extended Kalman Filter
{EKF} for parameter and state estimation.
Kalman Filtering is a method for system
identification, which is identifying the
properties of an unknown system from
observations, to predict the system's future
behavior. For the Solow-Swan nonlinear
economic model, the MAM approach
converts observations of system output into
usable initial estimates for EKF to estimate
the state vector. Discrepancy values
generated from the MAM approach provide
initial state estimates as well as the initial
state covariance for the EKF. This, in turn,

42

leads to a highly reliable estimate of system
parameters.

Keywords: Artificial neural networks, linear
associative memory, multicriteria
optimization, nonlinear estimation,
extended Kalman Filtering, Solow-Swan
growth model

To be presented at the Third International
Conference on Artificial Intelligence
Applications on Wall Street June 1-9, 1995.

INTRODUCTION

Parameter estimation problems for
nonlinear systems are typically formulated
as nonlinear optimization problems in the
presence of noise requiring an iterative
approach to its solution. Several on-line and
off-line methods have been developed in the
past, most of them based on different
variants of the Gauss-Newton method;Gray
[4]. Probabilistic formulations, such as
maximum likelihood, bayesian multi-model
technique and the Extended Kalman Filter;
Mehra [71 have also been developed. Yet the
basic difficulty when facing identification of
a large number of parameters from
input-output data, is caused by the fact
that the cost function's surface may have
multiple minima and therefore, convergence
to the "correct" parameters is iteratively
possible only when one starts from a close
enough initial guess of the parameters to be
identified. For quadratically convergent
iterative methods, such as Gauss-Newton
methods, the components of the initial
estimate for the parameter vector often
have to be within ten to twenty percent of
their true values; Cuyt [2]. Possible
difficulties that might result from
inaccurate estimates are slow rates of
convergence, weakly observable set of
observations as well as oscillatory behavior.
Computational difficulties due to
ill-conditioning may also arise.

An alternative method of performing
parameter estimation is to use an
associative memory approach. Here, rather
than iteratively solving the inverse problem

Copyright © 1995 Software Engineering Press

for a given input-response pair as is
commonly done in on-line identification,
the forward problem is repeatedly solved for
various input-response pairs and a memory
matrix is adduced which optimally
associates the inputs with the outputs. Thus
when the estimation scheme is later
presented with a given input (output), it
can then estimate the output (input) that
corresponds to it. Different learning
schemes that develop the memory matrix
that maps the input to the output have been
devised.

THE ASSOCIATIVE MEMORY
APPROACH

The goal of the approach of associative
memories or associative mappings is to get
initial estimates for nonlinear systems. For
each parameter vector Ii in a selected
training set {I1,I2, ... ,Iq}, the system
equations determine a vector Si of system

outputs. A "memory" matrix M is then
constructed to optimally (in the sense of
least squares) associate each "stimulus"
vector Si with its corresponding "response"
vector Ii, in the sense of least squares.

A +
Specifically M=RS , where R denotes the
matrix [I1,I2, ... ,Iq] of training parameter

+
vectors and S denotes the Moore-Penrose
generalized inverse of the training output
matrix S = [s1,s2, ... scJ. Given an observed

system output vector s*, an estimate r for
the system parameter vector is obtained by

setting r = Ms*.
Surprisingly accurate parameter

estimates were obtained for an illustrative
nonlinear image processing problem when

the observation vectors s* are noise
free;Kalaba [6]. However, instability
problems were encountered when memory
matrices constructed from noise-free
training vectors were subsequently used to
recover parameter estimates from
observation vectors corrupted with noise.

This paper describes development and
application of a multicriteria associative

Copyright© 1995 Software Engineering Press

memory (MAM) procedure to initialize a
successive approximation scheme, such as
an Extended Kalman Filter, which will lead
to rapid convergence for nonlinear
estimation problems. The MAM approach
directly and systematically guard against
the ill-conditioning of the memory matrix.

+
The memory matrix M = RS corresponds to
the extreme point of the MAM frontier
where the association cost Ca is minimized
with no regard for the size cost Cz, i.e., with
no separate consideration given to the size
of the elements of M. By moving away from
this extreme point along the frontier,
bias(training association error) is increased
in return for a decrease in the variance of
the resulting parameter estimates. The
MAM frontier is thus analogous to the
coefficient frontier obtained using ridge
trace procedures in regression
analysis;Vinod[ll]. A key difference,
however, is that the purpose of the MAM
frontier is to provide one or more useful
initial parameter estimates for some given
nonlinear estimation problem.
Consequently, the usual criticism of ridge
regression procedures-that they do not
necessarily lead to parameter estimators
with optimal statistical properties- is not
applicable to MAM;Judge[5].

State of the art spacecraft position
determination systems utilize a Kalman
Filter ;Chui[lj to blend position
measurement data with angular outputs.
Since the Kalman Filter presumes linear
measurement equations, it should be
appropriately initialized to avoid processing
new measurements when errors are "large".
Otherwise, the convergence of its error
estimates may not be consistent with its
error covariance predictions. In fact, its
estimates may converge to bias errors which
can be quite large with respect to the
predicted bounds embedded in the
covariance matrix. In this paper,
modifications to the conventional Kalman
Filter formulation which may improve its
convergence properties are investigated.
That is, reducing initial errors using the
MAM approach in conjunction with a

43

nonlinear estimation technique, such as the
Extended Kalman Filter can provide
significant improvement in convergence
time and precision.

MULTICRITERIA ASSOCIATIVE
MEMORY SOLUTION METHODS

Let the solution to a basic differential
equation be denoted by

(1) k(t) = H(t;,8,;,6), t~0

A classical approach to the parameter
estimation problem for the model
represented by the differential equation
above would be to pose it as a nonlinear
least squares problem in which the sum of
squared deviations

(2)

is to be minimized with respect to ({3, ,, 6).
For each different trajectory of observations

(k*(t1),k*(t2), ... k*(tm)), a different s11m (2)
would have to be minimized, typically by
means of a successive approximation
scheme. A major drawback of many
successive approximation schemes,
however, is the need to have a good initial
estimate for the true parameter vector.

Once the possibility of imprecise
calculations and observations is recognized,
keeping the elements of the memory matrix
small becomes an important criterion (in
addition to the basic criterion of obtaining
good training case associations). Two basic
costs are associated with each possible
memory matrix M: an association cost
Ca(M) measuring the extent to which M
fails to associate each training output vector
Si with its corresponding training parameter
vector Ii and a size cost Cz(M) measuring
the extent to which the elements of M differ
from zero.

On the basis of both tractability and
general intuitive appeal, the costs Ca(M)
and Cz(M) are each expressed as sums of
squared discrepancy terms. Specifically, the
association cost entailed by Mis taken to be

44

(3) Ca(M)=IIMS-Rll 2

and the size cost entailed by M is taken to
be

(4) Cz(M)=IIMll 2

For any _given training set
{(r1,s1),(r2,s2), ... ,lrq,sq)}, a family of
memory matrices is constructed, each
having the following efficiency property: No
other memory matrix achieves lower cost
with respect to both the association and the
size criteria. Such matrices are referred to as
MAM matrices, and their associated cost
vectors (Ca, Cz) are said to constitute the
MAM frontier. By construction, the MAM
frontier is a downward sloping strictly
convex curve in the two-dimensional
(Ca, Cz) cost plane. At one extreme of the
MAM frontier is the cost vector incurred
when the association cost Ca(M) is
minimized with no regard for the size cost
Cz(M). One memory matrix which

~ +
minimizes the association cost is M=RS ,
the memory matrix determined using the
standard linear associative memory
approach. Among all memory matrices
which achieve the minimum association

cost, the memory matrix Mis the one that
has the smallest norm. At the other extreme
of the MAM frontier is the cost vector
incurred when the size cost Cz(M) is
minimized with no regard for the
association cost Ca(M). The memory
matrix that uniquely solves this
minimization problem is the zero matrix.

In view of the strict convexity of the
MAM frontier, each point on this frontier
solves a problem of the form "minimize Cz
subject to Ca =constant." Consequently,
each MAM matrix can be generated as the
solution to a problem of the form

(5) rninM [aCa(M) + (1-a)Cz(M)]

where a is a suitably chosen Lagrange
multiplier lying between O and 1. The slope
of the MAM frontier at the solution point

Copyright© 1995 Software Engineering Press

for (5) is given by -(a/[1-a]). Thus, a
parameterizes the attainable trade-offs
between association cost and size cost along
the MAM frontier.

Given any nonlinear least squares
problem such as (2), the MAM procedure
can be used to generate a range of MAM

estimates i(a) for the underlying system
parameter vector. The weight ~actor a is a
tuning device which can be adJusted up or
down to control for noise in the observation
vectors as well as for noise due to round-off
errors. The objective is to determine,
through the training process,a range of
values for a which result in one or more
usable initial parameter estimates for the
solution of the nonlinear least squares
problem· by a successive approximation
scheme.

KALMAN FILTER FORMULATION
BASED ON MAM ESTIMATES

Kalman Filtering is an optimal state
estimation process applied to a dyn~mic
system that involves random pert~rbati_ons.
More precisely, the K~man_ Filter. 1s _a
method for system ident1ficat10n, which 1s
identifying the properties of an unknown
system from observations, to predict the
system's future behavior.The estimates
generated by the Kalma?- Fi~ter fro1!1 noisy
data taken at discrete pomts m real time are
linear unbiased, and have minimum error
varia~ce. It has been widely used in many
areas of industrial & government
applications such as vi~eo an~ l~ser
tracking systems, s~telhte na~1gat~on,
ballistic missile traJectory • estimat10n,
radar and fire control. With the recent
develbpment of high-speed computers, the
Kalman Filter has become more useful even
for very complicated real time applic~tio_ns.
For nonlinear models, a lmeanzat10n
procedure based on a Taylor series
approximation is performed. The Kalman
Filter so obtained will be called the
Extended Kalman Filter

The Kalman formulation of the filtering
problem assumes complete a priori

Copyright© 1995 Software Engineering Press

knowledge of the process an~ mea_sure1?-ent
noise statistics. In most practical s1tuat10ns,
these statistics are inexactly known. The
use of wrong a priori statistics in the design
of a Kalman filter can lead to large
estimation errors or even to a divergence of
errors. The purpose of initializing the
Kalman Filter with MAM estimates is to
reduce or bound these errors by adapting
the Kalman Filter to the real data sampled
by the training sets . to get the ~AM
estimates. The estimat10n method rehes on
providing sufficient 'training'(i.~. exposure
to different input-response paus) for an
adequate knowledge base to be acquired.
Thus when the estimation scheme is later
presented with a given input(o~tput), it can
then estimate the output(mput) that
corresponds to it. By starting out with just
a few training pairs of i~puts and resp~n~s~s,
one can obtain reliably good m1tial
estimates for the parameter vector to be
estimated. Numerical results are shown for
a nonlinear, growth of an economy at the
macro level.

An illustrative Economic Growth Problem

Consider an economy which produces a
national product Y(t) at each time t ~ 0
using capital and labor inputs K(t) and
L(t). The production relation for the
economy is given by

(6) Y(t)=F(K(t),L(t);O)

where 8 is a parameter characterizing the
production process. Denotin~ time t
consumption by C(t) and time t net
investment dK(t)/dt by DK(t), ~nd
assuming that the ~moun~ of capital
depreciation at each tu~e _t 1s a _constant
proportion 8 ~ O of the existmg capital _stock
K(t), supply equals dema~d in the time t
product market if and only 1f

(7) Y(t) = C(t) +DK(t) + 8K(t)

Time t gross savings S(t) = Y(t) - C(t)
are a constant proportion s of time t
national product Y(t), where the savings

45

rate s lies between 0 and 1. Thus,

(8) C(t) = [1-s]Y(t)

Substituting (8) into the product market
clearing condition (7), and rearranging
terms, the growth of the capital stock over
times t~0 is given by

(9)DK(t) = sF(K(t),L(t);0)- 8K(t)

The labor force L(t) grows at a constant
rate g ~ 0, with 1(0) > 0. Let k(t) =
K(t)/L(t) and y(t) = Y(t)/L(t) denote the
time t capital-labor and income-labor
ratios. Using the constant returns to scale
assumption for F(•; 0), the production
relation (6) can be expressed in per capita
terms as

(10) y(t) = F(k(t),1;0) = f(k(t);0)

Also, the time rate of change of the
capital-labor ratio k(t) satisfies

(11) Dk(t)/k(t) = DK(t)/K(t)­
DL(t)/L(t) = DK(t)/K(t)-g

Finally, define ,\ = [~ + 8), and divide
each side of equation (9) by L(t). Making
use of relations (10) and (11), it follows
after some manipulation of terms that the
time rate of change Dk(t) of the
capital-labor ratio k(t) satisfies the
differential equation

(12) Dk(t) = sf(k(t); 0)-..\k(t), t~0

where the initial capital-labor ratio k(0) is
given by some historically determined value
k0>0. Equation (12) is the basic differential
equation for the Solow-Swan growth model,
a well-known macroeconomic model which
is still very influential. See [8] and (9).

At each time tj,j=l,2, ... ,m, an

observation k*(tj) is obtained on the
capital-labor ratio k(tj) in accordance with
the measurement relat10n

46

(13)

k*(t i)

s* = k*(t2)

the problem is to estimate the parameters
(k 0,0,s)) which characterize the underlying
data-generating process (11).

MAM Procedure for the Solow-Swan
Growth Model

The first step in the MAM procedure is
the construction of a finite set of training
cases. Given any training parameter vector

T .
Ii= (k 0,0,s)) for the Solow-Swan growth
model, a corresponding training output

vector Si = (k(t1),k(t2), ... ,k(tm))1 can be
generated by numerically integrating the
basic Solow-Swan differential equation
(12). A closed-form expression for the
solution of this differential equation is not
required.

For conceptual clarity, however, it is
useful to focus on a special case in which a
closed-form expression for the solution of
(12) can be obtained. Specifically, suppose
the per-capita production function f(•; 0)
for the Solow-Swan growth model takes the
commonly used Cobb-Douglas form

(14)
9

f(k;0) = k

for some 0 E (0,1). The production
parameter 0 then gives the capital share of
the national product at each time t. That is,
0 = p(t)k(t)/y(t), where the time t capital
rental rate p(t) is taken to be the time t ,
marginal product of capital f (k(t)).

Given (14), the solution to the basic
Solow-Swan differential equation (12) is

(15) k(t) = H(t;k0,0,s))
k(t)=([(ko)1-9..s/..\Je-< 1-ei >..t+s/J)V< 1-Gl

Note that (15) is a highly nonlinear function

Copyright © 1995 Software Engineering Press

of the four model parameters k0,0,s, and .t
For each ~iven parameter vector (k0,0,s,,\),
the solut10n value (15) for the time t
capital-labor. k(t) ratio converges as t
approaches mfimty to the stationary
solution value

(16) k = (s/ ,\)V< lil>

General Experimental Set-up

The MAM procedure can be
irr1;Pl~mented even if nothing is known ~
pnon about the nonlinear least squares
solution for the parameter vector. However
if a priori information is availabl~
concerning plausible values for this solution
the training parameter set should
presumably be designed to encompass these
values.

To demonstrate the MAM procedure for
the Solow-Swan growth model over a
plausible training grid, the training
parameter sets {r1,r2, ... rq} for all of the
numerical reported below were constructed
on the basis of the following guideline
parameter values:

(17) ko ~ 5.0; 0 ~ .29; s ~ .15;
-\= [g + 8] ~ [.03+.07]= .10

The guideline values for the capital share 0
the gross savings rate s, the effective labo:
$rowth rate g, and the depreciation rate 8 in
(17) w_ere co~structed usi~g empirically
determmed r~t1os and ma$mtudes given in
[3]. As noted m [10, p. 150j, the meaning of
the "capital stock" K(t), and hence the
capital-labor ratio k(t) is a source of much
controversy in growth theory. The guideline
value for ko in (17) is for illustrative
purposes only.

To simplify graphical depictions and
comparisons, the training parameter set for
each experiment consisted of 49
two-dimensional parameter vectors ri with
constant guideline values set fo; the
remaining two parameters. One series of
experiments ("Series I") was run for
training parameter vectors of the form ri =

Copyright© 1995 Software Engineering Press

(ko,Ol and_a~other series ("Series II") was
run for trammg parameter vectors of the

form ri = (s,o?.
In each experiment, seven different

values were considered for each of the two
training parameters, and these values were
centered_ around the parameters' guideline
values m (17). Consequently, in each
experiment the "training parameter grid"
consis~ed ?f a 7 x 7 square of
two-d.1~ens10nal parameter points
approximately centered at a guideline point
as determined from (17).

Each experiment in each series consisted
of four basic steps.

• First, for each considered training
par_a1;1eter set {r1,r2, ... ,r49}, a corresponding
trammg output set { s1,s2 ... ,s49} was
generated usmg the Adams integration
alg?r~thm for equation (12). Each 15 x 1
trammg output vector Si consisted of fifteen
capital-labor ratios k(tj), j=l,2, ... ,15,
calculated for the "observation times" t 1 =
0.0,t2 = l.0, ... t15 = 14. These training
vectors were used to form training response
and stimulus matrices.

• Second, MAM matrices M(a) are
constructed, with a ranging from 0.10 to 1.0

• Third, the components of the training
output vectors Si were corrupted with
additive noise, resulting in a set of noisy

"observation vectors" of the form s't =Si+
Ili,

• Fourth, tests were conducted to
determine the extent to which each MAM

matrix M(a) is successfully able to recover
the training parameter vector fi when
post-multiplied by the noisy observation

vecto~ s't, i=l,2, ... ,49. For each training
case 1, the measured used to judge the
success of the recovery is the discrepancy, in
percentage terms, between the jth

component rij(a) of the MAM estimate

i(a)= M(a)s't and the jth component rij of
the actual training parameter vector ri
j=l,2: '

47

In each series of experiments, the effect of
observation noise on the accuracy of the
resulting parameter estimates is
investigated

Suppose the observation vectors st are
taken to be the training output vectors Si
corrupted by additive gaussian noise with
mean O and variance u2. In this case, to
achieve the minimum mse recovery of the
training parameter vectors over the training
grid, it follows from (13) that the penalty
weight a in (16) should be set equal to

(19) ao = 1/[1 + qu2)

In particular, for any given number of
training cases q, the penalty weight a
should be set close to 1.0 when observation
noise is minimal (u2 ~ 0) and close to O when
observation noise is extensive (u2 » 0).

A variety of numerical experiments were
run for the Solow-Swan growth model with

observation vectors st taken to be the
training output vectors Si with components
corrupted by additive gaussian noise
generated by means of a N(0,u2)
pseudorandom number generator.

The MAM estimates ii(a) determined
in these experiments were reasonably
accurate a was set equal to a value in
[.10,.99) which was roughly nearby the
minimum mse value (19), e.g., a distance
apart of .20 or less. Overall, high accuracy
levels (discrepancies around one percent or
less) were attained for the initial
capital-labor ratio k0, good accuracy levels
(discrepancies around ten percent or less)
were obtained for the gross savings rate s,
and reasonably good accuracy levels
(discrepancies around twenty percent or
less) were obtained for the capital share 0.
Moreover ,recovery accuracy was generally
good for all training parameter vectors lying
near the center of the training parameter
grids.
Some of these experiments will now be
reported in more detail.

48

Consider, first, the case in which the
observation vectors are noise free (IT= 0), so

that the ith observation vector st coincides
with the ith training output vector Si. The
minimum mse value for a in this case is ao
= 1.0. To what extent are the MAM

matrices M(a) able to recover the training
parameter vectors Ii when post-multiplied
by the training output vectors Si?

Several interesting observations can be
made. First, even when a takes on the value
.10, and is thus very far from its minimum
mse value 1.0, highly accurate estimates are
obtained for the initial capital-labor ratio
k0, especially along the reverse diagonal.
Moreover, the corresponding estimates for
the capital share O are highly accurate
toward the center of the training grid, and
reasonably accurate (less than twenty two
percent) elsewhere with the exception of the
column where O takes on its smallest
training value .20. Estimation accuracy
improves with increases in a as long as a
remains below 1.0.
Qualitatively similar results were obtained
for Series II experiments with IT = 0. The
discrepancies obtained for the gross savings
rate s tended to be higher than those
obtained for k0, and the discrepancies
obtained for 0 tended to be significantly
higher.
What happens in the noisy observation case
IT> 0?

For the MAM estimates of k0 in the
Series I experiments, the answer is "not
much." The percentage discrepancies for k0
for the most part remained well below ten
percent all along the MAM frontier for each
IT in the tested range 0.05 to 0.40.
Occasionally along the boundary of the
training parameter grid the percentage
discrepancies rose above ten percent, but
only by a few percentage points. The
corresponding MAM estimates for 0 were
reasonably accurate (discrepancies around
twenty percent or less) over the interior of
the training parameter grid for each tested IT

value when the value of a was set roughly in
the neighborhood of aO, e.g., a distance
apart of about .20 or less. •

Copyright© 1995 Software Engineering Press

In the Series II experiments, reasonably
accurate estimates(discrepancies around
twenty percent or less) were obtained for
both s and O over the interior of the training
parameter grid for each tested u value when
the value of a was set roughly near ao ,e.g., a
distance apart of about .20 or less.

TheSolow-Swan growth model with the
guideline parameter values listed in (17) is
the basis for trying to answer the following
questions:

• First, How many training cases are
necessary to gain a good and reliable MAM
estimate for the system studied ? Does a
need for a huge number of training cases
guarantee convergence to a solution ?

• Second, Does spacing of training
parameters over a grid of possible values
have any effect on convergence to correct
solution?

• Third, How many measurements are
needed for sufficient convergence with
respect to discrepancy values?

• Fourth, What should time spacing be
between measurements ?

The results show that for 25 training
cases, the convergence to the discrepancy
values that are generated for 49 training
cases is comparable (within 2 %). Closer the
training points are taken within the training
grid, the more reliable the MAM estimates
are. A reduction in separation distance
between data points with an increase in
training cases produces the most accurate
MAM estimates. Increasing the number of
training cases with a fixed spacing results in
a degradation of estimation accuracy. An
increase in spacing with fixed number of
training cases, also increases inaccuracies.
For 1 second spacing between observations,
the more observations utilized to generate
the MAM estimates, the better the
estimates. After 7 measurements, no
significant improvement occurs. For the
Solow-Swan model, taking two
measurements, 5 seconds • apart generates
estimates that are as accurate as 5
measurements, 2 seconds apart and 10
measurements that are 1 second apart. This
statement holds for the Series I and Series II
experiments due to the relatively linear

. Copyright@ 1995 Software Engineering Press

form that the Capital-labor ratios take as a
function of time.

Implementation of the Extended Kalman
Filter to the Solow-Swan Model

Consideration to the Solow-Swan model
whose dynamics are known in structure is
given in this section. The Extended Kalman
Filter is utilized for identification of a
nonlinear system. The identification
method relies on providing sufficient
'training' (i.e., exposure to different
input-response pairs) for an adequate
knowledge base to be acquired . The MAM
matrix is adduced which optimally
associates the inputs with the outputs. Thus
when the identification scheme is later
presented with a given output, it can then
estimate the inputs that correspond to it.

Given the Solow-Swan nonlinear
differential equation with the
Cobb-Douglas per-capita production
function form:

(20) Dk(t)=sk(t/-,\k(t) t~0

the Extended Kalman Filter equivalent
formulation using the transformation

(= k1-
8 is derived as follows:

.
(21) (=(1-0)s-(1-0),\(t~0

Let the state vector x = [(,O,,\,s]T, equation
21 becomes:

(22r i=
l { 1-x(2) }x(4 Tl-x(2) }x(3)x(l)]

The nonlinear discretized system model
which is generated by replacing x by Xi and

i by (xi+i-xi)dt-1 where dt>O denotes the
sampling time, is as follows: Xi+l = fixi,
where

49

dt{xi(3)xi(l)-xi(4)}
1
0
0

-drl) d~l

The measurement model based on k(t)
being the observations is derived as follows:

9 9 9 -1
If (= k< 1- >: then k = (' 1....-1- > = (' 1- > =

-1
(1-x(2))

x(1) , therefore,

where Vi is the measurement noise, usually a
Gaussian white noise process. This noise
component is the equivalent to the additive
noise with mean O and variance tr2 that is
added to the training output vector Si for
the MAM experiments. The Extended
Kalman Filter is propagated through the
following equations,

50

(25) State Estimate Propagation

Equation Xi+1....-i = fi.i:i,..,i

(26) Error Covariance Propagation

Equation Pi+1....-i = ;iPt iL
where ;i = [Mi/8xi(.i:i,..,i)]

(27) Gain Matrix

Ki=Pi....-i-1HT(HPi,..,i-1HT +R)-1,

where H=[Bhi/ 8xi(:x:i....-H)]

(28) State Estimate Update Equation

ii,..,i = ii....-i-1 + Ki(zi-hii....-i-1)

(29) Error Covariance Update Equation
Pi,..,i = (I-KH)Pi....-i-1

where I is the identity matrix.

Extended Kalman Filter Results

Series II experiments for the (s,0)
training grid when a= 0.9 in the noise free
case results in discrepancy factors for 0
when s=0.15 range from -10 to 10 % and -9
to 7 % for s when 0=0.29. The initial
conditions for filter initialization are:

True State vector x = [5· 71,.29,.10,.15]

State Estimate vector

io,..,o = [5" 71,.29± 10 %,.10,.15-9%]

State Covariance Matrix

Po,..,o = cov[x-io,..,o,x-io,..,o]

Series I experiments produce discrepancy
values of O for all k,

io,..,o(l)=x(1)=5· 71 = 3.135.

A small iaussian white noise with 0
mean and a t.025) 2 variance was added to
the observations in order to insure against
underflow errors in the covariance matrix
entries. Assuming no MAM estimates are
considered for a priori information for the
Eextended Kalman Filter, then the initial
filter initialization is as follows:

io,..,o = [7.0" 8,.20,.10,.09]

xo,..,o = [5.0· 11,.29,.10,.15]

Table la
Discrepancy Percentages with and without

MAM Estimates
Minimal Noise case, 100 data points

True State
values
1.50
0.29
0.10
0.15

% Error
MAM
0.00
0.36
0.00
0.09

% Error
NO MAM
4.00
21.00
0.00
4.00

Copyright@ 1995 Software Engineering Press

Table lb Large Noise case, 100 data points

True State
values
1.50
0.29
0.10
0.15

% Error
MAM
2.00
7.50
0.00
2.00

% Error
NO MAM
10.30
50.00
0.00
37.00

The results above show the
improvement in convergence when a priori
information is available. A priori
information is generated through the
enumeration of different training cases to
generate a MAM estimate. As with MAM
estimates, when observations are corrupted
with noise, the resulting state estimates are
not quite as accurate. This is also true due
to the covariance matrix entries being
corrupted by noise. Of primary significance
is how lu value for the small noise case
converges to zero. This indicates that the
corresponding state estimates are highly
accurate. The small error of the initial
estimates of the filter from the true value
allow the Extended Kalman Filter to be
more robust to noise, even in the presence of
nonlinearities. This robustness allows the lu
error to converge towards zero, rather than
reaching steady-state at a non-zero value.
In the presence of a very small noise term,
with accurate initial estimates (MAM
A-Priori), the lu values converge to zero at
a significantly faster rate.

CONCLUSIONS

Successful implementation of successive
approximation procedures for nonlinear
least squares problems typically require
initial estimates for the parameter vector
which are within ten to 30 percent of the
actual solution vector. Experimental results
reported in this paper suggest that one or
more usable initial estimates for the
parameter vector might be found by
considering the MAM parameter vector
estimates corresponding to a rough sample
of a-points along the MAM frontier.

Specifically, in each experiment with
observation noise, reasonably accurate

Copyright© 1995 Software Engineering Press

MAM parameter estimates were obtained
over the interior of the training parameter
grid for a-values in [.10,.99] lying even
roughly nearby the (generally unknown)
"optimal" alpha values.That is, the
discrepancies between these estimates and
the true parameter values were around
twenty percent or less. On the other hand,
even in the absence of observation noise,
highly inaccurate parameter estimates were
obtained when a was set equal to 1.0, i.e.,
when the standard linear associative
memory procedure was used.

Reduction of spacing between the
training parameters together with
increasing the number of training cases,
encompassing a grid of values around the
guideline parameter values, tended to
generate low discrepancy values. Only a few
data points with maximum separation
between observation times are needed for
the MAM approach to work. The above
findings are also applicable to the noisy
observation case. The MAM approach,
thus, is quite robust to corruption of
measurements by noise.

A priori information is essential for
minimizing the initial error when
implementing an Extended Kalman Filter
as an estimator for a nonlinear dynamical
system. Otherwise, the convergence of its
error estimates may not be consistent with
its error covariance predictions. In fact, its
estimates may converge to bias errors which
can be quite large with respect to the
predicted bounds embedded in the
covariance matrix. In the two examples
implemented , it has been shown the
significant improvement in the convergence
of the error to zero, when the MAM
estimate values are used to initialize the
Extended Kalman Filter. Of particular
interest, are discrepancy values that are two
to three orders of magnitude larger for the
noisy measurement case when no
a-priori(no-MAM) information is utilized.
For the low noise case, the convergence of
the filter is solely based on how reliable the
initial estimates and initial covariance are.
The magnitude of the error, in the worst
case scenario(Solow-Swan Model),is 58

51

times larger for the non-MAM case than the
MAM-case. Rapid convergence of the filter
for the MAM case, together with the
reliability of convergence, brought about by
having accurate initial estimates with
bounded initial covariance errors, provides
a very powerful tool in terms of precision
and speed in the nonlinear dynamic model
estimation area.

REFERENCES

{1 JC. Chui and G. Chen, Kalman Filtering
with Real-Time Applications,
(Springer-Verlag, N.Y., 1991)

[2] A. Cuyt and L. Rall, "Computational
implementation of the multivariate Halley
method for solving nonlinear systems of
equations," A CM Transactions on
Mathematical Software 11 (1985) 20-36.

[3] E. Denison, Trends in American
Economic Growth, 1929-1982(The
Brookings Institution, Washington D.C.,
1985).

[4] C. Gray, "Applications of Newton's
Method to Attitude Determination," AAS
Guidance and Control Conference,
Keystone, Colorado 1992.

[5] G. Judge, W. Griffiths, R. Hill, H.
Lutkepohl, and T.C. Lee, The Theory and
Practice of Econometrics,(John Wiley,
N.Y., 1985)

[6]R. Kalaba, Z. Lichtenstein, T. Simchony,
and L. Tesfastion, "Linear and nonlinear
associative memories for parameter
estimation," Inform. Sci., vol 61 (1992)
45-66.

[7] R. Mehra, "Approaches to Adaptive
Filtering," IEEE Transactions on
Automatic Control, vol. 10 (1972) 693-698.

[8] E. Prescott, "Robert M. Solow's
neoclassic growth model: an influential
contribution to economics," Scand. J. of
Econ. 90 (1988) 7-12.

52

[9] R. Ramannathan, Introduction to the
Theory of Economic Growth
(Springer-Verlag, N.Y., 1982).

[10] J. Simon, "Great and almost great
magnitudes in economics," J. of Econ.
Perspectives 4 (1990) 149-156.

[11] H. Vinod and A. Ullah, Recent
Advances in Regression Methods
(MarcelDekker, N.Y., 1981).

Copyright© 1995 Software Engineering Press

Forecasting Currency Exchange Rates: Neural Network.;;
and the Random Walk Model

Eric W. Tyree

Dept. of Business Computing
City University
London ECl V 0HB
United Kingdom
Tel: 017-477 -8413
E-Mail: e.tyree@city.ac.uk

ABSTRACT

This work provides an evaluation of the use of neural
networks as a technique for forecasting currency
exchange rates. Recently, successful attempts at
forecasting exchange rates such as the US$ - DM
and US$ - SF have been reported in the literature (i.e.
Refenes et al (1993, Weigend et al (1992))) but their
methodologies have been less than stringent leaving
them open to accusations of da,ta mining. The work
presented here will attempt to replicate some of this
previous work and then subjugate the resulting neural
network forecasts to a more stringent level of
analysis. More specifically, standa,rd backpropagated
feedforward networks will be used to forecast the US$
- DM exchange rate 1, 5, and 20 trading days into the
future with the resulting peiformances compared to
the random walk forecasting model and to an
autoregressve forecasting model. The experimental
techniques used here are also proposed as a general
framework which should be followed when making
claims of the successful application of neural
networks to .financial time series generally seen as
unforecastable.

INTRODUCTION

One of the more difficult problems in economics is
the forecasting of financial marl<:ets. Traditional

Copyright © 1995 Software Engineering Press

J. A Long

Dept. of Business Computing
City University
London ECl V 0HB
United Kingdom
Tel: 017 - 477 - 3404
E-Mail: j.along@city.ac.uk

quantitative methods used to forecast the behaviour of
financial markets often produce unsatisfaLtory if not
dismal results given the complex inter-JLtions between
a given marl<:et's behaviour and other ea:momic
phenomena Part of the problem lies in the faLt that
the relationships existing between financial marl<:ets
and the economy as a whole are often poorly
understocxl. On top of this there are also a variety of
political and psychological factors influencing the
dynamics of the marl<:ets over time. Neurnl networks
may provide some hope of producing a suitable
methodology for overcoming some of these
difficulties.

A number of successful claims of using neurnl
netwolk based marl<:et forecasting systems have been
published. Unfortunately, much of this wolk suffers
from inadequate documentation regarding
methodology (Binks and Allinson (1991), Collard
(1991), Lee and Paik, (1992)) or claims of positive
results not backed up by comparisons with other
relevant forecasting techniques (Binks and Allinson
(1991), Lee and Paik, (1992), Collard (1991)
Weigencl et al (1992)). This makes it clifficult to both
replicate previous wolk and obtain an accurate
assessment of just how well connectionist techniques
really perform in comparison to other forecasting
techniques. What previou-; wolk has been clone using
connectionist approaches to marl<:et forecasting can be
roughly categorised based on how a forecast is being
extraLted from the input data with the neural network

53

mcx:lel. Mo~t have attempted to extrapolate the future
behaviour of a market with a neural network based
times series analysis by having the network output
some value representing the future behaviour of the
market (i.e. forecasting the price, expecied return or
degree of change etc ...). This is usually done by giving
the network information about the market's past
behaviour (Refenes et al (1993)) or information about
its past behaviour in conjunction with the dynamics of
a variety of other economic variables used as
adclitional input (Weigend et al (1992), Lee and Park
(1992) and Hutchinson (1994)). Others have tried to
trJin the network to recognise known market patterns
(Binks and Allinson, (1991)) or attempt to tr-Jin the
network to learn an optimised tracling strategy
(Collani (1991) and Kimoto et al (1990)).

1lris report will attempt to apply a connectionist
approach to the forecasting of a notoriously
"unpreclictable" financial market - currency exchange
rates. Some relatively straight foreworcl methocls of
using stanclarcl backpropagated feedforwarcl neurnl
networks to forecast the US$ - DM exchange rate will
be analysed and compared with other forecasting
mcx:lels. These experiments will include univariate
forecasting of the exchange rate at 1, 5 and 20 clays in
aclvance and multivariate forecasts at 1 and 5 clays in
advance.

In acldition, a methcx:lological framework is also
proposed for the use of neural networks in financial
forecasting. The framework is quite simple and
consists of two basic techniques. First, the
performance of neurnl networks should be compared
with other relevant forecasting mcx:lels. Simply
demonstrating that neural network based methods
"work" is not enough as this does not shed any light
on their relative performance to potentially simpler
and more accurate forecasting methocls. For this work,
the random walk forecasting mcx:lel will be use as the
primary comparison mcx:lel as currency exchange rates
are widely viewed to be best explained as rnnclom
walks (Diebold and Nason, (1990)). The rnnclom walk
mcx:lel simply states that clue to market efficiency,

54

current price changes are independent of past price
changes. In other worcls, univariate forecasting should
be impossible as past price changes clo not offer any
clues to what form the future behaviour of prices
might take. Since price changes in efficient markets
such as exchange rates are assumed to be a rnnclom
clistribution with 0 mean (see Pinclyck and Rubinfelcl
(1991)) the best forecast one can make for any amount
of time in the future is to assume the future price will
be the same as toclay's price. As previous claims of
success with univariate forecasting of the US$ - DM
exchange rate cont:raclict the rnnclom walk mcx:lel, the
rnnclom walk mcx:lel is the most appropriate to base a
comparison with neural networks with1 in this
instance.

Second, when claiming positive results steps should
be taken to guarcl against accusations of clata mining.
It will be shown here that spurious results are not
clifficult to obtain in some instances. To help
circumvent this problem, the approach taken here is
to run our simulations on multiple portions of the data
set to guarcl against the possibility of chance results.

MEIBODS

This study consists of five main experiments intended
to examine the relative performance of neural
networks and the rnnclom walk mcx:lel in forecasting
the US$ - DM exchange rate. The first experiment
attempts to use a feeclforwarcl backpropagatecl
network to forecast the US$ - DM exchange rnte one
tracling clay in advance using input consisting solely
of claily US$ - DM clata in much the same way as
Refenes et al (1993). The second experiment attempts
to fit the rnnclom walk mcx:lel to the exchange rate data
to more accurately ascertain the appropriateness of the
rnndom walk mcx:lel as an explanation for the
behaviour of the price changes in the exchange rate.
The thircl experiment will use an identical technique as

1 Note that the random walk model only refers to univariate or
"technical" forecasting. It does not state that price changes in
particular maikets that follow random walks are also operating
independent of other variables.

Copyright@ 1995 Software Engineering Press

the first experiment to forecast 5 trading days (one
week) and 20 trading days (one month) in advance.
The fourth experiment will conclude the univariate
forecasting by taking a multistep approach to
forecasting. In multistep forecasting the output from
the netwolk after presentation of the final training
pattern is taken as input to the netwolk for the next
forecast step. This process is then repeated for the
entire length of the fo~ lead pericxi Finally, the
last experiment will attempt one and five trading day
forecasts using multivariate input ·incorporating
interest rates and other currencies.

In all the experiments, the netwolks consisted of
standard feedforward netwolks with full connectivity
between layers. Connections between units were
restricted to being from one layer to the next Leaming
was conducted with the standard backpropagation
algorithm with momentum tetm and utilised the
standard sum squared error cost function:

N

E=0.5L(Ap-Dp)2

p=l

where A is the netwolk output for output pattern p, D
is the desired output for pattern p and N is the number
of patterns. The results of the neural netwolk model
were then analysed with respect to random walk
forecasting model. The random walk forecasting
mcx:lel was defined as today's price being the best
forecast for any point in the future. More formally, y(t
+ N) = y(t- 1) + £ (t) where y(t + N) is any point in
the future and £ (t) is an error tetm2. The relative
perfotmances of the models used in this wolk was
analysed by comparing the mean squared errors of the
mcx:lels over the test sets. All currency and interest rate
clata used was daily data from the period beginning
Jan. I, 1990anclendingMay31, 1994.

20ther definitions of the random walk model exist which also
accommodate systematic "drift" in the data. As no such long term
drift was found, the simpler version was used here.

Copyright© 1995 Software Engineering Press

0.008 SLP AR(2) ..
0 MLP Ji 0.006 R.W.
ti"

I
en 0.004
C

g 0.002
~

0

Fig. 1: Results of univariate single day forecasts.

RESULTS

Experiment 1: Single day univariate forecasting

In this first experiment the notion that a_ previous
sequence of the US$ - DM exchange rate W1 =
y(t), y(t - 1), ... , y(t - n) can be used to forecast the
value of the exchange rate one clay in advance Wo =
y(t + 1) with a neural netwolk was examined. The
training data used consisted of. the first 850 trading
days of the exchange rate data ancl the test data
consisted of the following 50 days. Various sizes of
wi were tried, ranging from 2 to 20 trading days, of
which none provided satisfactory results. Increasing
the number of hidclen units did not produce any
improvement either.

The results are shown in fig. 1 which compares the
results from the random walk model, an
autoregressive mcx:lel, amultilayerperceptron with 10
inputs and 5 hidden units and a single layer
perceptron with 10 inputs. The netwolk results
displayed were typical of that found in this experiment
regardless of the hidden or input layer size. Oearly,
the random walk mcx:lel is producing more acc'Urate
forecasts. An autoregressive process used to fit the
training data produced a second order linear mcx:lel of
the fotm:

y(t) = l.0426y(t- 1) - 0.053y(t - 2) + £ (t)

55

where y(t) is the value of the US$ - DM at time t
indicating that the value at time t is almost entirely
dependant on the value at time t - 1. Although the
netwo:tks did slightly better than the AR(2), none
outperformed the random walk mcx1el. Even further,
the best performing netwo:tks seemed to be
implementing something approaching a random walk
as can be seen in fig. 2. The top of fig. 2 displays the
random walk forecast along with the test set while the
bottom displays the output of the 10 - 5 - 1 netwmk
on the test data Oearly, the network is simply using
the previous value of the exchange rate as a forecast
for the next day - a random walk.

0.53
a5 0.51
'5 0.49
E 0.47
g 0.45

....., 0.43
~ 0.41
0 0.39
~ 0.37

Singe d:::ty rmctm Vvdk

0. 35 +H-1-+H<H-++-H-++-H++++++++-H++-H-+++<H-++-H-++-++++++-H

0.55 u·
©
N

0 0.5
~
0
.S 0.45
~
0
0 0.4
<f)
:::>

-0 -0 ~ -0 ~ -0 -0
~NN<'?<'?'1""1"

T I ME (d:::tys)

Univaidesingle d:::ty forea:st

-0 -0 ~ -0 ~ -0 -0
~NN<'?<'?"1""1"

T I ME (d:::tys)

Fig. 2: Random walk (top) and neural network (bottom)
single day forecasts. The thick lines are the actual exchange rate
and the thin lines represent the forecasts.

56

Experiment 2: Fitting the random walk model

The superior performance of the random walk model
in the previous experiment necessitates
investigating more formally how well the random
walk model can explain the prince changes in the US$
- DM exchange rate. If the price changes in the US$ -
DM exchange rate do in fact follow a random walk,
the differences between one day's r-dte and the next
should be random. In more precise terms, if the daily
changes in the exchange rate can be explained by the
random walk model, the residuals left over from
fitting the random walk model should be random
noise. The residuals are defined as Y(t) - M(t) where
Y(t) is the aciual value of the time series at time t and
M(t) is the value at time t given by the model.

In this experiment, the random walk model is used to
fit the US$ - DM exchange rate. AB mentioned before,
this model assumes that a value at a given time t + N
is equal to the value at time t plus some noise. 1f this is
true, then the k - day differenced US$ - DM exchange
rate series should be random noise as these values
would simply be the random series left over from
fitting the random walk model to the k - day price
changes. It is also good practice to look at the squares
of the differenced series as this helps prevent any
cyclic component of the series from cancelling out and
making the series appear random when in fact it is not.

Two tests for randomness were run to test the fit of
random walk model on the differenced and
differenced squared US$ - DM exchange r-dte data
These tests consisted of the difference-sign test and a
serial correlation test. The difference sign test simply
looks at the differenced series and counts the number
of times a positive change is found in the series. It can
be shown (see Kendall and Stuart (1968)) that a truly
random series will have (n - 1)/2 positive changes in
value and a variance of (n + 1)/12 with the resulting
distribution tending rapidly towards normality
(Moore and Wallis (1943)). The serial correlation test
simply tries to find a correlation between successive
values. 1f a given series has structure beyond random

Copyright@ 1995 Software Engineering Press

fluctuations, there will be some degree of oorrelation
between one value and the next (Kendall and Stuart
(1968)).

RANDOM WALK MODEL RESIDUAI,S

LJJgTnn:s

]Day

DIFFERENCE SIGN

expp.d. 515.0
exps.d. 9.80

cliff 559,

p= 0.10
cliff sq. 544,
p= 0.002

SERIAL CORRELATION

cliff 0.030
cliffsq. 0.Q63

Lg @
0.059

095%j

2Day 3Day

1.88.0 192D
6.94 5.51

278, 185,
0.15 0.22
298, 194,
0.15 0:73

0.005 -O.Q36

0.112 0.200
0.Q83 0.102

Table 1: Random walk model residuals.

4Day 5Day

144.0 115.0
492 4AO

144, 116,
].Q 0.82
141, 117,
0.54 8.82

-0.049 -0.056
-0.005 0.183
0.118 0.132

In this experiment the entire data set used in this wmk
was 1Ul1 through these tests at time lags of 1, 2, 3, 4,
and 5 days. In other words, the adequacy of the
rdl1dom walk model is being tested for the changes in
the US$ - DM exchange rate for periods of 1 to 5
days. It should be noted that when testing at time lags
greater than 1 day the series must be differenced such
that d0 = Ytk - Y(t _ l)k where dis the differenced value
and k is the lag. The reason for this is that if one were
to simply difference every value in the series from the
value k time steps in the past, one would artificially
induce oorrelation in the series that did not initially
exist as the various values resulting from the
subtraction process would oontain oommon terms.
Therefore, a series of N values will produce a
differenced series of size N/k. For this reason, only
lags of up to 5 days were tested for the random walk
model as lags of more than 5 would produce too small
of samples. The results are displayed in table l.

3Tiris is the probability that the correlation found is significantly
different from O using tl1e general heuristic of 2/✓N to detennine
95% certainty (Chatfield, (1975)).

Copyright© 1995 Software Engineering Press

Looking first at the difference-sign test, the top part of
table gives the expected number of turning points and
the expected stanclan:l deviation for each lag time. The
next four rows give the results of the differenced and
differenced squared exchange rates along with p
which indicates the probability that the number of
positive sign changes found in the exchange rate is
indicative of it being a random series using a simple z
test
In short, these results are quite marginal except in two
cases. A 1 day lag it can be said with greater than 95%
certainty (p = 0.002) that the difference squared series
in not random. Conversely, at 4 days it can be said
that the differenced series is random with greater than
95% certainty (p = 1.0). The rest of the results fail the
95% percent certainty criteria for either accepting or
rejecting that the exchange rate is random. In these
cases the probability that the number of positive
changes obseived indicate that the exchange rate is
random ranged from 0.10% (p = 0.1) and 82% (p =
0.82). A less stringent criteria for accepting the
hypothesis that the changes in the US$ - DM are
random oould be adopted in which any number of
positive changes found within one stanclan:l deviation
(i.e. p <= 68%) of the expected number of positive
changes would be accepted as indicative of
randomness. In this case, the results are still mixed
with the differences series indicating non rdl1domness
at lags of 1 (p = 0.01), 2 (p = 0.15) and 3 (p = 0.22)
and the differenced squared series indicating non
randomness at lags of 1 (p = 0.002), 2 (p = 0.15) and 4
(p= 0.54).

The serial oorrelation test resulted in slightly more
oonsistent results. For the differenced series, all five
time lags indicated randomness p >= 95% while the
differenced squared series indicated significant non
randmnness at 95% certainty at all lags except 4.

As much as these results are mixed, they do seem to
indicate that the US$ - DM exchange mte is not
strictly random. In other words, there is some structure
to be found in the 1 - 5 day price changes albeit ~mall

57

and probably very subtle. The random walk mcxlel
can probably be rejected as the most appropriate
mcxlel explaining the changes in the US$ - DM
exchange rate. Nonetheless, because the structure that
exists in the changes is so small (and possibly
complex) forecasting these changes will most
probably be anything but trivial.

0.014

0.012

g 0.01
w
& 0.008
tJ)

c: 0.006
0

~ 0.004 R.W.(5) MLP(5)

0.002 - -
0

R.W.(20)

Fig. 3: Results of the 5 and 20 day forecasts.

MLP(20)

Univaidefived:::ty' foreo::st

0,55
"'O
~
0 0,5
E
0
.S 0.45
2
0
~ 0.4
CJ)
::>

-0

T I ME (d:::ty's)

Fig. 4: The 5 day univariate forecast The thick line is the actual
US$ - DM and the thin line is the forecast.

Experiment 3: 5 and 20 day univariate forecasting

The previous experiment attempted to forecast the
US$ - DM exchange rate at time t + 1 with a moving
window of univariate data up to and including the rate
at time t Given the results of experiment 2 which

58

demonstrated that there may be some subltle structure
in the US$ - DM exchange rate, this next experiment
attempted to use a network to find a relationship
between a segment of the time series consisting of
data up to and including the rate at time t and the
value of the exchange rate at time t + 5 and t + 20 that
can be used for a forecast

In regards to the 5 day forecasts, various sizes of input
window were attempted. An input window size of 20
trading days wi = y(l), y(t - 1) ... y(t - 20) is
displayed in the results here as originally it was
thought that a month's worth of trading days would be
sufficient for the netwmk to derive a weekly forecast
Other window sizes did not yield any better results.
The number of hidden units was also varied from 1 -
30 none of which lead to an improved perfonnance.
The results for the 5 day forecast are displayed in fig.
3.

Again, the random walk mcxlel is. producing the
lowest error perfonnance. As with the one day
forecasts, the networks seem to be implementing a
random walk type of forecast which can be seen in
fig. 4. Again, none of the networks have improved on
the mean error perfonnance of the random walk
mcxlel. Also, looking at the graphs of the ac1ual output
of the networks (fig. 5) it can be seen that the
networks forecasting 20 days in advance are simply
outputting previous input.

Fig. 3 also gives the results of the 20 day forecasts in
which a 60 trading day (3 month) input window was
used. Fig. 5 displays a typical result from the
networks. Clearly, the networks are simply giving the
last seen input value (albeit somewhat degracled) as a
forecast of the future course of the exchange rdte. As
with the 5 day forecasts, the number of hiclclen units
was systematically varied. Due to long learning times,
though, the input window size was pegged at a value
of 60 tracling days.

Copyright© 1995 Software Engineering Press

20 c:by rmc:bm \i\dk foreo::5t

TIME (c:bys)

20 Day univaiatefaecx:st

TIME (cbys)

Fig. 5: 20 day random walk forecast and the univariate 20 day
forecast

Experiment 4: Mult:istep forecasting

An attempt was also made to look at the multistep
predictive abilities of the networks used in experiment
1. Initially the results looked swprisingly promising
given the previous results. Fig. 6 shows the results of
the single day multistep forecast made over the same
part of the data set as was used before. The netwolk
does seem to have forecast three of the major turning
points. Attempts to replicate this on other parts of the
data set were unsuccessful though. Generally, these
other attempts produced results such as can be seen in
fig. 7 which displays a single day multistep forecast
using 550 days training staring after the first 200 days

Copyright© 1995 Software Engineering Press

and the next 50 days as a test set Apparently, the
netwmks are modelling the data as being cyclical in
nature whose dynamics are largely detennined by the
in the previous input although what exactly the
netwmks are modelling in the data is unclear. All that
can be said, though, is that the initial "positive" results
in fig. 6 were probably spurious. It should also be
noted that a similar result was found on the 20 day
forecasting where a single positive result could not be
replicated on other parts of the data set Nonetheless,
these results underscore the need for more care to be
taken when analysing results to ensure they are not
spurious.

0.55
u 0.53

_gi 0.51
o 0.49
E
0 0.47
5 0.45
2 0.43
0
<r>° 0.41
~ 0.39

0.37

M.Jltistepfae:::cstfa d:taset A

TIME (cbt,,)

Fig. 6: Multistep forecast using first 850 clays as training.

0.55

~ 0.5
_t,!

~ 0.45
0
5 0.4
2
e_ 0.35
<f>
Cf)

::, 0.3

M.Jltistepfae::cstfa d:taset B

r--..r--1.!)0,C"")
r-NNNM

TIME (cbt,,)

Fig. 7: Multistep forecast using clays 200 - 750 as training.

Experiment 5: Multivariate forecasting

59

In this experiment, the data used to forecast the US$ -
DM one and five days in advance was expanded to
include the US$- DM exchange rate, the US$- Brit.
Pound exchange rate and the US$ - Yen exchange
rate. In addition, one month and one year
Eurocurrency interest rates for each of the above
cwrencies were also given as input to the networks
along with the one month and one year London
Interbank interest rates.

For the single day forecasts the networks were given
10 days of each of the above variables. Thus the
networks had a total of 130 input units with the
hidden units being varied from 0 to 30. The networks
were trained on the first 850 days of the data set and
tested on the following l 00. The results of the single
clay multivariate forecasts with a 5 hidden unit
network are displayed in fig. 8.

M.!11\.aidesingecby'fae:x:i;t

TIME (cb,'s)

---Aclud U D$;DM ---Fae:x:i;t

Fig:8: Multivariate single day forecast.

The results here are similar to the univariate l day
forecasts. Increasing the number of hidden units did
not lead to improved petformance. As can be seen the
networks have not been able to outpetform the
random walk model. Similar to the univariate one day
forecasts, the networks here were very roughly
approximating a random walk type petformance.

60

For the 5 clay multivariate forecasts the networks were
given identical information as before except that a 20
day window of each variable was used giving a total
of 260 inputs to the networks. The first 850 days were
used for training and the following 100 days for
testing. The results are displayed in fig. 9.

._,, 0,8 I I I l

i 0.7

8 0.6
5 0,5 '

~ 0.4

M.Jl1i\aide5 c:by'fae:x:i;t

~ I I I I g 0,3 I I I I I

0. 2 +-+-+-+-+-+-+-+-1--+--+-1--+--+-1--+--+-1--+-----P"-

~ ro ~ ~ ~ ~ 8 8 ~ ~ ~ ~ ~ ~ &
T I ME (cb,'s)

---Aclud US$;DM --- F ae:x:i;t

Fig. 9: 5 day multivariate forecast

The best petformance was found with the 20 hidden
unit l\1LP although none of the networks used were
able to outpetform the random walk model in terms of
mean squared error. Nonetheless, the network is not
strictly outputting previous input and in faci does to
be picking up some degree of the general direction of
change (fig. 9). Similar results were found on other
parts of the data set

DISCUSSION

Although the US$ - DM price changes where shown
to be not strictly random in a statistical sense, from a
forecasting point of view what little structure actually
is present may well be too negligible to be of much
use. Given the petformance of the network models in
univariate portion of this study, the random walk
model appears to be the more accurate for daily,
weekly and monthly forecasting of the US$ - DM
exchange rate. Does this mean that the random walk

Copyright© 1995 Software Engineering Press

mcx.1el is the optimal technical forecasting technique
for the US$ - DM exchange rate? Certainly not
However, in forecasting the US$ - DM exchange rate
using only daily US$ - DM data, the random walk
model has been the most effective of the models
examined here at all three forecast lead times.

This has some implications regarding the work of
Refenes et al (1993). Essentially, the only difference
between their study of single day forecasting and the
univariate experiments conducied here, is that they
used hourly data. It seems reasonable to argue that if
their model was truly robust, the use of daily data
should have worked just as well. If anything, the
hourly data would have been even more noisy than
the daily data thus making forecasting even more
difficult Refenes et al also looked at multistep
forecasting which was also attempted here. The initial
IX>Sitive results we found with multistep forecasting in
this work turned out to be spurious. fu future work, the
use of hourly data will be investigated to see if the
dynamics of hourly price changes are more conducive
to univariate forecasting than daily changes.

The multivariate I day experiment was not much
different than the univariate single day forecasting.
Why this is so is unclear but perllaps the use of
additional currency and interest rate data here was not
sufficient to capture the dynamics of the daily price
changes.

The 5 day forecast were a bit more interesting if only
because the networks did seem to pick up on some of
the general trend infonnation. Future work will
explore the use of a larger variety of input variables
and network architectures.

CONCLUSIONS

The conclusions of this work are three fold: First,
previous work claiming good forecasting perfonnance
of the US$ - DM using univariate hourly input to
feedforward networks could not be replicated with

Copyright @ 1995 Software Engineering Press

daily data. This suggests that either the results of
previous work require some reevaluation or that there
is something special about the nature of hourly
changes in the US$ - DM prices changes that can be
exploited for forecasting that cannot be found in the
daily changes. Second, more research could be
conducted examining the use of additional types of
input and architectures in neural network based
financial market forecasting systems. Finally, given
the lack of cross model comparisons in previous
research, more work needs to be done examining the
relative forecasting abilities of connectionist and more
standard financial modelling techniques. An
experimental framework incorporating cross
comparisons between different forecasting models
combined with multiple simulation runs is
recommended in research claiming the superiority of
neural networks in financial forecasting. This will
ensure that the advantages of connectionist forecasting
methods cannot be simply written off as data mining.

REFERENCES

Binks, D. L. and Allinson, N. M. (1991) "Financial
data recognition and prediction using neural
networks", Artificial Neural Networks, T. Kohonen,
K Makisara and J. Kangas (editors), Elsevier Science
Publishers, B.V. (North-Holland), 1709- 12.

Chatfield, C. (1975) The analysis of time series:
Theory and practice, Chapman and Hall, London, pg.
25.

Collard, J. E. (1991) "A B-P commodity trader'',
Advances in Neural Information Processing Systems
lll, B. M. Spatz (editor), Morgan Kaufmann
Publishers, San Mateo, CA, 551 - 56.

Diebold, F. X. and Nason, J. A (1990)
"Nonparametric exchange rate prediction?", Journal
of International Economies, 28, 315 - 32.

61

Hutchinson, J. M. (1994) A radial basis function
approach to financial time series, Masters Thesis,
Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology,
Mass, USA

Kendall, M. G. and Stuart, A (1969) The advanced
theory of statistics, Vol 3 Charles Griffin and
Company Ltd., London, 355 - 6.

Kimoto, T., Asakawa, K., Yoda, M. and Takeoka, M.
(1990) "Stock Maiket Prediction with Modular Neural
Networks", Procedings of the International Joint
Conference on Neural Networks, San Diego, CA.

Lee, C. H., Park, C. P. (1992) 'Pre.diction of monthly
transitions of the composite stock price index using
recurrent back propagation", Artificial Neural
Networks 2, I. Aleksander and J. Taylor (ooitors),
Elsevier Science Publishers, B.V. (North-Holland),
1629-32.

Moore, G. H. and Wallis, A (1943) "Time series
significance tests based on signs of differences",
Journal of the American Statistical Association, 32,
153, (cited from Kendall and Stuart (1969)).

Pindyck, R. S. and Rubinfeld, D. L. (1991)
Econometric Models and Economic Forecasts (third
ed), McGraw - Hill, Inc., New York, pg. 441.

Refenes, A N., Azema-Barac, M., Chen, L. and
Karoussos, S. A (1993) "Currency exchange rate
pre.diction and neural network design strategies",
Neural Computing and Applications, Vol 1, 46 - 58.

Weigend, A S., Huberman, B. A and Rumelhart, D.
E. (1992) 'Pre.dieting sunspots and exchange rates with
conna,"1:ionist networks", Nonlinear Modelling and
Forecasting, SF! Studies in the Sciences of
Complexity, M. Casdagli and S. Eubank (ooitors),
Addison-Wesley, 395 - 432.

62 Copyright© 1995 Software Engineering Press

Trading S&P 500 Stock Index Futures Using a Neural Network

Jae Hwa Choi Myung Kee Lee
Dank:ook University
Department of Management
Cheonan, Korea 330-714

Tong Yang Futures America
125 S. Wacker Dr. #1080
Chicago, IL 60606

Moon-Whoan Rhee
Towson State University
Department of Finance
Towson, MD 21204

Abstract

Neural networks have found an important niche
in financial applications. We apply neural
networks to Standard and Poor's (S&P) 500
stock index futures trading to predict the
futures market behavior. The results through
experiments with a commercial neural
network software do support future use of
neural networks in S&P 500 stock index
futures trading.

1. Introduction

The value of applying a new
modeling technique to the prediction of stock
prices and thus using it for abnormal profits
has long been hotly debated in finance. The
efficient market hypothesis [2] argues that
stock markets are so competitive that no one
could beat the market systematically with
publicly available information. Although
this hypothesis is very compelling in theory
and has in fact shaped the way the fmance
subject has been taught in classroom for
years, a series of recent empirical studies
employing sophisticated methods [7]
evidence that stock prices can be predicted.
In light of this new evidence, we re­
investigate the possibility of making
abnormal profits using a neural network, a
new and superior technology capable of
detecting regularities existing in historical
fmancial data. In this paper, neural network
models are developed for Standard & Poor's
(S&P) 500 stock index futures contracts.

The reasons for the selection of the
futures markets in general and of the S&P

Copyright© 1995 Software Engineering Press

500 stock index futures in particular are
multi-fold. One is that the futures market
requires a substantially smaller margin and
as a result is conducive to larger profit
making opportunities. Another reason is that
futures exchanges have been known to play a
price discovery role, which makes any
apprehensible price regularities even less
likely. In other words, one could make a
very strong case against the efficient market
hypothesis with evidence for arbitrage
opportunities in futures markets. Lastly,
stock index futures seems to be a good choice
to start with among futures contracts
considering a recent controversial issue of
program trading. The S&P 500 index
futures contract is the most popular stock
index futures.

As conventional analytic techniques
reach their limit in recognizing data patterns,
financial firms and institutions find neural
network techniques to solve this complex task.
Neural networks have found an important niche
in financial applications and have recently
been applied to finance and investment
domain issues [12]. To date, however, only
one published work by [11] has attempted to
aid traders in stock index futures trading.
We are in the process of developing an
intelligent futures trading system. Among
other components of the system, neural
network models of the system are discussed
in this paper.

The rest of this paper is organized as
follows. Section 2 introduces the
fundamental concepts of neural networks.
Section 3 describes the process of developing
neural network models to predict the market
behavior of S&P 500 stock index futures
trading. Results of simulated trading with the

63

64

neural network model are summarized in
Section 4. A brief discussion of the
intelligent futures trading system is given in
Section 5. Conclusions and future research
issues are discussed in Section 6.

2. Neural Networks

A neural network is a knowledge
induction technique in which knowledge is
constructed from learning cases and represented
over the multilayer network. The field of neural
network is inspired by studies of the brain and
nervous system Many neural network
algorithms have been developed for different
applications [4, 6]. Although the algorithms
and networks built from them differ both
structurally and mathematically, neural
networks are usually specified in terms of the
(neuron) node characteristics, network
topology, and a learning algorithm For
simplicity, a common three layer neural
network is selected and discussed as a
representative model in this section.

A neural network consists of a set of
interconnected processing nodes. Each node,
arranged in layers, is a computational unit that
acts on input and produces a result. In addition
to the input and output layer, one or more
hidden layers are introduced to enhance the
network's ability to model complex functions.
Nodes are connected to the nodes in the
preceding layer for input and the next layer for
output. Each connection between nodes has an
associated weight. Data enters the network
through nodes in the input layer (called input
nodes). Input nodes simply pass input data to
nodes in the next layer. Nodes in the hidden and
output layers receive all input and process
them Figure 1 shows a three layer network
architecture and the behavior of a node.

Nodes in the hidden and output layer
process their inputs in two steps. First, each
node multiplies every input value by its weight,
calculates the total of the products, and then
passes the sum through a function to produce
its output. For example, in Figure 1 a node j in
the hidden layer, shown in the box, receives
input values from input nodes, aggregates these

values based on an activation function, nj (t),
and converts to the corresponding output value
by a transfer function, Yj(t). A commonly used
nonlinear transfer function is the Sigmoid
function, which generates an output value
between O and 1. The activation and transfer
functions are mathematically represented as
follows:

where

nj (t) = L wiixi(t) + Bj and

1
~;(t) = _n-(t) '

1 + e 1

nj (t) = aggregate input of node j at
time t,

x;(t) = input value from node i at
time t,

wii = weight for connection between
node i andj,

. Bj = bias of node j,
and Yj (t) = output of node j at time

t.

Network topology refers to the
configuration of a neural network. The number
of possible interconnecting and grouping nodes
into layers is enormous. Although network
topology and node behavior are independent,
learning algorithms are often tied to specific
network architectures. A number of different
learning algorithms have been developed.
Figure 1 is layered with feedforward
connections from the input layer, the hidden
layer, to the output layer. This neural network
topology, called feedforward-backpropogation
(abbreviated as backpropogation), is the most
important and most widely used algorithm [3,
10]. Feedforward-backpropagation stands for
output feedforward and error backpropogation.
A neural network learns through this error
backpropagation. The key to a neural network
is its learning algorithm

The neural network is trained with
sample cases. Sample cases are presented
repeatedly and errors are corrected by adjusting
the weights after each erroneous output. In a
backpropagation neural network, the output

Copyright© 1995 Software Engineering Press

layer errors are detennined by subtracting the
actual result from the target result. Then, the
derivatives of the output layer errors are passed
back to the hidden layer. After each node in the
output layer and the hidden layer finds its error
value, the node adjusts its weights to reduce its
error. The weights are adjusted after the
presentation of each case. The goal of
minimizing the sum of the network's squared
errors is achieved by applying the gradient
descent method that minimizes the mean
squared error of the system by moving down
the gradient of the error curve. The error
surface is multidimensional and may contain
many local minimas the backpropogation
algorithm may not escape. Practical training of
backpropogation neural network involves with
finding a set of weights that process data
accurately enough for the given application
rather than finding a global minimum of the
error curve. The process of developing
neural networks consists of trying several
configurations to see which has the least error.
Backpropagation neural networks are trained
by selecting training parameters, including the
learning rate and momentum, to adjust
connection weights in the learning process so
that the sum of the squared errors can be
reduced. Learning rate and momentum are
coefficients that detennine the portions of the
current and previous discrepancies between
actual outputs and desired outputs that are to be
compensated (0 for no compensation and 1 for
full compensation), respectively. High learning
rate means that the adjustment of the weights is
primarily detennined by the current
discrepancy. High momentum means that the
adjustment of the connection weights is
primarily detennined by the previous
discrepancy. Learning is complete when no
further reduction in the sum of squared errors is
possible. The resulting neural network can be
used as a decision tool when new cases occur.

3. A Neural Network Model for S&P
Stock Index Futures Trading

3.1 Selection of Variables

Copyright @ 1995 Software Engineering Press

Inputs to the network are price
information, technical and statistics derived
from price information, and one subjective
market indicator. Price information includes
Open, High, Low, Close price data.
Statistical indicators include Moving
Average (MA), Rate Of Change (ROC), and
Relative Strength Index (RSI) which are
derived from the past price information for
the one or two week period prior to the
trading day. We also include the Market
Breakdown (MB) which classifies the trading
day's market into one of three categories. A
limited selection of the variables makes
possible to compare the performance of our
model against others which use a similar set
of variables.

Neural networks typically work with
inputs in the range O to 1 or -1 to + 1. When
input data are loaded into a neural network, it
must be scaled into a numeric range that is
comparable with the neural network algorithm.
In this study, the input data scaling is performed
via the linear scaling function which converts a
range of values into [-1, 1]. The neural network
then produces an output of value between 0
and 1.

To validate the learning model, the
four year data of 1,013 trading days is divided
into a learning (original) and test (holdout)
sample. The data for the year 1991 through
1993 is used as a learning sample to construct
neural network models. The test sample, the
data for the year 1994, is used for validation of
the neural network.

3.2 Configuring Network

For this complex and noisy problem
an experiment with three-layer backpropagation
networks is performed to identify the network
architecture. The Sigmoid logistic function
described earlier is used as the transfer function
for each node since it is known that this
function is particularly effective when the
outputs are categories [9]. For a three-layer
network, it is suggested to start with the number
of hidden neurons by computing the following
formula in [9]:

65

66

of Hidden neurons = 1/2 (Inputs +
Outputs) + Sqrt (# of Patterns).

After experimenting with different
numbers of hidden neurons, a three-layer
network with 8 input nodes, 8 hidden nodes and
one output node was selected. Figure 2 shows
the topology of the neural network used in the
study.

3.3Leaming

Learning consists of presenting the
learning data set to the network so that the
weights can be adjusted to produce the desired
output for each input data set. Weights are
adjusted by the backpropogation algorithm after
each input vector is presented. Typically, a
large number of iterations of the learning data
are required to produce a stable set of weights
that can properly categorize the learning
sample. In this study, the neural network was
trained over 760 trading days from 1991 to
1993 for S&P500 futures market.

The proper setting of the learning
parameters is part of the art of neural networks.
Learning ceases to make any progress if the
learning rate and momentum are too high or the
network has too few hidden nodes. A neural
network continually works to improve the
learning model's categorization of the learning
sample inputs. Generally, learning improvement
is continuous, but eventually there will be a
point where the forward progress is too slow to
be practical or observable. The experiment
examined each neural network architecture with
different values for these parameters and
stopped with the learning rate and momentum
factors of 0.1 and 0.1 respectively.

3.4 Testing the Model

Once the neural network is trained by
the learning sample, the learned weights on the
connections between nodes are kept constant
during the testing phase. The neural network is
tested with 240 trading events of the year 1994.
The predicted outcome of each trading day has

been examined to find a cutting point for
classifying either Long(buy) or Short(sell).
The final decision rule for the output is set to
0.57 and can be stated as:

output unit> 0.57 ➔ Long(buy)
output unit :5: 0.57 ➔ Short(sell).

The accuracy of the trained network
came out to be 62.5%, which made 158 right
out of 253 trading decisions in the test data
set at 0.57 cut-off point. However, the
network generated 58.5% of accuracy at 0.50
cut-off point. With the learning data set the
trained network has 63.8% of accuracy (485
out of 760 trading decisions) at 0.57 cut-off
point. At 0.50 cut-off point it generated
61.2%.

4. Simulated Trading Results

A simulated futures trading is
designed such that the buy order is issued if
the closing price of each trading day is
expected to be greater than the open price.
And the opposite is the case when the
relationships of the two prices are reversed.
Trading each day is set to take place in the
morning immediately after observing the
open price. The ex post near optimized
network generated the simulation
performance as in Panel A of Exhibit 1. The
cut-off value of 0.57 was chosen for ex ante
simulation. The trained neural network model
has been checked over the test period which
covers from January 3, 1994 through
December 30, 1994.

Exhibit 2 shows the long/short
positions for the network for 253 trading
days in 1994. The top box indicates the
time to buy and its holding period and the
bottom box indicates the time to sell and its
holding period. Exhibit 3 shows the ex ante
trading performance resulting from these
positions. The profit step function shows
strong upward slope very consistently.

Exhibit 4 shows the trading
simulation performance based on tested

Copyright© 1995 Software Engineering Press

decisions for 1994 S&P500 futures market.
It was assumed that order placement be
executed at market closing time and the
slippage will be 1 tick (5 points) for each
transaction. The commission was assumed
to be $5 .50 per side. As indicated in Exhibit
4, its ex ante performance shows a
cumulative profit of $63,308, maximum
drawdown of $7,375, and the reward/risk
ratio was 8.5. For the seventy-eight days that
trading took place, there were gains on fifty­
two days, or 67.5% of the time. The average
gain was $2,027.5 and the average loss was
$1,653.2.

The neural network model
performance has been compared with the
perfect hindsight information, and five-day
and ten-day moving average system. Panel
B of Exhibit 2 shows the performance
comparison.

5. The Intelligent Futures Trading System

Financial markets are interrelated in
increasingly complex ways and operating 24
hours a day throughout the world.
Telecommunications and computer networks
tie together markets in the form of electronic
entities. Financial practitioners are inundated
with an ever larger stream of data, produced
by the rise of sophisticated database
technologies, on the rising number of market
instruments. To cope with this information
explosion, intelligent systems with
quantitative analyses are considered to be the
best tool for financial professionals and
traders.

The information sources for financial
professionals and traders include current
market data, historical information, financial
reports, bond analyses, quantitative models,
technical indicators, etc. The intelligent
system should employ techniques to integrate
various information from different sources
and provide quick recommendation to the
decision maker. Each information source
may be a subsystem of the intelligent system.
The subsystem may be a conventional
program or a modeling system. The best way

Copyright© 1995 Software Engineering Press

to connect and integrate individual systems
in the intelligent system is through the
knowledge-based systems approach.

To provide such an intelligent system
for the futures trading market, we are in the
process of developing an intelligent futures
trading system. The system integrates market
data with modeling and analytical tools to
support trader strategies. Modeling and
analytical tools include simple analytical
techniques, statistical models and neural
network models. The integration will be
implemente,d through the rule-based expert
system approach with the object technology.
Neural network models of the system are
discussed in the current paper.

6. Conclusions and Future Research

This article describes the
development and performance of neural
networks in trading S&P 500 stock index
futures contracts. This model outperforms
conventional technical trading systems such
as oscillator of moving average systems,
which was also one of the input in the neural
network. As a point of reference, the best
network in [1] produced a gain of $10,301
over a year of trading, and the best network
in [11] produced an annualized gain of
$60,000 per contract. However, our best
network achieved a gain of $63,308 over
1994 trading period per contract.

The current work has some
limitations and lays ground for future
extensions. More extensive input data
including fundamental information are to be
used to examine the possibility of
performance improvements, to show how
much improvement can be made with other
variables, and to find out major dominant
information affecting the stock index futures
market. The robustness of the performance
of our model could also be checked by
splitting up the data sample into many
different training and testing periods. For
example, a moving simulation approach [5]
is performed at various lengths of periods.
This is the approach requiring multiple

67

68

repetitive simulations of learning and
prediction exercises as time advances.
Training and testing periods can even be
switched to assess the degree of the
stationarity of the index futures prices.

More realistic assumption and
strategies of trading simulation should be
devised for testing system performance and
designing real-time trading systems. We plan
to look into the possibility of a pseudo­
arbitrage opportunity in the stock index
futures. It is well known in the finance
literature that arbitrage profits are possible
when the actual stock index futures prices
differ from the so-called cost-of-carry fair
prices by more than transactions costs. We
could feed in the fair prices to the neural
network system and conduct this experiment.

7. References

[1] J.E. Collard, "Commodity Trading
with a Three Years Old," in Neural
Networks in Finance and Investment: Using
Artificial Intelligence to Improve Real~
World Pe,formance, Trippi, R., and E.
Turban (eds.), Chicago: Probus Publishing
Co. 1993

[2] Fama, E. F., "Efficient Capital
Markets: A Review of Theory and Empirical
Work," Journal of Finance, 25, 1970,
pp.383-417

[3] Gallant, S. I., Neural Network
Learning and Expert Systems, MIT Press:
1993, Chapter 11.

[4] Hush, D. R. and B. G. Home,
Progress in Supervised Neural Networks:
What's New Since Lippmann, IEEE Signal
Processing Magazine (January 1993), pp.8-39

[5] Kimoto T., K. Asakawa, M., Yoda,
and M. Takeoka, "Stock Market Prediction
System with Modular Neural Networks," in
Neural Networks in Finance and
Investment: Using Artificial Intelligence to
Improve Real-World Pe,formance, Trippi,
R., and E. Turban (eds.), Chicago: Probus
Publishing Co., 1990

[6] Lippman, R. P., An Introduction to
Computing with Neural Nets, IEEE Acoustics,
Speech and Signal Processing Magazine
(April 1987), pp.4-22

[7] Lo, A., and A. MacKinlay, "Stock
Prices Do Not Follow Random Walks:
Evidence From a Simple Specification Test,"
Review of Financial Studies, 1988

[8] Lo, A., and A. MacKinlay, "When
Are Contrarian Profits Due To Stock Market
Overreaction?," Review of Financial Studies,
3, 1990, pp.175-205

[9] NeuroShell 2 User's Manual, Ward
Systems Group, Inc., 1993

[10) Rumelhart, D. E., B. Widrow, and M.
A. Lehr, The Basic Ideas in Neural Networks,
Communications of the ACM (March 1994),
pp.87-92

[11) Trippi, R., and D. DeSieno,
"Trading Equity Index Futures with a Neural
Network," The Journal of Portfolio
Management, 1992, pp.27-33

[12) Trippi, R., and E. Turban (eds.),
Neural Networks in Finance and
Investment: Using Artificial Intelligence to
Improve Real-World Pe,formance, Chicago:
Probus Publishing Co., 1993

Copyright@ 1995 Software Engineering Press

Exhibit 1

Panel A : Performance of trained Network for 0.50 and 0.57 of cut-off point

Cut-off Cumulative % Max.
Point Profit Gain' Drawdown
---------------- -------------
0.50 40558 69 2003
0.57 49280 72 1943

Panel B : Performance Comparison
----------------- -------------
TYPE Profit % Max.

Gain Drawdown

Profit/
Risk

20.25
22.79

Profit/
Risk

Average
Gain

432.30
395.97

Average
Gain

Average
Loss

245.07
259.08

Average
Loss

------------ ---------------------- --
Perfect 58088 98 0.0
Information
Neural 12831 78 1475.0
Network
Moving -12008 34 12153.0
Average

Figure 1 : A Neural Network

Input
Layer

Hidden Output
Layer Layer

-YJ

Copyright© 1995 Software Engineering Press

o­
o-

infinite

4.9

0.98

433.41

405.50

288.69

0.00

330.64

657.17

Figure 2 : A Neural Network for S&P
Stock Index Futures

Long/Short

t

Open High Low Gose MA RSI ROC MB

69

19940104

19940126

19940217

19940314

19940405

19940428

19940520

19940614

19940707

19940729

19940822

19940914

19941006

19941028

19941121

19941214

70

w
c.n
0
~

•

.

..

••

..

..

w
c.n
en
0

I

w
en
(0
(0

I --
z

:-

~

C
-=> --- ~

w
a,
,b.
m

.

w
a,
(0,

~

~
-==-

,c--

.?_

<:::==-

"

-

w,
,b.
a,

-cc:::

w,
(0
en

·-.

----.
~

--

w
CD
,b.
,b.

---=...::.:-
~

--

..---·---

~ --
~

~

----.

- ~

~

c::::.__

-~

w
m
lO
w

I

-

.

I

I

w
lO
,b.
N

j: .. X

1.

---~ I· --1 I-· r.-

I
j

I

I

L.---------=:=:;;:~--------------!.·-~

Copyright© 1995 Software Engineering Press

w w w w w w w w w w
CJ1 CJ1 CJ1 Ol Cl '-J, CX) CX) (0
0 c.n (0 A (0 A lO A (0 A ... 0 (0 CX), Ol U1 A w ru

19940104 ![L...

~ 1--'
If-'•

19940126 --~~-~
- - rt-

I

19940217
IW

19940314

19940405

19940428

19940520

19940614

19940707

19940729

19940822

19940914

...
19941006 l lO

lO
A
0

19941028 ...
0

I A

19941121 I ...
lO
lO

19941214 A ...
I\)
w

A CX) ru ru w w w A A c.n c.n Ol 01
0

A CX) w "..J ru Ol 0 CJ1 (0 A CX) ru '-J ... 01
0 0 0 ru Cl 0 A CX) ru Cl 0 A CX) ru 01 0

.0 0 0 0 0 0 0 0 0 0 0 0 0

Copyright© 1995 Software Engineering Press 71

5.,p neural net.-ork =ev1ew program
sp_;.npt.:.t

l9940l.C3 - :~s,:.230

Based on c!:ise ;>r:.ce.
Suy!Sel! ::-...:.::f f a:. ,.s-::::.
:~c!·.:.Ces - :i:: :i! s!:.;;page.

:,ate ':'ransaction ?rice ?re~:.: '.'.:-..:.m.profi:. Cormisn Do::ars
---------- ---------:9S4Cl03 Open 37859 : . :J J.JO S S. 50 -5.SO

:994::07 Sell 38379 52: .::J 520.00 Sll.JO 2583.SO
: ::1940:.:. 7 Buy 33624 -24:.::o 2-:'5. 00 S l l. 00 :347.50
:3940!20 Sell 38789 :5s.:o 440.00 S ll. 00 2161. 50
:9940125 9uy 36414 375.::> 815.00 s:1.00 s 4025.50
:9940126 Sell 38654 24:.:J :oss.oo Sll.OG 5214. so
:9940128 Buy 39139 -4as.:o 570.00 Sll.00 2778.50
:9940131 Sell 39433 294.:0 864.00 Sll. GO 4237.50
:9940208 Buy 38464 969.JO 1833.00 Sll. 00 9071. 50
:9940215 Sell 38624 1sc.:o 1993.00 Sll. 00 S 9860.50
:9940216 Buy 38568 56.JO 2049.00 S11. 00 S10129.50
:9940217 Sell 38304 -264.JO 1785.00 Sll.00 S 8798.50
:9940218 Buy 38089 21:.:0 2000.00 Sll. 00 S 9862.50
:9940222 Sell 38489 40C.JO 2400.00 Sll. 00 S11851. 50
19940224 Buy 37618 8n.oo 3271. 00 Sll. 00 S16195.50
:9940308 Sell 37794 176. 00 3447.00 Sll.00 S17064.50
:9940315 Buy 37899 -105.00 3342.00 $11.JO $16528.50
:9940316 Sell 38194 295.JO 3637.00 Sll. 00 Sl7992.SO
:9940317 Buy 3 8299 -105.00 3532.00 Sll. 00 $17456.50
:9940318 Sell 38139 -!.60. JO 3372.00 Sll. 00 $16645.50
:9940321 Buy 38069 7C.:O 3442.00 Sll. 00 $16984.50
:9940323 Sell 38199 130.:0 3572.00 Sll. 00 $17623.50
:9940324 Buy 37634 565.00 4137. 00 Sll. 00 S20437.50
19940411 Sell 36159 -1475.JO 2662.00 $11. 00 Sl305l. 50
:9940414 Buy 35734 425.00 3087.00 Sll.00 $15165.50
:9940415 Sell 35709 -25.00 3062.00 Sll. 00 Sl5029.SO
:9940418 Buy 35369 340.:o 3402.00 Sll. 00 $16718. so
:9940426 Sell 36289 920.JO 4322.00 $11.00 $21307. so
:9940504 Buy 36229 60.:0 4382.00 $11.00 $21596.50
:9940505 Sell 36174 -55.00 4327.00 Sll. 00 $21310.50
19940509 Buy 35324 850.00 5177.00 Sll. 00 $25549.50
:9940519 Sell 36764 100.00 6617.00 Sll. 00 $32738.50
19940527 Buy 3678' -20.00 6597.00 Sll,00 $32627.50
19940531 Sell 36739 -45.00 6552.00 $11. 00 $32391. so
:i.9940610 Buy 36939 -200.00 6352.00 Sll.00 $31380.50
19940613 Sell 36989 50.00 6402.00 Sll.00 $31619.50
19940621 Buy 36109 880.00 7282.00 Sll.00 $36008.50
19940622 Sell 36299 190.00 7472.00 Sll.00 $36947.50
19940623 Buy 35924 375. 00 7847.00 Sll.00 $38811.50
19940708 Sell 35859 -65.00 7782. 00 $11.00 S38'75. 50
19940711 Buy 35599 260.00 8042.00 Sll. 00 $39764.50
19940713 Sell 35824 225.00 8267.00 $11.00 $40878.50
19940722 Buy 36229 -405.00 7862.00 $11. 00 $38842.50
19940725 Sell 36294 65.00 7927.00 $11.00 $39156.50
19940727 Buy 36194 100.00 8027.00 Sll.00 $39645.50
19940729 Sell 36759 565.00 8592.00 Sll.00 $42459.50
19940809 Buy 36719 40.00 8632.00 Sll .00 $42648.50
19940810 Sell 36919 200. 00 8832.00 Sll. 00 $43637.50
19940811 Buy 36699 220.00 9052.00 $11.00 $44726 .so
19940812 Sell 37114 415. JO 9467.00 Sll.00 $46790.50
19940815 Buy 37089 25.00 9492.00 Sll. 00 $46904.50
19940816 Sell 37389 300.00 9792.00 Sll. 00 $48393.50

19940818 Buy 37189 200.00 9992.00 $11.00 $49382.50
19940819 Sell 37219 30. 00 10022.00 Sll. 00 $49521.50
19940906 Buy 37970 -751. 00 9271.00 Sll.00 $45755.50
19940915 Sell 38154 184.00 9455.00 Sll.00 $46664.50
19940921 Buy 36970 1184. 00 10639.00 $11. 00 $52573.50
19941006 Sell 36000 -970 .00 9669.00 Sll.00 $47712.50
19941007 Buy 36280 -280.00 9389.00 Sll.00 $46301.50
19941011 Sell 37335 1055.00 10444.00 Sll. 00 $51565.50
19941021 Buy 37174 161. 00 10605.00 $11.00 $52359.50
19941026 Sell 36939 -235.JO 10370.00 Sll.00 $51173.50
19941027 Buy 37339 -400.JO 9970.00 Sll.00 $49162.50
:9941028 Sell 38215 876.00 10846.00 $11.00 $53531. so
19941107 Buy 37060 1155.00 12001. 00 Sll. 00 $59295.50
19941114 Sell 37320 260.00 12261.00 Sll.00 $60584.50
19941115 Buy 37190 130.00 12391.00 Sll.00 $61223.50
19941116 Sell 37290 100.00 12491.00 Sll.00 S6l 712. SO
19941118 Buy 36940 350.00 12841.00 Sll. 00 $63451.50
19941125 Sell 35960 -980.00 11861. 00 Sll.00 $58540.50
19941128 Buy 36100 -140.00 ll 721. 00 Sll.00 $57829.50
19941205 Sell 36005 -95.JO 11626.00 $11. 00 $57343. so
19941206 Buy 35995 10.00 11636. 00 Sll. 00 $57382.50
19941207 Sell 35805 -190.00 11446. 00 $11.00 $56421. 50
:i.9941208 Buy 35175 630.00 12076.00 Sll. 00 $59560.50
19941216 Sell 36490 1315. 00 13391.00 Sll.00 $66124.50
19941228 Buy 36725 -235.00 13156.00 Sll.00 $64938.50
19941230 Close 36400 -336. JO 12831.00 S 5. so $63308.00

Accum. Draw Maximum Prof/ Maximum Num lgain/ TGain/ '!'Gain/ T:oss, ~ax:.~~";
Pro fie Down Pip Pip Exp Trans ttrana TLo•• tG&in ILoss ;:;a.1.:"1

12831.00 -1475.00 -2617.00 -4.90 -2617.00 78 0. 67 -2.55 405.50 -330.64 :.uo. :~

72 Copyright <I:> 1995 Software Engineering Press

Paper Session: Expert Systems and Hybrid Approaches

Chair: Stephen Slade New York University

A Multi-Component Approach to Stock Market Predictions
Tim Chenoweth1•2•3 Zoran Obradovic1

1 School of Electrical Engineering and Computer Science
2 Department of Management and Systems

3 Department of Economics
Washington State University, Pullman WA 99164-2752

Abstract

The multi-component system proposed in this paper
is comprised of a preprocessing component, two neu­
ral networks, and a decision rule base. First, the
preprocessing component determines the most rel­
evant features for stock market prediction. N ezt,
the two neural networks predict the market's rate of
return, with one network trained to recognize large
positive and the other large negative returns. Fi­
nally, the decision rule base takes the return pre­
diction and determines a buy/sell recommendation.
Various ezperiments using this system to predict
S&P 500 indez returns were conducted and perfor­
mance measured by computing the annual rate of
return and the return per trade. Comparing the re­
sults achieved by themulti-network system to that
of the single neural network shows that in general
the multi-network system gives a higher return with
fewer trades. In addition, some multi-network ez­
periments managed to achieve an annual rate of re­
turn greater than that of the buy and hold strategy.

1 Introduction

In general, most quantitative methods that attempt
to predict stock market movements are based on sta­
tistical time series models (1, 8, 10]. These paradigms
are largely unsuccessful due to the inherent com­
plexity of financial markets in general and the stock
market in particular. The efficient market hypothe­
ses says that stock prices adjust to new information
very rapidly, usually by the time the information
becomes public knowledge, making it impossible for
statistical paradigms based on this information to
make accurate predictions [7].

While the efficient market hypotheses seems to be
correct for static and linear relationships between
stock prices and historical information, it is pos­
sible that dynamic or nonlinear relationships exist
that traditional statistical time series methods are
incapable of modeling [7]. If this is true, it may be

This work was supported in part by the National Science Foun­
dation under grant IRI-9308523 to Z. Obradovic.

74

possible to capture these relationships using a non­
parametric machine learning approach of multilayer
artificial neural networks (NN). Such NN's are pow­
erful computational systems that can approximate
any nonlinear continuous function on a compact do­
main to any desired degree of accuracy [4]. In ad­
dition, a NN can account for fundamental changes
in the underlying function through incremental re­
training using the back-propagation learning algo­
rithm [9].

This paper proposes a hybrid multi-component
nonlinear system for S&P 500 stock market predic­
tions. The system consists of statistical feature se­
lection component for identification of the most rel­
evant data, two specialized NN's for extraction of
nonlinear relationships from the selected data, and
high level decision rules for determining buy/ sell
recommendations. The system goals are to earn a
higher annual return than the buy and hold strat­
egy and to keep the number of trades low to reduce
transaction costs. The system details are explained
in Section 2 followed by results and analysis in Sec­
tion 3, and conclusions in Section 4.

2 Methodology

2.1 Feature Selection

The objective of the feature selection component
(see Fig. 1) is to identify a small subset of the most
relevant features from a larger pool for designing the
system in a manner that preserves as much infor­
mation as possible. This issue is important because
fewer features per pattern lead to faster computa­
tion and require less training patterns for successful
generalization.

For feature selection, the stock market prediction
problem is considered to be a two-class problem with
one class corresponding to a positive move in the
S&P 500 index and the other corresponding to a
negative move [3]. The feature selection process
performs a number of feature selection techniques
utilizing various selection criteria. For each tech­
nique and criteria combination the top s features

Copyright© 1995 Software Engineering Press

Feature selection

DownNN UpNN

Predicted Rate Predicted Rate

Figure 1: System Architecture

are determined and points awarded based on feature
importance (i.e., s points for the most informative
feature, s-1 points for the second most informative
feature, etc.). Then the final scores for the features
are analyzed and a determination is made concern­
ing which features to include in the final set. Selec­
tion techniques and criteria used in this process are
shown in Table 1, with each row corresponding to
a technique/criteria combination. Techniques and
criteria are explained in [6].

2.2 Return Rate Prediction

The return rate prediction component, shown in
Fig. 1, consists of two NN's that are trained us­
ing the back-propagation algorithm and an on-line
learning scheme. The objective is to train the "up
NN" on patterns with a large positive target return
and the "down NN" on patterns with a large neg­
ative target return. Once both NN's are trained,
the test pattern is presented to each of them and
the corresponding predictions are collected. A deci­
sion rule base is applied to these predictions and a
buy /sell recommendation made as explained in Sec­
tion 2.3.

The on-line learning scheme consists of a sequence
of training/prediction session where the NN's are
retrained after each session using more resent infor­
mation. This is achieved by training the NN's using
patterns from a fixed size window covering a con-

Copyright© 1995 Software Engineering Press

Technique Criteria

Best Feature Mahalanobis Distance

Best Feature Estimated Minimal Error

Best Feature Bhattacharyya Distance

Best Feature Patrick-Fisher

Best Feature Euclidean Distance

Best Feature Univariate Chebychev

Forward Search Mahalanobis Distance

Forward Search Estimated Minimal Error

Forward Search Patrick-Fisher

Forward Search Bhattacharyya Distance

Backward Search Mahalanobis Distance

Backward Search Estimated Minimal Error

Backward Search Patrick-Fisher

Backward Search Bhattacharyya Distance

Table 1: Feature Selection Techniques and Criteria

tinuous time segment of historic data. The target
return for the time unit immediately following the
window is predicted by both NN's and the predic­
tions used by the rule base. Then the training win­
dow is shifted forward one time unit (i.e., one trad­
ing day), the patterns from the new window used
to retrain the NN's, and a prediction made for the
next time unit. This process is repeated until the
data set is exhausted.

For each training session the target return corre­
sponding to each pattern in the window is compared
to a threshold value h. If the return is greater than h
the corresponding pattern is added to the "up NN"
training set, if the return is less than -h the pat­
tern is added to the "down NN" training set. Any
pattern with a target return between -h and h is
discarded.

For example, suppose that the training window
size is m and that at time t the test pattern is Pt,
which means that the training window contains pat­
terns Pt-m through Pt-1• First, the patterns in the
training window (Pt-m through Pt-1) are separated
into "up NN" and "down NN" training sets using
the threshold value has described. Next, both NN's
are trained using their respective training sets, and
asked to predict the target return for the test pat­
tern Pt. Once the predictions are collected and sent
to the rule base, the training window is shifted for­
ward one time unit so that the new test pattern is
Pt+l and the new training window contains patterns
Pt-m+l through Pt, and the process repeated. This
continuous until the end of the ordered data set 1s
reached.

75

2.3 Decision Rule Base

The predicted returns from both NN components
are used as input to the decision rule base compo­
nent (see Fig. 1). This component analyzes the pre­
dicted returns and outputs a buy /sell recommenda­
tion that is used to establish either a long or short
position in the market. A long position means pur­
chasing an asset for later resale, while a short po­
sition means selling a borrowed asset now and pur­
chasing it later.

This study examines three different decision rule
bases. For each rule base the "up NN" prediction ru
is compared to the "down NN" prediction rd. Each
rule base recommends a long position in the market
if ru > 0 and rd ~ 0, and a short position if ru ~ 0
and rd < 0. Otherwise the rule base computes the
normalized difference diff as

diff = max{ru, lrdJ} - min{ru, hi},
max{ru, lrdl}

compares this ratio to a predefined threshold value
y, and determines a buy /sell recommendation as fol­
lows:

• Rule Base 1: Maintain Current Position
Until a Clear Buy /Sell Recommendation
is Received.
This rule base specifies that if the system is
unsure as to what recommendation to make,
the action is to do nothing and maintain the
old position. Under these rules, if ru ~ 0 and
rd ~ 0 the system recommends maintaining the
current position (i.e., do nothing). If ru > 0,
rd< 0, and diff > y the rule base recommends
a long position if ru > Jrdl, and a short position
if ru < Jrdl- Otherwise diff ~ y and the rec­
ommendation is to maintain the current market
position.

• Rule Base 2: Stay Out of the Market Un­
less a Clear Buy /Sell Recommendation is
Received.
The difference between rule base one and rule
base two is the action taken when the system is
uncertain as to what recommendation to make.
In case of uncertainty, the rule base two action
is to exit the market. More precisely, if ru ~ 0
and rd~ 0 the system recommends exiting the
market (i.e., if the current position is long then
sell, if it is short then buy). If ru > 0, rd < 0,
and diff > y the system recommends a long
position if ru > lrdl, and a short position ifru <
Jrdl- Otherwise diff ~ y the recommendation
is to exit the market.

• Rule Base 3: Hold a Long Position in the
Market Unless a Clear Sell Recommen-

76

dation is Received.
This decision rule base takes advantage of the
common a priori knowledge that over the past
65 years the market has increased at an average
annual rate greater than 10%. Stated another
way, this means that given no other informa­
tion the odds are that the market will increase.
This is, in fact, the whole premise behind the
buy and hold strategy. Again, the difference
between rule base three and the previous rules
is the actions taken under uncertainty. In this
instance the action is to take a long position
in the market. Under these rules, if ru > 0,
rd < O, diff > y, and Tu < Jrdl, the system
recommends a short position. Otherwise the
recommendation is to take a long position.

2.4 Performance Measures

The most important criteria when measuring the
performance of a stock market prediction model is
whether it will make money and how much. There­
fore the model's annual rate of return (ARR) is com­
puted as follows

where:

k n
ARR= - LTi,

n i=l

n is the total number of trading time units for
the experiment;
k is the number of trading time units per year
(i.e., 253 for daily trading);
Ti is the rate of return for time unit i.

The sum, I:~=l Ti, is computed by either adding,
subtracting, or discarding the actual daily returns
for the S&P 500 index. If the system recommends
a long position, the actual return is added to the
sum; if a short position is recommended, the return
is subtracted; or if the recommendation is to exit
the market, the return is discarded.

It is also important to minimize transaction costs
by controlling excessive trading (i.e., a 10% return
with 50 trades is more profitable than a 10% return
with 100 trades). Therefore the break even trans­
action cost (BETC), which may be viewed as the
return per trade, is computed as follows:

1 n
BETC= - Lri,

m i=l

where m is the total number of trading transac­
tions, while Ti and n are defined as previously. A
trade is defined as any action that changes a mar­
ket position. For example, exiting the market con­
stitutes a single trade (i.e., a buy trade to cover a

Copyright© 1995 Software Engineering Press

S&P 500 index return
S&P 500 index return lagged one day
S&P 500 index return lagged two days
U .S Treasure Rate lagged 2 months
U.S Treasure Rate lagged 3 months
30 Year Government Bond Rate

Table 2: Selected Features

short position or a sell trade to cover a long po­
sition), while switching from a short position to a
long position constitutes two trades (i.e., one buy
trade to cover the short position and another buy
to establish the long position).

3 Results and Analysis

The system described in Section 2 is used for S&P
500 stock market buy /sell recommendations. The
historic data used in this experiment is ordered daily
financial time series patterns from the period Jan­
uary 1, 1985 to December 31, 1993. Patterns from
January 1, 1985 to December 31, 1988 comprised
the initial training window, whereas actual predic­
tions were made for patterns from January 1, 1989
to December 31, 1993. Each pattern in the initial
data set contained 24 monthly and 8 daily features.
The feature selection process described in Section 2
(with s = 7) showed the 6 features with the highest
scores clustered together with a significant drop be­
tween the sixth and the seventh feature. Based on
this, the feature set was reduced from the original
32 features to the 6 features listed in Table 2.

The single NN system trained with patterns com­
posed of the six features from the reduced set ob­
tained an ARR and a BETC of 2.86% and 0.01 %
respectively, using 957 trades. For comparison, the

Parameter Value
Activation Function Tangent Hyperbolic
Network Topology 6-4-1
Network Topology 32-4-1

(Single NN, All Features)
Learning Rate 0.03

Tolerance 0.00001
Number of Iterations 5000

Training Window Size 1000
Size (Multi NN)

Training Window Size 250
Size (Single NN)

Table 3: System Parameter Values

Copyright© 1995 Software Engineering Press

ARR and BETC for a single NN trained using all
32 of the original features are -2.16% and -0.01 % re­
spectively using 905 trades, which justifies the fea­
ture selection process. The system parameters for
both single NN's are shown in Table 3.

Several experiments with the multi-network sys­
tem described in Section 2 were conducted using the
reduced feature set from Table 2 and the system pa­
rameters from Table 3. Note that the training win­
dow size for the multi-network experiments is larger
than for the single NN. All patterns in the training
window for the single NN are used in the training
process, while the training window for the multi­
network is split into 3 disjoint sets. The first set,
consisting of all patterns with a target rate greater
than h, is used to train the "up NN". The second
set, consisting of all patterns with a target rate less
than -h, is used to train the "down NN." Finally, the
third set, consisting of all patterns with a target re­
turn between -h and h, is discarded. Consequently,
to ensure an adequately sized training set for both
NN components in the multi-network system, it is
necessary to have a larger window size.

For the multi-network system, experiments are
conducted varying the thresholds h and y. Thresh­
old his varied from 0.5% to 1.25% in increments of
0.25% and y from 0 to 0.80 in increments of 0.05.
For decision rule bases one, two, and three the ex­
periments using the fixed values of h resulting in the
largest ARR are shown in Tables 4, 5, and 6 respec­
tively. The best annual rate of return was 13.35%

y ARR Trades BETC
0 -6.75% 330 -0.10%

0.05 -5.70% 290 -0.10%
0.10 -1.24% 238 -0.02%
0.15 -0.01% 198 -0.00%
0.20 2.76% 178 0.08%
0.25 1.61% 156 0.05%
0.30 1.61% 136 0.10%
0.35 -1.17% 108 -0.05%
0.40 4.95% 88 0.28%
0.45 6.56% 64 0.52%
0.50 7.65% 48 0.80%
0.55 4.98% 40 0.62%
0.60 5.70% 36 0.79%
0.65 5.17% 28 0.93%
0.70 10.09% 20 2.54%
0.75 10.09% 20 2.54%
0.80 10.37% 16 3.26%

Table 4: Returns for Rule Base 1 with Threshold h
equal to 0. 75%

77

y ARR Trades BETC
0 5.40% 391 0.07%

0.05 6.50% 391 0.08%
0.10 2.49% 385 0.03%
0.15 0.17% 383 0.00%
0.20 1.75% 381 0.02%
0.25 2.31% 355 0.03%
0.30 3.23% 319 0.05%
0.35 3.14% 295 0.05%
0.40 1.13% 275 0.02%
0.45 0.88% 243 0.02%
0.50 -1.17% 217 -0.03%
0.55 -2.58% 203 -0.06%
0.60 -2.25% 210 -0.05%
0.65 -2.54% 188 -0.07%
0.70 -2.43% 180 -0.07%
0.75 -1.39% 164 -0.04%
0.80 -2.23% 150 -0.08%

Table 5: Returns for Rule Base 2 with Threshold h
equal to 1.0%

and was obtained using rule base three with thresh­
olds h = 0.5% and y = 0.80. In comparison, the
annual rate of return for the buy and hold strategy
was 11.23% and the best return for the single NN
was only 2.86%.

4 Conclusions and Future Re­
search

The system proposed in this paper is comprised of a
preprocessing component for feature selection, two
NN components that use the selected features for
return predictions, and a decision rule component
that takes the return predictions and determines a
buy /sell recommendation. Various experiments us­
ing this system to predict S&P 500 index movements
were conducted and associated annual rates of re­
turn and returns per transaction computed.

By comparing the results achieved by the multi­
network system to that of the single NN it can be
observed that in general the multi-network system
gives a higher return with fewer trades. In addi­
tion, some multi-network experiments managed to
achieve an annual rate of return greater than that
of the buy and hold strategy.

Although these preliminary results are promising,
research in progress might lead to further improve­
ments. For instance, the current feature pool is
quite limited. As a next research step this feature
pool will be considerably extended by incorporating

78

y ARR Trades BETC
0 -6.35% 404 -0.08%

0.05 -10.31% 400 -0.13%
0.10 -6.93% 404 -0.08%
0.15 -8.12% 406 -0.10%
0.20 -0.69% 370 -0.01%
0.25 1.95% 370 0.03%
0.30 6.41% 326 0.10%
0.35 6.46% 248 0.11%
0.40 6.59% 282 0.12%
0.45 5.36% 250 0.11%
0.50 7.98% 246 0.16%
0.55 8.67% 218 0.20%
0.60 8.79% 194 0.23%
0.65 9.61% 166 0.29%
0.70 11.34% 162 0.35%
0.75 12.08% 134 0.45%
0.80 13.35% 126 0.53%

Table 6: Returns for Rule Base 3 with Threshold h
equal to 0.5%

additional features such as daily trading volume and
inter-day index highs and lows. It is likely that more
informative features will be selected from a larger
pool, possibly leading to improved results. In addi­
tion, in this study no attempt was made to optimize
all the system parameters. It is possible that opti­
mized learning parameters such as the learning rate
and the number of hidden units may lead to bet­
ter results. Further improvements may be obtained
by incorporating prior knowledge and constructive
NN learning [5], or a recurrent network topology [2].
Finally, the current rule bases are fairly simplistic.
Possible improvements include incorporating techni­
cal information like moving averages and exponen­
tial averages into the system. It may also be possible
to use another NN, an expert system, or some com­
bination of the two to analyze the existing system
information and determine a market direction.

References

[1] Black, F. and Scholes, M., (May-June 1973)
"The pricing of Options and Corporate Liabil­
ities," Journal of Political Economy, Vol. 81.

[2] Burgess, A. and Bunn, D., (1994) "The Use of
Error Feedback Terms in Neural Network Mod­
elling of Financial Time Series," Proceedings of
the 1994 Neural Networks in the Capital Mar­
kets Conference, Pasadena, CA.

[3] Chenoweth, T. and Obradovic, Z., (1994) "Fea­
ture Selection for Predictive Models of the

Copyright © 1995 Software Engineering Press

Stock Market," Proceedings of the 1994 Neural
Networks in the Capital Markets Conference,
Pasadena, CA.

[4] Cybenko, G., (1989) "Approximation by Su­
perpositions of a Sigmoidal Function," Mathe­
matics of Control, Signals, and Systems, Vol.
2, pp. 303-314.

[5] Fletcher, J. and Obradovic, Z., (1993) "Com-
. bining Prior Symbolic Knowledge and Con­
structive Neural Networks," Connection Sci­
ence: Journal of Neural Computing, Artificial
Intelligence and Cognitive Research, Vol. 5, no.
3 & 4, pp. 365-375.

[6] Fukunaga, K., (1990) Introduction to Statisti­
cal Pattern Recognition, Academic Press, San
Diego, CA.

[7] Hutchinson, J ., (1993) A Radial Basis Function
Approach to Financial Time Series Analysis,
PhD Thesis, Massachusetts Institute of Tech­
nology.

[8] Markowitz, J., (1959) Portfolio Selection: Effi­
cient Diversification of Investments, John Wi­
ley & Sons, New York.

[9] Rumelhart, etc. (1986) Parallel Distributed
Processing: Ezplorations in the Microstructure
of Cognition, Vols. 1 and 2, MIT Press, Cam­
bridge, MA.

[10] Sharpe, W., (September 1964) "Capital As­
set Prices: A Theory of Market Equilibrium,"
Journal of Finance.

Tim Chenoweth (tchenowe@eecs.wsu.edu) received
a B.S. degree in Mathematics in 1981 from the Coast
Guard Academy, a M.B.A in Finance from Wash­
ington State University in 1991, and is currently
completing a M.S. in Computer Science and an In­
dividual Interdisciplinary Ph.D. combining Business
and Computer Science, both from Washington State
University. He was an active duty officer in the
Coast Guard from 1981 to 1989. The objective of
his current research is to use advanced technologies
to model financial markets.

Zoran Obradovic (zoran@eecs.wsu.edu) received
the B.S. degree in Applied Mathematics, Informa­
tion and Computer Sciences in 1985; the M.S. de­
gree in Mathematics and Computer Science in 1987,
both from the University of Belgrade; and the Ph.D.
degree in Computer Science from the Pennsylvania
State University in 1991. He was a systems pro­
grammer at the Department for Computer Design
at the Vinca Institute, Belgrade, from 1984 to 1986,
and has been a research scientist at the Mathemat­
ical Institute of the Serbian Academy of Sciences

Copyright © 1995 Software Engineering Press

and Arts, Belgrade, since then. At present, he is an
Assistant Professor in the School of Electrical En­
gineering and Computer Science, Washington State
University, Pullman, WA 99164-2752, USA. The ob­
jective of his current research is to explore applica­
bility of neural networks technology to large scale
classification and time series prediction problems in
very noisy domains .

79

Intelligent Model Discovery for Financial Time Series Prediction Using
Non-Linear Dynamical Systems Theory and Statistical Methods

Oscar Castillo
Instituto Tecnologico de Tijuana
P.O. Box 4207 Chula Vista CA
91909-4207 USA

Abstract

We describe a computer program that can be
considered an intelligent system for the domain of
financial time series prediction. The computer
program is an implementation of a new algorithm for
discovering mathematical models for financial time
series prediction, combining artificial intelligence
methodology with Dynamical Systems Theory, Fractal
Theory and Statistical methods. Given a financial time
series for an specific problem, the intelligent system
develops mathematical models for the problem based
on the geometry of the data, using three different
approaches. First, the computer program develops
regression models for the time series using traditional
statistical methods, then the program develops non­
linear mathematical models based on Dynamical
Systems Them:v and Chaos Theory, and finally the
program develops fractal mathematical models based
on the theory of Fractal Geometry. The Intelligent
System then analyzes all of the mathematical models
obtained before to make a selection of the model that
will give us the "best" prediction for the financial time
series. This selection is done by the intelligent system
using a combination of heuristics and calculations that
are contained in the knowledge base. An Intelligent
System that can learn models from financial data
would be very useful in practice in making the task of
prediction more easy and less time consuming.

1. Introduction

We describe a new algorithm (called IDIMM,
for Intelligent Discovery of Mathematical Models)
for financial time series prediction combining
artificial intelligence methodology with Dynamical
Systems Theory, Fractal Theory and Statistical
methods. The idea of using Dynamical Systems

80

Patricia Melin
CETYS Universidad Tijuana
P.O. Box 4207 Chula Vista CA
91909-4207 USA

Theory and Fractal Theory as alternative
approaches for prediction can be justified if v,·e
consider that traditional statistical methods only
have limited success in real ,vorld financial
applications, and this is mainly because financial
problems show very complicated dynamics in time.
Traditional statistical methods assume that the
erratic behavior of a time series is mainly due to a
external random error (that cannot be explained).
However, a Dynamical Systems approach, using
non-linear mathematical models, can explain this
erratic behavior because "chaos" as intrinsic part of
this type of models. It is a well known fact from
Dynamical Systems [4] that even very simple non­
linear mathematical models can exhibit the
behavior known as "chaos" for certain parameter
values, and therefore are good candidates to use as
equations for prediction. Fractal Theory also offers
a way to explain the erratic behavior of a time
series, but the method is geometrical in the sense
that the fractal dimension is used to describe the
complexity of the distribution of the data points.

We describe a prototype implementation of the
algorithm IDIMM as a computer program written
in the programming language PROLOG. This
computer program can be considered an intelligent
system for the domain of financial time series
prediction. Given a financial time series the
intelligent system develops mathematical models
based on the geometry of the data. The
mathematical models are constructed using three
different approaches: Dynamical Systems Theory,
Fractal Theory and traditional Statistical Methods.
First the computer program develops regression
models for the time series usmg traditional

Copyright© 1995 Software Engineering Press

statistical methods, then the program develops non­
linear mathematical models based on Dynamical
Systems Theory and Chaos Theory, and finally the
program develops fractal mathematical models
based on the theory of Fractal Geometry.

Traditional methods for model discovery
succeed when the relationships to be discovered are
easy, that is, when we have small data sets with
standard structure and variables of one type [7].
However, many real-life financial problems are
more complicated than this and cannot always be
modeled by traditional techniques. This is the main
reason why we think that Artificial Intelligence
techniques can help in making the task of
developing mathematical models more efficient and
accurate. The main idea is that an intelligent
system can use heuristics to limit the
combinatorially explosive search space of possible
mathematical models for a given financial problem.
Also the intelligent system can be flexible enough
to discover models of varying precision and
comprehensibility, depending on the user's
problem-specific goals.

The intelligent system develops only the kind of
mathematical models that are more likely to give a
"good" prediction based on the knowledge that
human experts have about this matter. This
knowledge is contained in the knowledge base of
the intelligent system, and is the main factor in
limiting the number of models that the system
explores. The intelligent system also has some
generalized knowledge about the mathematical
models that we expect to discover in the financial
domain. This knowledge is expressed as families of
parametrized mathematical models. At the end the
intelligent system analyzes all the mathematical
models obtained in the first part, to make a decision
about which one is the "best" model for the given
problem. This decision is done using a combination
of statistical calculations and heuristics from
human experts about this matter. In order to
developed our intelligent system we needed to the
knowledge extraction from human financial
experts. The knowledge acquisition was done by
one of the authors while working in Economics
Research Department of a University in Mexico
with financial and economical experts.

Copyright © 1995 Software Engineering Press

2. Discovering Mathematical Models for
Time Series Prediction

The problem of discovering mathematical
models from a given time series can be defined as
follows:

Given: A data set (time series) ,vith n data
points, D = {d1, d2, ... , ~}- Each data point d has
a real-,valued and continuos "response" (or
dependent) attribute "y", and P "predictor" (or
independent) attributes X = (X 1, X2, ... , Xp),
where one or more of the Xi's can be the time t.

Goal: From the data set D, develop a
mathematical model Mb, that is the "best" model to
predict "y".

The above problem is not a simple one, because
there exists an infinite nui11ber of mathematical
models that can be build for a given data set. So the
problem lies in knowing which models to try for a
data set and then to select the "best" one. More
formally we can state the problem in the follmYing
way:

Let M be the infinite dimensional space of
mathematical models defined for a given data set
D. Let MS= {M 1, ... , Mq} be the set of selected
models that are considered to be appropriate for the
geometry of the data set D. Let Mb be a model in
MS that is considered the "best" one for prediction
for the corresponding time series. We consider
mathematical models of the following fom1, for the
statistical methods:

Y= F(X) + E(O,cr)

where E(O,cr) represents a 0-mean Gaussian noise­
process with standard deviation cr, this is the
random error. F(X) is a polynomial equation in X.
where the predictor variables are contained in the
vector: X = (X1, X2, ... , Xp).

We consider mathematical models as
"dynamical systems" of the following form:

dY/dt = F(Y) •
where Y is a vector of variables of the fom1:
Y = (Y 1, Y 2, ... , Y p) and F(Y) is a non-linear
function ofY. Note that in this case we have
deterministic models expressed as differential
equations. Other kind of mathematical models arc
the discrete "dynamical systems" of the following
form: Yt = F(X)

81

where X, in this case, is of the form:
X = (Yt-1, Yt-2, ... , Yt-p) and F(X) is a non-linear
function of X. Note tfiat in this case we have
deterministic models expressed as discrete
difference equations.

The mathematical models for the statistical
methods can be linear as well as non-linear
equations. We show below some sample statistical
models that the intelligent system explores:

linear _regression: Yt = a + bt
quadratic_regression: Yt =a+ bt + ct2

logarithmic_regression: lnYt =a+ blnt
first_order_autoregression: Yt =a+ bYt-1

The mathematical models for continuous
dynamical systems can be one-dimension, two­
dimensional or three-dimensional. We show below
some sample models that the intelligent system
explores:

logistic_ differential_ equation:

dY 1/dt = aY 1(1-Y 1)

lotka volterra two dimensional: - .-

dY1/dt=aY1 -bY1Y2
dY 2/dt = bY 1Y 2 - cY 2

lotka volterra three dimensional: - -

dY 1/dt = Y l (1 - Y l - aY 2 - bY 3)
dY 2/dt = Y 20 - b Y 1 - Y 2 - a Y 3)
dY 3/dt = Y 3(1 - aY 1 - bY 2 - Y 3)

lorenz three dimensional: - -

dY 1/dt = aY 2 - aY 1
dY 2/dt = - y 1 y 3 +by 1 .. y 2
dY 3/dt = Y l Y 2 - cY 3

The mathematical models for discrete dynamical
systems can also be one, two, or three dimensional.
We show below some sample models that the
intelligent system explores:

logistic_ difference_ equation:

82

logistic _two_ dimensional_ difference_ equation:

lotka volterra two dimensional: - - -

henon _map_ two_ dimensional:

In all of the above mathematical models a, b
and c are parameters that need to be estimated
using the corresponding numerical methods. For
example, for the regression models we can use the
least squares method for parameter estimation, but
for the differential equations we need to use the
Gauss-Newton method.

The algorithm for discovering the best
mathematical model for prediction can be stated as
follows:

1.- Read the data set D = {d1, d2, ... , <lu}-
2. - Analyze the data set D to find the components

of the time series.
3. - Find the set of selected models:

MS= {Ml, ... , Mq}
using the properties of the components of the
time series. To complete this task the
knowledge base of the intelligent system makes
the decision of what models have to be
developed. For each model do the following:

a) Determine the parameters of the models based
on the methods corresponding to the type of
equation.

b) Create the corresponding equation F.
c) Calculate the measures of "goodness" of the

model.
4.- Find the "best" mathematical model Mb from

the set Ms using the measures of "goodness" of
each of the models of the set Ms. To complete
this task the knowledge base of the intelligent
system makes the decision based on the
heuristics of the experts incorporated in the
computer program.

Copyright© 1995 Software Engineering Press

We call this algorithm IDIMM (for Intelligent
Discovery of Mathematical Models) and is an
integration of Artificial Intelligence techniques with
Dynamical Systems Theory, Fractal Theory; and
statistical methods, to obtain mathematical models
for prediction of time series in the financial domain.

3. Description of the Intelligent System

3.1 Architecture of the Intelligent System

In figure 1 we describe the general architecture
of the system.

In figure 2 we describe the architecture of
"Expert Module 2", which does the selection of the
mathematical models that the intelligent system will
explore. This module selects the type of statistical
models more appropriate for the data, then selects
the dynamical systems more appropriate for the
data, and finally selects the fractal theory models

(fractal dimensions) to describe the data. After this
selection is finish, this expert module calls the
Numerical Module to do the parameter estimation
for each corresponding mathematical model.

3.2 Description of the Knowledge base of the
Intelligent System

The knowledge base consists of three parts
corresponding respectively to the three expert
modules shown in figure l. The first part contains
the knowledge to analyze the time series, i.e., the
knowledge to obtain from the data the components
of the time series. The second part contains the
knowledge to select the kind of mathematical
models more appropriate for the type of data given,
i.e., given the components of the time series decide
which models are more likely to give a good
prediction. The third part contains the knowledge to
select the "best" mathematical model for prediction.

Expert Module 2: Expert Module 3:
ExJ,ert Module I:

Time Series
Analysis

Input

Time Series

Time Series

Coffifonents

Selection of the
type of models
appropriate for
the data

Numerical Module:

Parameter
Estimation of the
Mathematical
Models

Mathematical

Models

Figure 1.- Architecture of the Intelligent System

Copyright© 1995 Software Engineering Press

Selection of the

"Best" Model

for Prediction

Output

"Best" Model

"Best" Prediction

83

Statistical
Module

Input Analysis
of the 1------Dynamical Systems 1------

Output

Time series
Components

Compon.ents Module

Fractal
Module

Models Mathematical
Models

Figure 2.- Architecture of Expert Module 2

i.e., given the models of the second part, decide
which one is the "best" to predict the time series.

To give an idea of the way the knowledge base
is structured, we show some sample rules of
"Expert Module 2". Remember that this module
selects the type of mathematical models more
appropriate for the data, using as input the
components of the time series extracted in module
1. We consider the following types of statistical
methods to obtain the models [5]:

1. - Linear regression
2.- Quadratic regression
3. - Logarithmic regression
4.- Trigonometric Least-Squares
5.- First order autoregression
6.- Second order autoregression
7.- Non-linear autoregression
8. - Brown method
9.- Weighted exponential moving averages

We consider the following types of non-linear
mathematical models as dynamical systems [4]:

1. - Logistic differential equations
2. - Logistic difference equations
3. - Lotka Volterra two-dimensional differential

84

equations
4.- Lotka Volterra two-dimensional difference

equations
5. - Lorenz three-dimensional differential equations
6.- Henon two-dimensional difference equations

We consider the following fractal models
(dimensions) as measures of the complexity of the
time series [4]:

1.- Correlation dimension
2.- Box dimension

We show in figure 3 some sample rnles for
deciding, using the properties of the time series,
which of the above statistical methods is more
likely to give a good mathematical model for the
problem.

We show in figure 4 some sample rnles for
selecting which of the above dynamical systems is
more likely to give us a good mathematical model
for the given time series.

We also give in figure 5 some sample rnles of
"Expert Module 3 ". This is the part of the
knowledge base that decides which is the "best"
model for prediction using as input the set of
models generated by Module 2. In this figure we

Copyright@ 1995 Software Engineering Press

Rule 1:

Rule 2:

Rule 3:

Rule 4:

Rule 5:

Rule 6:

Rule 7:

Rule 8:

Rule 9:

IF
THEN

IF
THEN

IF
AND
THEN

IF
AND
THEN

IF
AND
THEN

IF
AND
THEN

IF
AND
AND
THEN

IF
AND
THEN

IF
AND
THEN

Time series = smooth
Type_ Method = regression

Time_ series = cyclic
Type_Method = complex

Type_Method = regression
Tendency= linear
Type_Model = linear_regression

Type_Method = regression
Tendency = non _linear
Type_ Model = quadratic _regression

Type_Method = regression
Tendency= exponential
Type_ Model = logarithmic _regression

Type _Method = complex
Seasonal_Part = simple
Type_ Model = brovm

Type_ Method = complex
Seasonal_Part = simple
Explanation = ad_ hoc
Type_Model = trigonometric_least_squares

Type_ Method = complex
Seasonal_Part = regular
Type_ Model = pmep

Type_ Method = complex
Seasonal Part = difficult
Type _Model = autoregression

Figure 3.- Sample rules for the selection of the statistical mathematical models

Copyright© 1995 Software Engineering Press 85

86

Rule 1:
IF Time series= smooth all THEN Type_Method = continuous_one_dim - -

Rule 2:
IF Time_series = cyclic_part THEN Type_ Method = discrete_ one_ dim

Rule 3:
IF Time_ series = cyclic_ all THEN Type_Method = continuous_two_dim

Rule 4:
IF

Rule 5:
IF

Rule 6:
IF

Rule 7:
IF

Rule 8:
IF
AND

Rule 9:
IF
AND

Rule 10:
IF
AND

Rule 11:
IF
AND

Rule 12:
IF
AND

Time _series = cyclic_ chaotic AND Number variables = three
THEN Type_ Method = continuous _three_ dim

Time_series = cyclic_chaotic AND Number variables= two
THEN Type_Method = discrete_two_dim

Time_series = cyclic_chaotic AND Number variables= one
THEN Type_ Method = discrete_ one_ dim

Type_Method = continuous.:::_one_dim AND Tendency= non_linear
THEN Type_Model = logistic_differential_equation

Type_Method = discrete_one_dim AND Tendency= non_linear
Seasonal_part = simple THEN Type_Model = logistic_difference_equation

Type_Method = continuous_two_dim AND Tendency= non_linear
Seasonal _part = simple THEN Type_ Model = lotka _ volterra_ differential_ eq

Type_Method = discrete_two_dim AND Tendency= non_linear
Seasonal_part = simple THEN Type_ Model = logistic_ delay_ difference_ eq

Type_Method = discrete_two_dim AND Tendency= non_linear
Seasonal_part = regular THEN Type_Model = lotka_volterra_difference_eq

Type_Method = continuous_three_dim AND Tendency= non_linear
Seasonal_part = regular THEN Type_Model = lorenz_differential_equation

Figure 4.- Sample rules for the selection of the dynamical systems mathematical models

Copyright© 1995 Software Engineering Press

Rule 1;
IF r2>r2 2 I AND tb2 2". ta, AND tc2 2". ta

THEN Result= M2

Rule 2;
IF r 2 > r 2 1 2 AND tbl 2". ta,

THEN Result= M 1

Rule 3;
IF r2>r2 3 2 AND tb3 2". ta,

THEN Result= M3

Where the mathematical models and the statistics are:

M3:

r 1
2 = coefficient of regression of M 1

tb1 = b1/sb1 = t student value ofb1

ri2 = coefficient ofregression of M2
tb2 = b2/sb2 = t student value of b2
tc2 = c2/sc2 = t student value of c2

r/ = coefficient ofregression of M3
tb3 = b3/sb3 = t student value of b3

s = standard deviation
ta,= critical value of the t student distribution

Figure 5.- Sample rules of Expert Module 3 for deciding which is the best regression model

show rules to decide only between regression
models, but Module 3 has many more rules to
consider all the kinds of models mentioned above.

4. Use of the Intelligent System

We show in figure 6 a sample input/output of
the use of Expert Module 2 to give an idea of the
performance of the Intelligent System. In this figure
we show the result of applying the. new algorithm
for discovery of the best model, for a particular
example of a time series of oil prices for Mexico.

Copyright© 1995 Software Engineering Press

5. Comparison with Related Work

There has been some work recently in the area
of numerical law discovery,. but much of the
research in Machine Leaming is in other areas such
as induction [8]. We think that this is mainly
because "discovery" is a more difficult kind of
"learning". However, we can state that automated
mathematical modelling is very important for many
domains of application for obvious reasons. For
example in the engineering and financial domains is
critical to obtain mathematical models for the
problems, to be able to understand them and also to

87

88

IDIMM2: AN INTELLIGENT SYSTEM FOR DISCOVERING MATHEMATICAL
MODELS FOR FINANCIAL TIME SERIES PREDICTION COMBINING
DYNAMICAL SYSTEMS AND FRACTALS WITH ST A TISTICS

What is the name of the file containing the time series?
>oil_prices.txt
What is the general form of the graph of the time series?

(s) smooth
(c) cyclic
(d) don't know

>c

What is the tendency of the graph of the time series?
(l) linear

>n

(n) non-linear
(e) exponential
(d) don't know

Do you consider the seasonal part of the time series?
(s) simple
(r) regular
(f) difficult
(d) don't know

>f

What type of explanation do you want for the model?
(a) ad_hoc
(t) theoretical
(d) don't matter

>t
THE BEST MATHEMATICAL MODEL FOR PREDICTION CONSIDERING
THE CONDITIONS AND PROPERTIES GIVEN AS INPUT IS:

11 Y(T) = 18.74 + l.03Y(T-l) + 0.28Y(T-1)"'2 11

THIS IS A FIRST ORDER DIFFERENCE EQUATION THAT CAN BE CONSIDERED A
NON-LINEAR DYNAMICAL MODEL FOR THE GIVEN PROBLEM
Do you want an explanation of why this is considered to be the best mathematical model?

(y) yes
(n) no

>n
Do you want to make another consultation?

(y) yes
(n) no

>n

Figure 6.- Sample input/output of the use of Expert Module 2

Copyright © 1995 Software Engineering Press

be able to predict their future behavior. This is why
we consider that more research in this area is very
important.

Similar work with respect to Machine Leaming
can be found in a paper by Mou let [6], however the
approach to model discovery is different to ours
(this can be seen from the heuristic method by
Moulet). Also in a paper by Rao [7] we can see a
method for model discovery for engineering
domains, but also with a different approach to ours
(his approach is similar to "clustering"). Also, there
is another very important difference with other
authors, in the kind of mathematical models that we
are considering for our intelligent system. We are
considering non-linear mathematical models from
the theory of Dynamical Systems and not only
linear regression models like other authors. In this
paper we have successfully generalized our
previous work on this matter [2], by considering
this type of non-linear models.

6. Conclusions

We have developed an intelligent system for the
domain of financial time series prediction. The
system discovers mathematical models for a given
financial time series using a combination of
techniques from AI, Dynamical Systems, Fractal
Theory and Statistics. This intelligent system can
be used to find the best mathematical model for a
financial time series, and then the model can be
used to predict future values of the time series.
Accurate prediction is of great importance in the
areas of finance, economics, management and
accounting for obvious reasons. Our intelligent
system can make more easy the job of
mathematical modelling and prediction in all of
these areas.

The intelligent system can be improved in the
following ways:

1. - Build a better user interface so that it can be
used more easily

2. - Provide a larger class of mathematical models
that the system can explore to find the best
model.

Copyright© 1995 Software Engineering Press

We are planning to work along this lines in the
near future.

7. References

[l] Bratko, I., Prolog Programming for Art~/icia/
Intelligence, Addison Wesley, 1990.

[2] Castillo, 0., Melin, P., "An Intelligent System
for Discovering Mathematical Models for
Financial Time Series Prediction" Proceedin~s , '
of the IEEE Region JO~" Ninth Annual
International Conference, pp. 217-221, IEEE
Singapore Section, August 1994.

[3] Covington, M.A., Nute, D., Vellino, A., Prolog
Programming in Depth, Scott Foresman & Co.
Computer Books, 1988.

[4] Devaney, R., An Introduction to
Dynamical Systems, Addison
Publishing Company, 1989.

Chaotic
Wesley

[5] Mendenhall, W., Reinmuth, J.E., ."','tatistics .fc>r
Management and Economics, Wadsworth
International, 1981.

[6] Moulet, M., "A Symbolic Algorithm for
Computing Coefficients Accuracy in
Regression", Proceedings of the Ninth
International Workshop on Machine
Learning, pp. 332-337, Morgan Kauffman
Publishers, San Mateo, CA, 1992.

[7] Rao, R.B., Lu, S., "A Knowledge-Base
Equation Discovery System for Engineering
Domains", IEEE Expert, pp. 37-42, August
1993.

[8] Sleeman, D., Edwards, P., Editors, Proceedings
of the Ninth International Workshop on
Machine Learning, Morgan Kauffman
Publishers, San Mateo, CA, 1992.

[9] Sterling, L., Shapiro, E., The Art C?f Pro/og,
MIT Press Cambridge Mass., 1987.

89

Paper Session: Risk Management

Chair: Susan Garavaglia, Dun & Bradstreet Information Services

92

OPTIMAL MIXTURES OF CLASSIFIERS FOR
FINANCIAL DISTRESS PREDICTION

Ignacio Olmeda*
and

Eugenio Fernandez*,**

"Dpto. de Fundamentos de Economia e Historia Econ6mica
**Dpto. de Matematicas

Universidad de Alcala
Alcala de Henares 28802 Madrid SPAIN

Ph: 34-1-8854202
Fax: 34-1-8854239

e-mail: eholmeda@alcala.es - ehefv@alcala.es

Copyright © 1995 Software Engineering Press

OPTIMAL MIXTURES OF CLASSIFIERS FOR
FINANCIAL DISTRESS PREDICTION

Ignacio Olmeda

Dpto. de Fundamentos de Economia e
Historia Econ6mica.

Universidad de Alcala

Alcala de Henares 28802 (Madrid) - SPAIN

Abstract

In this paper we propose a method for

combining classifiers in an optimal way. We

pose . the problem of finding the optimal
combination as an optimization problem

(solved by an Evolutionary Programming

algorithm) in which one desires to minimize

the expected cost of misclassification. We show
that the mixtures obtained are superior against
any of its constituents on the problem of

bankruptcy prediction.

1. Introduction.

Financial agents are increasingly interested
in the use · of Advanced Computing

Technologies (ACT's) such as Artificial

Neural Networks, Genetic Algorithms or
Machine Learning, for modelling and
forecasting purposes. The reason for this is

quite obvious, if these "high-tech" tools were
truly more powerful, the competitive

advantage from using them would be decisive,

at least until these technologies were used by
any agent so that differential benefits were

fully arbitraged. The number of reported
successful applications of these technologies
has been so high that a "folk-theorem" asserts
their universality and superiority against any

other procedures.

Copyright <!:> I 995 Software Engineering Press

Eugenio Fernandez

Dpto. de Fundamentos de Economia e
Historia Econ6mica - Dpto. Matematicas.
Universidad de Alcala

Alcala de Henares 28802 (Madrid) - SPAIN

Comparisons on the forecasting accuracy

of a particular ACT against alternatives in

classification problems are relatively common
in the literature. Most of these comparisons

consider only a single competing model (for

example a statistical one) and not the

combination of two or more of them so that
their appropriateness in a general forecasting
context is not resolved. In this paper we

propose to consider combinations of several

methods and to formulate the choice of the
optimal mixture as an optimization problem

which can be solved by means of appropriate
algorithms (such as Evolutionary

Programming). We will also show that
although a particular technique can be near

optimal (under a forecasting criterion) when
compared against the others, a combination of

them generally provides better results.

2. Method proposed.

From a Decision Support Systems (DSS)
perspective an optimal system may not be an

individual model but the combination of

several of them. In fact, this is the usual way
to proceed in order to evaluate projects in
many financial contexts: the opinions of a
comitee of human experts (each of them
representing a particular and relevant aspect of
the problem) are aggregated to give an optimal
decision. As humans, different quantitative

93

models are more sensitive to specific aspects

of information, and the problem is to exploit
these asymmetries in an optimal manner.

A simple way to combine forecasts is to

take the opinion of the majority, for example

predicting bankruptcy if three out of five

models do. Though useful in certain settings
(see Fernandez and Olmeda, 1995) this method

has several drawbacks. For example, if the

mixture is composed of too many inefficient

and uncorrelated methods, it would perform

worse than any single method. Also, it does

not account for the different expected

performance of the techniques when employed

in particular circumstances (such as the
plausibility of outliers). Finally, this method

can not be used when the classes are

continous. For these reasons, an additive

procedure that permits a continous aggregation

of forecasts should be preferred. Here we

propose the basic framework for such a

method. It can be extended in a number of

ways but for reasons of brevity we only

provide a general description.

Let us suppose that we have n examples

E; = (au, a;2, ... , aw c;) completely

characterised by the values of their k attributes

and which belong to class C;. Also, suppose

that we have m classifiers and let Pii be the

prediction that classifier j makes of example i.
Whithout loss of generality we can assume
only two classes (failed and non-failed banks)

so that c;, Pii E {0,1} for all i,j. Let P; =
J(Emi=P•i Pii - 0) be the combined prediction of

example i, where ai is the weight assigned to

method j, 0 is a confidence level and I is the

Heaviside function. Let o; be the associated

cost of prediction:

e1 if P; > C;

o; = e2 if c; > P;
0 othenvise

94

where e, and e2 can be considered the costs of
Type I and II errors, respectively (here we

will suppose e1=e2=l). The problem of
finding an optimal mixture of classifiers can be

formulated as finding the optimal combination

of weigths ai that minimizes the total costs of

misclassification. Obviously, since this

combination should be established ex-ante, the

most we can do is to find an optimal mixture
which minimizes the expected costs of

misclassification. A very convenient way to

estimate the expected performance of any

particular method consists on dividing the

training data (N) into v equal subsamples of

size N, estimating the model using N-nv

examples and predicting the remaining Ilv ones

(vjold cross validation) [Stone, 1974]. This

procedure is repeated for each of the v

subsamples, and the mean prediction error is
computed. Instead of using the cross validated

error as a proxy to the expected error, we

propose to consider the total error along the

whole cross-validated set (N·v examples),

since this assures not only an adecuate

generalization but also an a,cceptable learning.

For this reason, the mixture model could be

suboptimal for some of the cross validated
subsets though its performance should be

globally optimal. With the above notation the

problem becomes:

min" o = E";=I D;
s.t. P; = l(Emj=Iaj Pij - 0), i=l,2, ... N-v [1]

Other extensions (for example, a subjective

measure of confidence) can be easily
introduced in [1] as restrictions, leading to the

minimization of the cost function with a

penalty term for violation of the constraints.

Since Pi is a nonlinear (threshold) function,

it is expected that gradient based methods may

have some problems. There are many different

Copyright © 1995 Software Engineering Press

ways to solve [l] but in this paper we propose
to employ a classical Evolutionary
Programming (EP) algorithm (see Fogel, 1992
and references therein).

Specifically, let a = (a1,a2, ... ,am) be a
vector of weigths, a standard EP algorithm

follows the steps:

1.- Take an initial population of s vectors ak

randomly taken on an interval [a,b]m.

2.- Evaluate the fitness of each of these

individuals (oJ.

3.- Add a multivariate gaussian vector ii -
N(0,G(oJ) to each ak, being G(oJ

proportional to oi. The vector ak+s =
a~+ Ii is called an offspring of individual

ak.
4.- Evaluate the fitness of each offspring.

5.- For every ak, k = 1, 2 , ... , 2s, select
randomly h competitors from the

population and compare their fitness. If the

fitness of ak is smaller than its
competitor's assign it a win.

6.- Select the s individuals with more number
of wins to generate a new population.

7. - If the termination criteria are not fulfilled

go to step 3.

It should be noted that since the a

coefficients are not bounded it is possible that

the optimal mixture could be a "corner"

solution including only a single (best) method.
Also, the best decision could consist on doing

the opposite as a particular method dictamines
(a negative a). In this paper, the search
process is stopped when the number of
generations exceeds one hundred (this takes a

couple of minutes on a 486 66Mhz).

Resuming, the proposed method follows
the steps:

Copyright© 1995 Software Engineering Press

1.- Construct v samples of the training set..
Estimate each of the models on N-nv
examples and predict the remaining nv
ones. Select the model that minimizes the
mean cross-validated error.

2.- Using the EP algorithm select the optimal

combination of models that minimizes the
cost of misclassification along the N·v set

of examples .
3.- Re-estimate the models on the whole

training set.
4.- Use the weights obtained in 2 to construct

the combined forecast.

3. Application to the Bankruptcy Prediction

problem.

The problem of bankruptcy prediction is a
clasical one in the financial literature. Since
the seminal work of Beaver [1966] many

different techniques have been used: regresion

analysis [Meyer and Pifer, 1970], multivariate

Z-score [Altman, 1968], multivariate logit
[Martin, 1977], recursive part1t10ning

[Frydman et al., 1985], etc. Recently, tools

taken from the Artificial Intelligence area such

as Artificial Neural Networks [Odom and
Sharda, 1990] or Machine Learning [Messier
and Hansen 1988] have been also employed.

Here we propose to integrate some of the

mentioned techniques to produce an optimal
forecast.

The models considered in this paper

include a standard feedforward neural network
with a single hidden layer trained with
backpropagation (NN), two classical statistical
techniques: Discriminant Analysis (DA)
[Fisher, 1936] and Logit (Logit), and two
recent extensions of the CART algorithm of
Breiman et al. (1984): Multivariate Adaptive
Regression Splines (MARS) [Friedman, 1991]
and C4.5 (C4.5) [Quinlan, 1993]. Though the

95

last two methods are conceptually very similar,
they differ both in their structure (the MARS

algorithm uses truncated cubic polynomials as
basis functions while C4.5 uses step functions)
as well as in their performance criterion (the

MARS algorithm minimizes a cross-validated
error while C4.5 maximizes an information
criterion), consequently they can provide
different conclusions. We tried a variety of
especifications for each of the models (number
of basis functions for MARS, number of
leaves for C4.5, number of hidden nodes for
the NN, etc.), always using all the attributes.
For reasons of brevity we give only the results
for the best model found (the one which
minimizes the mean cross validated error).

From 1977 to 1985 the Spanish banking
system suffered the worst crisis of its whole
history, . affecting 52 % of the 110 banks that
were operative at the begining of this period.
The total cost of this crisis has been estimated
in 12 billion dollars. In our first application

we employ a database consisting on 66 of
these banks (see Pina, 1989). We consider 9
financial and economic ratios (working
capital/total assets, sales/total assets, etc.) to
evaluate the financial health. The ratios used
for the failed banks are from the last financial
statements issued before bankruptcy was
declared while the data for non failed banks is
from the 1982 statements. This database was
randomly splitted into two sets, the training set
consisted on 34 banks (15 failed and 19 non­
failed) and the testing set on 32 banks (14
failed and 18 non-failed). The training set was
divided into 6 different non-overlapping
training and testing subsets, consisting on 28
and 6 banks, respectively. The whole cross­
validated set contains 204 banks and it is used
to find the optimal mixtures of forecasts.

In Table 1 we have computed the number

96

of correct predictions, as well as the relative
percentage of successes of each of the single
methods and of the mixture model. We also
indicate when a model is at least as good as
any other on a particular set by a small
asterisk <"J. As one can see, the mixture is the
best model both in terms of in-sample fitting
and out-of-sample prediction even though, by
construction, it should only minimize the total
error (last row). The second best model is
NN, closely followed by logit and MARS.

We will now employ all the examples of
the training set to estimate the models and use
them to make the predictions. Then, we use
the optimal a values to combine these
predictions. The best model (Table 2) is again
the hybrid one, performing slightly better than

NN (note that the improvement is obtained on
the testing set). These models are followed by
logit, MARS, C4.5 and finally DA.

Now we will consider the data used in the
well-known study of Odom and Sharda (1990).
The training set consists on 74 banks while the
testing set consists on 55 banks. The training
set was divided into 9 different non­
overlapping training and testing sets of 66 and
8 banks, respectively. The whole cross­
validated set contains 666 banks. As above, we

employ these sets to choose the optimal
configuration of each of the models as well as
to find the optimal mixture. As one can see in
Table 3, the mixture and the NN are the best
models, exhibiting identical behavior both in­
sample fitting and out-of-sample forecasting.
This leads to suspect that the method has
chosen a mixture that only considers the
predictions of the neural net but, as we shall
see, this is not the case.

Using all the examples of the training set
to construct the models leads to some striking

Copyright © 1995 Software Engineering Press

results (Table 4). First of all it is noticeable

that the expected performance of the models

(estimated by the cross-validated error) is
significantly higher (around 8 % for every

model) than the actual one. This seems to

indicate that the training and testing sets could

be different. Second, and more important, this

bias could have induced to finding suboptimal

structures for some of the models. For

example, the results obtained with the NN are

slightly worse than the ones reported in the

literature (see Odom and Sharda, 1990). In

any case, the hybrid model is superior to any

single method (in particular to the NN) and is

capable of obtaining identical results as the

best reported in other studies (Rahimian et al.,

1993).

Copyright © 1995 Software Engineering Press

4. Final Remarks.

The method proposed is quite general and
flexible enough to accomodate to a variety of

situations. It is possible, though, that in certain

situations it can be dominated by a single

method. For example, when the distribution of

the values of a certain attribute is different

along the training, cross-validated and testing

sets then it is expected that a particular method

less sensible to that attribute would perform
better. Other possible situations in which its

performance can be poor are when there are

outliers in the data or the testing set is linearly

separable while the training set is not. Several

extensions of the method for its application to

time series prediction are under progress.

97

References.

Altman, E.L. (1968): Financial Ratios,
Discriminant Analysis and the Prediction of

Corporate Bankruptcy. The Journal of

Finance, 23, pp. 589-609.

Beaver, W.R. (1966): Financial Ratios as
Predictors of Failure. Empirical Research in

Accounting: Selected Studies 1966, Journal of

Accounting Research, Supplement to Volume
4, pp. 71-111.

Breiman, L.: Friedman, J.; Olsen, J. and
Stone, C. (1984): Classification and
Regression Trees. Wadsworth International,
CA.

Fernandez, E. and Olmeda, I. (1995):
Bankruptcy prediction with Artificial Neural

Networks. Proc. of the Intl. Workshop on

Artificial Neural Networks '95 (forthcomming).

Fisher, R.A. (1936): The use of multiple
measurements in taxonomic problems. Ann.

Eugenics, 7, pp. 179-188.

Fogel, D.B. (1992): Evolving Artificial
Intelligence. PhD. Diss. University of
California San Diego.

Friedman, J.H. (1991): Multivariate Adaptive

Regression Splines. The Annals of Statistics,

19, pp. 1-141 (with discussion).

Frydman, H., Altman, E.l. and Kao, D.
(1985): Introducing Recursive Partitioning for
Financial Classification: The Case of Financial
Distress. The Journal of Finance, 40, pp.
269-291.

Martin, D. (1977): Early warning of Bank
Failure, A Logit Regression Approach.

98

Journal of Banking and Finance, 1, pp. 249-
276.

Messier, W.F. and Hansen, J.V. (1988):
Inducing Rules for Expert System
Development: an Example Using Default and
Bankruptcy Data. Management Science, 34,
pp. 1403-1415.

Meyer, P.A. and Pifer, H. (1970): Prediction
of Bank Failures. The Journal of Finance, 25,

pp. 853-868.

Odom, M. and Sharda, R. (1990): Neural

networks for bankruptcy prediction. Intl. Joint

Conf on Neural Networks, II pp. 163-168.
San Diego, CA.

Pina, V. (1989): La informaci6n contable en la
predicci6n de la crisis bancaria: 1977-1985.
Revis ta Espanola de Contabilidad y Finanzas,

18, pp. 309-338.

Quinlan, J.R. (1993): C4.5: Programs for

Machine Learning. Morgan Kaufmann, CA.

Rahimian, E.; Singh, S.; Tharnmachote, T.
and Virmani, R. (1993): Bankruptcy prediction
by Neural Network, in R.R. Trippi and E.
Turban (Eds.): Neural Networks in Finance

and Investing. Probus, Chicago, IL.

Stone, M. (1974): Cross-validatory Choice and

Assessment of Statistical Predictions. Journal

of the Royal Statistical Society B, 2, pp. 111-
147 (with discussion).

Copyright © 1995 Software Engineering Press

Table 1 - Cross-validated performance (Spanish Banks)

I Method
II

DA I Logit I MARS I C4.5 I NN (8 hidd) I Hybrid I
Training 90.00% 95.29% 94.11 % 84.70% 97.05% 97.64%.

Test 61.76% 76.47% 79.41 % 79.41 % 79.41 % 82.35%.

Overall 85.29% 9'2.15% 9 l.66% 83.82% 94.11 % 95.10%.

Table 2 - Performance of alternative models (Sp~nish Banks)

l Method I DA Logic MARS C4.5 NN (8 hidd) Hybrid

Training 30 32· 31 29 31 31

(88.23%) (94.12%) (9l.18%) (85.29%) (91.18%) (91.18%)

Test 26 28 24 28 29 30·

(81.25%) (87.50%) (75.00%) (87.50%) (90.62 %) (93.75%)

Overall 56 60 55 57 60 61.

(84.85%) (90.91 %) (83.33%) (86.36%) (90.91 %) (92.42%)

Table 3 - Cross-validated performance (American Banks)

I Method II DA. I Logic I MARS I C4.5 I NN (3 hidd) I Hybrid I
Training 92.39% 100% 98.65% 95.27% 100%. 100%"

Test 89.19% 94.59% 93.24% 91.89% 97.30%. 91.30%.

Overall 92.04% 99.39% 98.05% 94.89% 99.70%. 99.70%"

Table 4 - Performance of alternative models (American Banks)

I Method II D.A. I Logit I MARS I C4.5 I NN (3 hidd) I Hybrid I
Training 69 74· 73 70 73 74·

(93.24%) (100%) (98.64%) (94.59%) (98.64%) (100%)

Test 40 43 42 43 44 45·

(72.72 %) (78.18%) (76.36%) (78.18%) (80.00%) (81.81 %)

Overall 109 117 115 113 117 119"

(84.49%) (90:69%) (89.14%) (87.59%) (90.69%) (92.24%)

Copyright © I 995 Software Engineering Press 99

AN EXPERT SYSTEM FOR ADJUSTING
MARINE UNDERWRITING AT CLAIM POINT

Suzanne S. SHAFIK,
MISR INSURANCE

Mohamed.R HASSAN
MISR INSURANCE

Ahmed.RAFEA
Head of computer section
ISSR,CAIRO UNIVERSITY Computer Center Computer Center

44 A Dokki st,CAIRO,EGYPT 44 A Dokki st CAIRO,EGYPT 5 Sarwat st,Orman CAIRO,EGYPT

Abstract

The main objective of this paper is to
investigate how expert system technology can
be applied to insurance applications to handle
the knowledge intensive area of risk assessment.
. We choose ''Adjusting of Marine Insurance
Underwriting At Claim Point" AMUACP to be
applied The investigation includes the
following issue: A methodology to acquire
knowledge from different sources, a knowledge
representation, reasoning scheme and
implementation of this determined scheme.
During knowledge acquisition phase a model of
expertise following KADS methodology was
built to check the consistency and completeness
of elicited data, and to facilitate the mapping of
these data of expertise on some structure. In
order to describe how the conceptual model is
realised in the underlying hardware and
software, a design model was built by using the
structure preserving design method. The system
is implemented in LPA Prolog running on
PS/VP under DOS 5.

1- INTRODUCTION

Insurance underwriting is a combination of
business and risk assessment operations. Risk
assessment in insurance underwriting has long
been a profession speciality. Some common
problems affect the insurance industry . in the
underwriting domain, this problems can be: (1)
Shortage of skilled underwriting staff. (2) More
numerous guidelines changes in response to
external pressures and to rapid business cycles.
(3) Decreasing underwriting expertise in
different company locations as response to
decentralisation approach. (4) Additional data

100

requirement and increasing underwriting
complexity.
Insurance companies have found that expert­
system technology provides very significant
leverage in building systems to handle the
knowledge-intensive area of risk assessment [5].
Many underwriting expert systems has been
built. For general insurance underwriting
[5],[10],[l l]and life insurance[!],[4],[8].
The first section of this paper includes
introduction. The second section includes the
domain problem description. In third section
are described how KADS methodology is
applied. The fourth section shows how the
conceptual model is implemented .

2- PROBLEM DESCRIPTION :

Marine msurance covers marine
transportation risks. This high risk affects
importation of goods. For this reason the marine
underwriting at claim point was chosen. The
marine assurance consists of two main
phases:underwriting phase and claim handling
phase.

2.1 Underwriting Phase.

The underwriter assess the exposure of risks
for each marine cargo case. The risk assessment
requires a highly qualified expert to judge the
accuracy of given information and consider
default values for missing information, he takes
into consideration the following factors :
. The cargo type and its risk of vice inheritance,
the suitability of packing to cargo type.
.The vessel building year, flag and its suitability
to cargo type and cargo packing.
.Any potential geographic dangereuos area, war
and strike risks which may arise during the

Copyright © 1995 Software Engineering Press

voyage depending on the voyage route.
. Condition of the policy which includes : applied
general clause type A or B or C [7],[9] to define
the covered risks, the additional coverage
clauses as war, or strike clause, reshipment
clause, and extension of cover until the
installation of cargo in case ofmachinary.

• .Cover limit to define the duration of the policy, it
can be warehouse to warehouse, warehouse to
port of destination ,port of shipment to
warehouse,port of shipment to port of
destination .
. The loss ratio of the client and his position.

Depending on the study of these factors the
underwriter takes a decision which can be
accepting risk with normal rate, or accepting isk
with extra rate or refuse to cover the risk.

2.2 Claim handling phase.

If an accident occurs, the client send a claim
notice to the insurance company, a claim adjuster
expert examines the accident circumstances, all
related documents (port authorities report, vessel
manifesto, bill of landing, cargo invoices), and
damage appearance to define the claim direct loss
cause and write a claim survey report . The claim
survey report is checked against the policy terms
and conditions to apply marine assurance norms,
and define the discrepancies between the policy
conditions and the circumstances of the accident
as described in the survey report . These
discrepancies may be one or more of the
following: (1) Cargo type or Cargo packing or
both are not identical. (2) Vessel information is
not identical. (3) The accident place is not in the
ordinary route of the voyage. (4) The accident
date is not within the duration of the policy(5)
Cause of accident is not covered by the policy.
Depending on this study the claim adjuster take
one of the following claim decisions :
. The cause of the accident is covered by the
policy conditions and the claim must be paid.
. The cause of the accident is excluded by the
conditions of marine policy and the claim is
refused.
.Pending on the client degree and the
discrepancies discovered the claim adjuster
expert may refuse the claim or send the case to

Copyright@ 1995 Software Engineering Press

the underwriter to adjust the policy information,
complete any missing information and a new
cycle of risk assessment is performed.

In order to acquire this specific knowledge, we
examine the existing application systems,
manuals, regulations, policy statements and other
written material representing compiled expertise
of the organisation, other knowledge are acquired
by structured interviews with marine underwriter
expert.

3 AMUACP Model of Expertise.

Model of Expertise of KADS(Knowledge
Acquisition and Design Structuring [2],[6]
method is applied . The role of model of expertise
is defining the functional specification of the
problem solving part in the construction of
knowledge base systems, it consists of the
following layers: Domain knowledge,inference
knowledge,and task knowledge:

3.1 Domain knowledge.

It represent the static knowledge which
describes a declarative theory on application
domain, it consists of concepts,properties,and
relations. Figure (1) represent a part of domain
kmowledge schema of AMUACP system

3.1.1 Concepts and properties.

As a result of the analysis of AMUACP system
domain, 22 concepts has been identified related
to risk assessment and claim handling operations.
Each concept has properties which are defined
by their names, value types and possible values
which can be a single value or a list containing
enumeration of values. These concepts are
divided into three categories, as follows:
-Concepts holding data extracted from company
marine database, such as policy concept, vessel
concept, voyage concept, client position concept,
and vessel route table concept. These concepts
have 43 properties.
-Concept holding claim data captured by the
user during consultation session. This concept
has 23 properties.

101

-Concepts holding some acquired marine
underwiting knowledge which are used by the
system to define the decision taken , as war zone
concept, geographic dagereous areas concept,
cargo' group concept, cargo concept, cargo

packing rate concept, vessel-cargo-extra-rate
and coverage condition concept. These
concepts have 37 properties.
-Concepts holding intermediate results generated
by the system during consultation sesion as
cargo-pack claim decision concept, duration­
place-cover-claim decision concept, loss-direct­
cause-claim decision concept, client-position­
claim decision concept, adjusted-policy­
information concept and marine-norms
concept. These concepts have 59 properties.

3.1.2 Relations :

In AMUACP system, realtions consists of one
relation between concepts which relates cargo
with its cargo group and 12 relations between
property expressions. Relations between
expressions are semantically divided into:

. Comparison relations which compare the
vessel , cargo , packing , cover limit, terms and
conditions properties of the policy and voyage
concepts against claim concept properties in
order to discover the discrepancies.
.Adjusting policy information relation by the
claim information.
.Specification of underwriting marine norms
relations to be applied on the adjusted policy
information properties based on vessel
properties concept, cargo properties concept,
route table properties concept and clause
application properties concept.

.Final risk assessment decision relation.

This relation match the norms of marine
underwriting with properties concept of
adjusting policy information and policy
information. The result of this match is one of the
different available system decision.

Part of Schema of Domain Knowled2e of AMUCACP system
Primitive Name Description definition

1 Concept oolicy main information of oolicy
2 Concent vessel description of vessel
3 Concept voyage defintion of voyage of vessel
4 Concept route table defintion of different paths of the vessel

timetable
5 Cconcept war-zones defintion of the war-zone in the world
6 Concept Geo.-route table defintion of maritime geographic

dangerous areas in the world
7 Concept wm route table working concept to hold the alternative

route paths of the vessel for the voyage
8 relation cargo is-a-kind-of cargo inherent all properties of cargo

between cargo group group
Concept

9 relation determination of compare cargo packing in policy against
between claim decision based claim if not equal compare packing in
expressions on cargo,packing claim properties with properties of cargo

information and cargo group concepts.
10 relation determination of compare vessel in policy against claim

between claim decision based if not equal compare vessel in claim with
expressions on vessel properties of vessel concepts

information
Figure 1 Part of Schema of Domain Knowledge of AMUCACP system

102 Copyright© 1995 Software Engineering Press

3.2 Inference Knowledge:

Inference Knowledge is defined in terms of
inference steps and roles.An inference step is
defined through its name, an input/output
specification and a reference to the domain
knowledge that it uses.
Figure(2) depicts the inferance structure of
AMUACP system. IT consists of four inference
steps namely: Compare, change, match and
specify. The following paragraphes describe the
function of each inferance steps.

3.2.1 Compare Inference Step:

The main function of this inference step is to
compare between policy information against
claim information in order to determin
descripancies. This comparison includes:
-comparison between policy vessel and claim
vessel
-comparison between policy cargo, packing and
claim cargo pack.
-comparison of voyage, cover limit policy
information and claim place of accident,date of
accident.
-comparison between the term and condition of
the policy, inherent vice of policy cargo type
and the direct cause of the claim.

POUCYJNr.

CLAIM DltCIBION

-Definition of final claim decision depending of
found discrepancies,policy exclusion and client

position.
3.2.2 Change inference step

The main function of this inference step is to
adjust the policy information by the detected
descripances.

3.2.3 Specify inference step

The main function of this inference step is to
specify marine norms for vessel category, cargo
packing , application clause, coverage condition,
additional coverage condition to be applied on
adjusted policy information.

3.2.4 Match inference step

The main function of this inference step is to
match the norm of marine underwrting specified
with the policy information. The result of this
match, is one of the following decision refuse
claim or accept the claim with paying extra
premium related to determined descripances.

CLAIM

FIGURE 2 INFERENCE STRUCTURE OF AMUACP SYSTEM

Copyright© 1995 Software Engineering Press 103

3.3 Task knowledge :

It contains knowledge about how elementary
inferences can be combined to achieve a certain

goal. The tasks knowledge specification of
AMUACP system is shown in Figure (3).

Task ADJUST MARINE UNDERWRITING AT CLAIM POINT

Goal define claim decision , final assessment decision in case of reassessment of risk.

Control terms claim decision, reassessment final decision

Task structure

Obtain claim information.

if policy <> claim exit

Generate Wm route

Compare_entities(policyinf,claim- >discrepancies, claim decision)

if final_ decision <> 1 and client degree= 1

then claim decision= reassessment of risk.

If claim decision <> reassessment of risk

then display decision

else

Adjust_policy(policyinf,claim,discrepancies=> adjusted _policy_ inf)

Specify_norms(adjusted_policy_inf, marine underwriting system model >

marine risk assessment norms).

Match(adjusted_policy inf,marine risk assessment norms ->risk-ass- final decision).
Figure 3 AMUACP task structure

4- Implementation of AMUACP expert
system.

Conceptual model is transformed to design
model by using structure preserving design
method which transform the elements of
conceptual model to identifiable computational
constructs. The following subsection map the
conceptual model to our design model.

4.1 AMUACP Knowledge base
representation.

104

Concepts as represented in domain layer are
mapped to Prolog Database and relations are
mapped to Prolog rules.

4.1.1 Concepts:

The representation of concepts is defined
depending on the computation requirements of
the input/output part of the inference step and
for serving the explanation module. In

Copyright© 1995 Software Engineering Press

AMUACP system we have two types of
representation as follows :

Static instances: It is used to represent some
kind of knowledge in a form of table.
Concept (property 1, property 2, property3, ... ,

propertyn).
This representation is used for :

(1) Concepts whose properties should be
extracted from the company data base, for
example the policy concept, it is represented as
follows:
Policy (Policy_ no, client, cargo, packing,issue _
date ,cover_limit, app_coverage, ins_rate,
ext_ ves _ rate, war_ strike _rate,ext_ rate,
insured_amount).
(2) Concept holding some kind of knowledge
representing marine underwriting norms to be
used in order to define a certain decision from a
number of decisions. for example cargo group
concept is represented as follows :
Cargo group (group name, inherent vice list,
suitable packing, unsuitable _packing) ;

Dynamic instances : This representation is
used for concepts whose properties are obtained
from the user or generated by the system and
asserted in the dynamic data base. These dynamic
instances have two presentations:

Presentation 1: Implementation for concepts
whose its property are obtained from the user.
Property(Concept name,Value)

Presentation 2 : for concept generated by the
system and whose its properties are accessed
dependently in same time are presented as
follows:
Concept (property 1, property2, propert ...
propertyn) example of concept presented by this
implementation is vessel_ claim_ decision
(policy_ no, claim_ dee, ass_ cause, refuse cause,
accept cause, final)

4-1-2 Relations.

Relation between concepts.
Relation between concepts is implemented in

Prolog data base as follows:
Is_a_kind_of (concepl, concept2), which means
concept! inherits all properties and relations from
concept2

Copyright@ 1995 Software Engineering Press

Relation between expressions.
Relation between expressions are grouped

according to the semantic of the relation and the
conclusion part . The conclusion part of a
relation is the properties of one concept, whereas
the condition part of a relation may be the
properties of more than one concepts. This
grouping of relations between expressions is
performed in order to establish a clear mapping
between inference step and the relation between
expression . Examining AMUACP relations, it
was found that these relations can be classified
into two types:
- the first type of relations is the one in which
properties of the concepts in the conclusion part
are instantiatied with defined values. Example of
this type cargopack _claim_ decision relation.

The following Prolog coding represents an
example of this type :
('Refuse_ claim: 'Unsuitable _packing: 0, 1) :­
cargo _pack(Cargo _ c, Cargo _p, Cgroup _ c,
Cgroup_p), Cargo_c == Cargo_p,
\+(Packing_p == Packing_c),

cargo _group(Cgroup _ c, Grsuitable _p,
Grunsuitab _p),
memb(Packing_ c, [Cunsuitab _p]) ;
(cargo _group(Cgroup _ c, _, Grsuitable _p,
Grunuitab _p),
memb (Packing_ c, [Grunsuitab _p])) ;
(memb('Other _ Packing: [Grunsuitab _p])),
\ + (memb(Packing_ c,[Grsuitab _p])).
-The second type of relations is the one in which
the properties of the concepts in the conclusion
part are instantiated with values of properties of
other concepts .
The following Prolog coding represents an
example of this type:
cargo _packing_ clause _rate (marine_ norms,
Value):-
cargo _pack_ claim_ decision (P 1,_,_,_,

Refuse_ cause,_,_), client _pos _claim_ decision
(PI, _,Final_ as_ cause,_),
(Refuse_cause == 'different_cargo_sam_grpJ;
(Refuse_ cause_ =='different _packingJ),
Fina/_as_cause == 'reasssessment' ,

cargo _pack _spec _rate(Adj_ cargo,Adj_packing,
App,Cunsuitab _p),

105

I* check adjusted packing not a member of
unsuitable packing *I
\+(memb(Adj_packing,[Cunsuitab _p])),
App==~' ->

I* Specfy cargo _packing_ clause _rate_ A */
cargo _packing_rate(Adj_ cargo,Adj _packing,
Value,_,_,_),

4-2 Inference layer implementation.

The inference layer describes the relation
between roles and inference steps, for each
inference step we need :
-Role to represent the input/output data structure,
-A representation of domain knowledge,
-An algorithm embodies the method for realising
the inference and specifies the control [12].

4-2-1 Role implementation.

Each role is mapped into a subset of the domain
layer , so they are implemented as a Prolog data
base corresponding to its domain layer subset .

4-2-2 Inference step implementation.

Each inference step is implemented as a Prolog
procedures which gets data from input role and
asserts result in the output role . An inference
step applies a set of relations in order to achieve
its inference function.

4-2-3 Task layer implementation

The task layer is implemented as a Prolog code
which maps exactly to the task knowledge
depicted on figure(3).

4-2-4 AMUACP user interface:

The user interface of AMUACP system has the
following characteristics:
-Ease of use of the system without previous
computer knowledge. The user starts the
consultation session by entring the claim

t description data. This data arranged depending
on the relative inportance in defining system
decisions. The user interface is tailored to use the

106

user terminology. Used codes are selected from a
prompt menu in interactive mode.
. The system makes logical validation on the claim
description data to avoid possible errors. If an
error occurs the system display an error message
and reaccept the erromeous data.
. The system operations are made explicit to give
the field expert the ability to trace the used
system components. The system user can trace
the reasoning path of the system. lntermidiate
results are displayed and the user can redirect the
path of the system by changing some
parameters. For example if the system decision is
reassesment of risk the user can change the client
degree to change the taken decision.
.The system has an explanation module. It helps
the user to know why the system asks such
questions,and how the system reach this
conclusion. This happens by displaying a log file
containing the path of the consultation session.

5 Conclusion

During the different phases of the application a
verification process takes place to demonstrate
the consistency, completeness and correctness of
implemented system, this verification is
established by testing of legal values for data
entered by the user , verify the system by using
some hypothetical cases that cover all the
decision generated by the system and sample of
data for 100 cargo types classified into twenty
cargo groups extracted from the company
database to be used by the system . The system
proves its feasibility, optimality and success as a
prototype. The implementation of this system
proves the impact of applying modelling
techniques specially for large system
development process . The reusability of Kads
interpertation models allow to build this model
which can be used as an extention to the
interpretation library for insurance risk
assessment model elements .
This expert system can be extended functionally

to cover other cargo groups and cargo types,
Enhancement of user interface is required to
arabise the input screens of the system, displayed

Copyright © 1995 Software Engineering Press

conclusion of the claim decision, final assessment
decision and the explanation given by the system.

An interface must be established between the
expert system and the company relational data
base running on company mainframe in order to
avoid redundancy and provides to the expert
system an up to date container of factual data.

References.

[1]- Bolger. F., Wright g., Rowe J.,
Gammack,J., and Wood. B., LUST for life :
Developing expert systems for life assurance
underwriting. Research and Development in
expert system edited by Shadbot Nigel, 1989.

[2] - Breuker,87,and Wielinga,Use of models in
the interpretation of verbal data, knowledge
acquisation for expert systems,a practical
handbook, edited by Alison L,Kidd 1987.

[3] - Brouglon.Steve w.,The underwriting
advisory system in Sun Alliance International
inc. Insurance International Executive
conference. La Hulpe Belgium October 1990 .

[4]- Chamberlin. G., Neal. I., and Khan M.,
Aries at City, University London Eclv0hb
Research and Development in Expert System
edited by Shadbot Nigel prentice hall publisher,
1989.

[5]- Chapnick. P., From Abacus to computer,
Finance drives technology, AI expert system
May 1990.

[6]-Linster,92 ,and Musen, Use of KADS to
create a conceptual model of the ONCON Task
Knowledge Acquisition, Special issue, The
KADS approach to knowledge engineering,
Academic press March 1992.

[7]- LLOYDS Survey Handbook, Fourth edition
edited by K.G Knight,1985.

[8]-Rafeh. M. A., S. Shafik and W. Reyad,
ESLAU: Expert System for life assurance
underwriting the implementation and evaluation

Copyright@ 1995 Software Engineering Press

As additional to the function of this expert .
system a claim handling expert system should be
build to define the direct cause of the claim
depending on cargo type, packing, vessel type,
and loss or damage appearence.

This claim handling expert system should be
integrated with Adjust Marine Underwriting At
Claim Point AMUACP expert system.
issues. Second National expert system and
development workshop Cairo-Egypt May 1993.

[9]- Regulations of Egyptian Insurance
federation, 1994.

10]- Rekart.Thomas C., Knowledge Engineering
for Insurance Application Processes and

Methodologies, Artificial Intelligence
Conference, the 3rd annual IBC conference on
expert systems in Insurance. October 1991.

[11]- Ulrich. Monika., Expert Systems in Health
Insurance, Insurance International executive

conference. La Hulpe, Belgium, October 1991.

[12]-Wielinga. B. J., A. TH. Scheiber and J. A.
Breuker, KADS: a modelling approach to
knowledge engineering,Knowledge Acquisition,
Special issue, The KADS approach to knowledge
engineering, Academic press March 1992.

107

Cost-Effective Classification for Credit Decision Making

Grigoris J. Karakoulas

Knowledge Systems Laboratory,
Institute for Information Technology,
National Research Council Canada,
Ottawa, Ontario, Canada KIA 0R6

grigoris@ai.iit.nrc.ca

Abstract

There is an increasing , need for credit decision
making systems that can dynamically analyze his­
torical data and learn complex relations among the
most important attributes for loan evaluation. In
this paper we propose the application of a new
machine learning algorithm, QLC, to the credit
analysis of consumer loans. The algorithm learns
how to classify a loan by minimizing the expected
cost due to both credit investigation expenses and
possible misclassification. QLC is built upon rein­
forcement learning. A dataset of actual consumer
loans is used for evaluating the algorithm. The
experiments reported show that QLC performs bet­
ter than other cost-sensitive algorithms on this
dataset.

1. Introduction

According to a recent U.S. Banker survey amongst
the 113 top U.S. banks [15], the most popular
approaches for automated decision-making for all
types of credit products are application scoring and
on-line credit bureau scoring. These credit-scoring
procedures refer to the evaluation of each applicant
by models that are derived from statistical discrim­
inant analysis of the credit history of past appli­
cants [12]. The main drawback of this type of
evaluation stems from the reliance of discriminant
analysis on a subjective assignment of scores to the
credit attributes of an applicant's profile.

As also came out from this survey, more than 60%
of the surveyed banks used judgemental - i.e.

108

non-automated - scoring. The most important
factors in the adoption of credit decision-making
software by banks are: understanding system
requirements and understanding credit manage­
ment needs. In addition, a hindering factor in the
deployment of current credit decision systems is
their limitation in generating explanations when
credit decisions are made. In contrast, the genera­
tion of explanations is a relatively easy task when
judgemental scoring is used.

Artificial intelligence technologies have been
employed for the development of credit-scoring
software systems that can meet the emerging needs
and requirements [6, 12]. On the one hand, expert
systems have the advantage of representing and
reasoning about relations amongst symbolic
objects. This facilitates the task of generating
explanations about objects and about inferences on
the relations amongst objects. The disadvantage of
expert systems is that the relations embedded in
their knowledge base are pre-defined and their
maintenance can become a tedious task. The
increasing complexity of loan instruments, the vol­
atility of the economic conditions and the impor­
tance of risk management in minimizing losses of
loan portfolios impose the need for software with
learning capabilities for dynamically analyzing
various sources of historical data and capturing
complex relations amongst the most important
attributes for loan evaluation.

On the other hand, neural networks are good for
learning complex relations by using non-paramet­
ric modeling. However, neural networks are usu­
ally considered as black boxes because it is

Copyright© 1995 Software Engineering Press

difficult to understand how learning occurs within
their architecture and it is hard to explain how par­
ticular decisions are made through the networks
once they are trained. Furthermore, neural net­
works may suffer from slow learning rates. The
limitation of neural networks in explanatory capa­
bilities is critical to their adoption for credit scor­
ing. This is because there are regulatory constraints
that require explanations to be given to consumers
whose applications for a credit product have been
rejected [4].

In this paper we propose the application of a new
machine learning method for the credit analysis of
consumer loans. Most classifiers in machine learn­
ing are built with the aim of minimizing errors
made when predicting the classification of unseen
examples. In contrast, our method is based on the
general idea that it is worse to classify a bad cus­
tomer as good than it is to classify a good customer
as bad. Thus, classification errors may ensue differ­
ent costs depending on the type of error. These
costs can be in nominal values or if they are not
known they can reflect constraints on the percent­
age of cases erroneously identified to belong to a
particular class. This asymmetry in costs is of par­
ticular importance to applications like credit analy­
sis where one class is comparatively rare and of
special interest like loan defaults. Asymmetric mis­
classification costs may act as a focus mechanism
for exploring the areas of the attribute space where
the rare class is comparatively more common.

In a classification process, in addition to the costs
of classification errors there are also the costs of
tests which are incurred as information about the
attributes of an object is acquired for making a
classification decision. For example, credit investi­
gation expenses are involved in the acquisition of
information about the credit attributes1 regarding
an applicant. When both types of costs are consid­
ered the problem of cost-effective classification
amounts to identifying for each state of the classifi­
cation process an optimal sequence of tests (i.e. an

1 In the sequel, the term test will be used for denoting a credit
attribute.

Copyright© 1995 Software Engineering Press

optimal plan) for deciding among competing alter­
natives (i.e. classifications or additional tests).

Our approach to cost-effective classification is
built upon reinforcement learning. The latter is a
dynamic optimization paradigm within machine
learning [13]. It is used for learning optimal poli­
cies in state-space problem-solving tasks. A policy
specifies for each state what action to perform next.
During learning, the system receives a reinforce­
ment signal (a penalty or reward) after each action.
The goal of the system is to find a policy that mini­
mizes/maximizes the expected reinforcement over
all future actions. Although reinforcement learning
is quite different from typical concept learning,
when test and misclassification costs are taken into
account credit analysis becomes a stochastic opti­
mization task. The goal of the task is to minimize
the total cost of classification of each applicant.

The remainder of this paper is organized as fol­
lows. Section 2 proposes a problem formulation
that makes reinforcement learning applicable to the
cost-effective classification task. Section 3 devel­
ops a clustering technique for enhancing the scale­
ability of reinforcement learning for this complex
task. The whole algorithm is presented in Section
4. Section 5 reports on experiments for evaluating
the performance of the proposed algorithm. Asam­
ple of 1000 actual consumer loans granted is used
for the experiments. Related and future work are
discussed in Section 6. Conclusions are given in
Section 7.

2. Problem Formulation

Consider a task where a case k is to be classified
among m classes. There are n tests available each
of which can be selected at any time but only once
during a trial. The latter is defined as the sequence
of tests ended by a classification. At each time t the
set of possible actions At contains them classifica­
tions and the tests not yet selected in the current
trial. At the start of each trial this set has size
m + n . When the agent selects a test it pays a cost
which may be a function not only of the selected
test but of prior tests as well. In medical diagnosis

109

for example, a set of blood tests shares the com­
mon cost of collecting blood from the patient. This
common cost is charged only once, when the deci­
sion is made to do the first J:>lood test. The result of
each test i is denoted by x'. Having selected test i
fQr case. k, the agent obsetves the value of the test,
x' e x' , which has a distribution conditional on
~ history of obsetvations prior to time t. The
agent must then decide which action to perfonn
next. It may choose to stop further testing and
make a classification of the case to class j ,
j e [1, ... , m] . However, if the predicted class is
not equal to the actual class of the case, the agent is
penalized by the cost of the error made. This cost is
defined in the classification cost matrix. Each ele­
ment c. . of that m x m matrix gives the cost of
predictit~ that a case belongs in class j, when it
actually belongs in class i. The agent repeatedly
goes through cases in order to learn a policy that
minimizes in the long run the cumulative cost over
all cases.

This problem is characterized by imperfect state
infonnation since the state variables referring to
the actual classes cannot be obsetved directly.
Instead, the agent gets infonnation about them
through the process of testing. For each case k we
define the vector of obsetvable history at time t as

h, = l x~, 4,. • •) (1)

The vector consists of the obsetved values of the
tests perfonned prior to time t for case k. At the
start of each trial (i.e. new case) the dimension of
the vector is initialized to zero. As a new obsetva­
tion is added at each stage of a trial, the dimension
of the vector increases accordingly. The probability
distribution of the history vector can setve as a suf­
ficient statistic that can refonnulate the original
problem with imperfect state infonnation into a
problem with perfect state infonnation. Thus, the
state of the refonnulated control problem is defined
as

(2)

110

where 0 is the unknown parameter of the distribu­
tion. The perfonnance criterion of the control prob­
lem is:

where 'Y with O < 'Y < 1 is the discount factor. The
cost function in (3) shows the dependence of the
cost on prior tests as well as on the currently
selected test. The policy is defined as
1t: H 1 ➔ P (A 1) mapping the space of obsen:able
histories into probability distributions of actions.
The stochastic nature of the policy enables explo­
ration of the state and action space for overcoming
the problem of simultaneous identification of 0
and control via 7t. We defer further analysis on
how the policy probabilities P,c {alh,} are calcu­
lated until the next section where a generalization
scheme is developed. The probabilities will then be
defined upon the generalization space.

The agent's objective is to choose a policy 1t*

such that:

Although, Dynamic Programming (DP) equations
can theoretically be written for the optimization
problem in (4), the assumptions for prior knowl­
edge and the computational intractability of a DP
algorithm, leads us to examine Q-learning as an
alternative for this problem.

Q-learning is a reinforcement learning algorithm
that is based on an asynchronous, stochastic
approximation version of the DP equations [16].
Thus, in our problem the Q-learning equation can
be written as:

Q,+ 1 (z,, a,) = (1 - 13,) Q,(z,, a,)+

j31 [c(h1,a1) +yV,(z,+ 1)]

where

(5)

Copyright@ 1995 Software Engineering Press

(6)

It should be noted that almost all of the theory of
Q-learning assumes look-up table representations
of the Q-value function. Such representation is not
suitable for our problem for two reasons. First, the
state of the system in (2) is a vector of real-valued
variables. The learning algorithm should be able to
generalize over the continuous state-action space
and over the training dataset in order to perfonn
well on previous unseen cases in the testing data­
set. Second, the policy rules of our problem repre­
sent a mapping more complicated than the one of
the policy rules in typical Q-learning. The general­
ization scheme should be able to accommodate
such mapping. In the next section we develop a
clustering technique suitable for tackling the issues
associated with generalization in our problem.

3. A Clustering Technique for
Generalization

The technique is based on the idea that as the agent
explores the input (Z, x A 1) and output (9t)
spaces of the task, clusters are fonned for each
action from instances of points on the Q-surface.
Each time a new instance is created from a history
vector h, ·the clusters of each action a e A are
searched in order to estimate the conditional p:C,ba­
bilities of selecting each of the clusters of action a
given h,. The Q-value of (z" a) can then be esti­
mated from the Q-values of the clusters of action a
using the conditional probabilities as weights. The
action with the minimum Q-value is selected for
the instance. After updating the Q-value of the
instance via the Q-learning equations (5) and (6),
the agent should also update its memory with the
instance accordingly. We next give definitions of
cluster and instance and then formalize the above
procedures.

3.1 Definition of Cluster and Instance

A cluster i of action a denoted as c; is repre­
sented as a 3-tuple:

Copyright@ 1995 Software Engineering Press

(7)

where Z; is a vector z. = [z.1, z.2 z.]
• l l l ' • • •' in

with each zij, j e [1, ... , n] , defined as

(8)

That is, ~ ij is the probability of test j displaying the

value .:I; given action a and the parameter of the

distribution SF In (7) Qi is the Q-value of the

cluster and n i is the number of instances that have

been aggregated in the cluster.

An instance at time t denoted as s 1, is represented
as

(9)

where h, is the history vector at t, a is the action
th

. t
at 1s selected for the instance and QI is the Q-

value of the instance. Z, is a vector of probabilities
defined similarly to (8), i.e.

Suppose for the moment that each J is a discrete
variable with r. number of values. Also, assume
that the agent has beliefs in the fonn of a prior
probability density on E) = [01, ... 0 nl . A prior
density that is usually assumed in Bayesian analy­
sis is the Dirichlet density [1,2]. The posterior dis­
tribution of the probability z,. in (10) is also a
Dirichlet density. Omitting sonie theoretical details
we can estimate the distribution in (10) from

(11)

a,
where N,j is the !1umber of times that when ~ction

a, is selected, :J has the particular value J. and
a, t

N
1
. is the number of times that when action a is . t

selected, :J has a value.

111

In the case that J is a continuous variable, it can
either be discretized and treated as above, or one
can apply Bayesian analysis for continuous distri­
butions (for example, see [l]).

3.2 Q-value Estimation, Matching
and Merging

Suppose that instance s I is created from the cur­
rent history vector h1 . Selecting an action for s 1
requires estimating for each possible action
a e A1 the value of Q1(s1, a) from the Q-values
of the clusters of action a . Since averaging over
the Q-values of all clusters of an action involves a
considerable amount of computation without nec­
essarily a payoff in learning, we choose to average
only over the k-nearest neighbors. The latter are
determined according to the Euclidean distance
between the vector z, of s1 and the vector Zi of
I

a .
c uster c i , 1.e.

n

d(Z1, Z) = L (z,'t - zi't)
2

(12)

't = 1

where the z,'t are estimated frorg (11) and zi't are
the values stored in the cluster c i . The fonnula for
Q-value estimation is:

k

Q/s,, a) = LP { c~ls,} • Q/c~, a) (13)

i = 1

where Q/c;, a) is the value stored in the Qi field

of cluster c i . The first tenn in the sum is the prob­

ability that cluster c ~ is selected given instance s 1 .

This probability denotes the policy for selecting an

action in the space of clusters

x,: H, ➔ p { CA'} . It is given by

A, 1 c , name y

112

a a
P{sdc) ·P{ci}

1',P {s,lc;} • P { c;}
j

(14)

The first tenn in the numerator of (14) is the proba­
bility of st having the particular history vector h1
given cluster c ~ . This probability can be consid­
ered as a measure of how ;robable the values of h1
in s I are, given cluster c i . It is approximated by

(15)

The second tenn in the numerator of (14) is the
prior ;robability of any instance coming from clus­
ter c i . This probability is estimated by using a for­
mula suggested by Anderson and Matessa in their
work on Bayesian analysis of categorization [1].
Thus, we have

(1-c) + cna
(16)

where c is the fixed probability that an instance

comes from a cluster, n i is the number of instances

aggregated in cluster c ~ and n a is the number of

instances aggregated in all clusters of action a .

Merging of an instance with a cluster requires the
following two conditions to be satisfied: (i)
d (Z1, Z) < e1 and (ii) IQ,- Qil < e2 . If the two
conditions are met then the instance is aggregated
in the cluster by updating the fields of the cluster:
zij = zij·n/(ni+l) +z1/(ni+l),

Qi = Qi· n/ (ni + 1) +Q/ (ni+ 1) and ni = ni + 1.

Similar conditions and operations apply when
merging two clusters together.

4. The Proposed Algorithm

We assume that the dataset of the classification task
has been split into a training set and a testing set.
During learning the agent picks a case from the
training set randomly without replacement and ini­
tiates a sequential decision process for the case, i.e
a trial. During the trial the agent selects actions for
making new estimates of the probabilities in (11)
and updating the Q-values of its generalization
space accordingly. When the agent selects a classi-

Copyright © 1995 Software Engineering Press

fication the current trial ends and a new one starts
for the next case. Whenever all the cases of the
training dataset have been processed this marks the
end of an epoch. A new epoch is created by repeat­
ing the above procedure for the whole training set.
Learning stops when the average cost of classifica­
tion in the training set - total cost for the set
divided by the number of cases in the set - is
within £ between two consecutive epochs. The
steps of the Q-learning with clustering (QLC) algo­
rithm for one trial are shown in Figure 1.

Do:

(i) Create an instance s
1

from the current history h
1

;

(ii) For each possible action a e A
1

estimate Q
1
(s

1
, a)

from its clusters;

(iii)Choose with probability I; the action
a

1
= argminb [Q 1(s1

, b)] ;

(iv) Apply action a
1

and pay the cost c (s
1
, a

1
) ;

(v) If a1 is a test, update the history and probability vec­
tors to h1+ 1 and z1+ 1 respectively;

(vi) Update the Q-value of s
1

by

Q,+ 1 (s,.a1) = (1-~1)Q1(s,.a 1) +

~,[c(s,.a) +yV1+e(s1+ 1)]

where v,+e = minbQ,+e(s,+e, b) is the e-step

lookahead value of s,+ 1 ;

(vii) Update the memory either by merging s
1

with a
cluster of a

1
or by creating a new cluster with only

one instance s 1 ; check whether any clusters of a
1

can
be merged;

Until a1 is a classification action.

Figure I: The steps of the QLC algorithm for one
learning trial.

Step (iii) defines the exploration scheme of the
algorithm. A value is randomly sampled from a
uniform distribution in (0,1). If this value is less
than ; then the action with the minimum Q-value
is chosen. Otherwise, any action is randomly
selected. This scheme enables the algorithm to suf-

Copyright© 1995 Software Engineering Press

ficiently explore the state and action space before
converging to a good local optimum. In step (vi)
the lookahead value V, + e (st+ 1) is calculated by
iterating over steps (i)-(vi) e times. We introduced
this lookahead scheme due to empirical evidence
from our experiments that this scheme improves
the efficiency of the above algorithm.

5. Experiments

The experiments reported in this section were per­
formed on a sample of 1000 actual consumer loans
granted by a German bank. There are 20 attributes
in the dataset that take symbolic or real values.
There are also two classes of loans: good loans
(70% of the dataset) and bad loans (30% of the
dataset). The dataset was retrieved from the Uni­
versity of California at Irvine collection of datasets
[7]. It was donated to the Irvine collection by Hans
Hofmann2.

Two experiments were performed. The purpose of
the first experiment was to compare the perfor­
mance of the QLC algorithm against the perfor­
mance of other statistical and neural network
algorithms on this dataset as reported in [11]. No
test costs were assumed in this experiment. The
purpose of the second experiment was to demon­
strate the performance of QLC when both test and
classification error costs are considered. Due to
lack of information about actual credit investiga­
tion expenses we assumed a cost of one unit for
each test. QLC is compared with Nunez's cost-sen­
sitive algorithm EG2 [8]. This algorithm takes into
account only the cost of testing. In both experi­
ments the misclassification cost matrix had the
form of Table 1.

It should be mentioned that part of the implementa­
tion of the QLC algorithm involves a discretization
procedure. In both experiments each real-valued
attribute of the dataset was discretized by dividing
its range of values in the training set into five inter-

2 The dataset has the URL ftp://ftp.ics.uci.edu/pub/machine­
learning-databases/statlog/german/german.data.

113

vals of approximately equal size. We also used 4-
nearest neighbor for estimating the Q-values by
(13). The coupling probability in (16) was set to
0.3. The exploration probability of the QLC algo­
rithm was set to ~ = 0.9. The learning rate p1 in
the Q-value equation (5) had initial value 0.3 and
was decayed as a function of learning experience.
For each action the Q-value of state-action pairs
was initialized to zero. The threshold e for stop­
ping training was set to 0.001.

Actual Guess Classification Error
Class Class Cost

class 1 class 1 $0.0

class 1 class 2 positive error cost

class 2 class 1 negative error cost

class 2 class 2 $0.0

Table 1: The matrix of classification error costs.

In the first experiment we used the same procedure
as in [11] for splitting the dataset into a training
and a testing set. The training set consisted of 200
good and 200 bad loans randomly chosen from the
initial dataset. The testing set consisted of the
remaining cases, i.e. 500 good loans and 100 bad
loans. We adopted this splitting procedure in order
to ensure comparability of our results with those in
[11]. For the same reason, the positive error cost
was set to 1.0 and the negative error cost to 13.3.

The results are shown in Table 2. LDA is linear
discriminant analysis; QDA is quadratic discrimi­
nant analysis; CART is a statistical method for
building decision trees [3]; NNl is a neural net­
work with two hidden layers, 45 nodes in the first
and 5 nodes in the second layer; and NN2 is a neu­
ral network with two hidden layers, 40 nodes in the
first and 5 nodes in the second layer. The results of
these five methods are taken from [11]. %N.E.
denotes the rate of negative errors in the testing set,
i.e. the fraction of bad loans that the classifier
judges positive. %P.E. denotes the rate of positive
errors in the testing set, i.e. the fraction of good
loans that the classifier judges negative. The aver­
age cost is computed as the total cost of classifying

114

the cases in the testing set divided by the number
of cases.

Algori- No. Avg
thms Attr. %N.E. %P.E. Cost

LOA 20 28.7 29.1 0.88

QDA 20 28.3 34.0 0.91

CART 15 27.7 28.9 0.85

NNl 20 38.0 24.0 1.04

NN2 20 24.0 31.2 0.79

QLC 20 15.7 25.2 0.56

Table 2: Performance with cost ratio= 13.3.

The results of LDA and QDA were derived by
leave-one-out cross-validation. The results of
CART, NNl and NN2 were computed by using
only one testing set. For the training of the CART
algorithm 15 attributes were selected from the 20
attributes of the dataset. The QLC algorithm was
run on 10 pairs of training and testing sets. Each
pair was formed by randomly splitting the initial
dataset according to the aforementioned procedure.
The results reported on QLC are averages over the
10 testing sets. Although the algorithms have not
been evaluated in exactly the same way, QLC
shows a better performance than the other algo­
rithms in terms of both average cost and error rates.

The above splitting procedure creates a training set
with equally sized classes in order to enhance
learning of the rare class of bad loans. In the
respective testing set, however, the ratio of the size
of the two classes is different from the ratio in the
initial dataset. This disparity may be biasing the
results of Table 2. In the second experiment we
used a different splitting procedure. The initial
dataset was randomly split into 10 pairs of training
and testing sets. Each training set consisted of two
thirds of the dataset and each testing set consisted
of the remaining one third. A cost of one unit was
assumed for each test. To enable sufficient testing
we set the positive error cost to 40.0, i.e. a value
greater than the total test cost. The negative error
cost was set according to the negative-to-positive
error cost ratio. We experimented with two values

Copyright © 1995 Software Engineering Press

of the error cost ratio: 5.0 and 13.3. In [11] these
two values are suggested as the lower and upper
limits of the error cost ratio.

The results of this experiment are shown in Tables
3 and 4. QLC perfonns better than EG2. It should
be noted that because EG2 considers only test costs
the different values of the error cost ratio do not
affect the perfonnance of the algorithm in tenns of
accuracy. QLC has better performance with cost
ratio equal to 5.0 than with cost ratio equal to 13.3.

Algori- Avg
thms %N.E. %P.E. Cost

QLC 18.2 22.6 32.84

EG2 60.9 14.9 42.56

Table 3: Perfonnance with cost rati0=5.0.

Algori- Avg
thms %N.E. %P.E. Cost

QLC 16.4 27.5 54.67

EG2 60.9 14.9 102.38

Table 4: Perfonnance with cost ratio=13.3.

6. Discussion

There has been an increasing interest within the
machine learning community for devising classifi­
cation algorithms that are sensitive to either the
costs of tests, e.g. [8], or to the costs of classifica­
tion errors, e.g. [9] (see [5] for an extensive list of
references). Tumey [14] has recently proposed the
ICET algorithm that talces both types of costs into
account. The aforementioned research has focused
on extending typical decision-tree and rule induc­
tion algorithms by either incorporating heuristic
cost-sensitive attribute selection metrics or by
building a two-tiered method for selecting among
decision trees or rule-sets based on their cost-effec­
tiveness.

Copyright© 1995 Software Engineering Press

In the statistics field, the CART algorithm [3]
allows misclassification costs to be incorporated
into the test selection process of a decision tree. A
limitation of the CART algorithm is that it requires
converting a cost matrix to a cost vector. This con­
version results in having a single quantity to repre­
sent the importance of avoiding a particular type of
error. The accuracy of the conversion depends on
the accuracy of two estimates: (i) the frequency of
examples of each class and (ii) the frequency that
an example of one class might be mistalcen for
another.

In this paper we have introduced a new strategy for
test selection given the goal of minimizing the
expected cost due to both testing and classification
errors. The strategy is realized through a single
incremental learning algorithm. A particular
advantage of our approach is that since the algo­
rithm is incremental, after the learning system is
deployed new cases of customers' loans can be
incorporated in the system's memory depending on
how infonnative these cases are with respect to the
classification model already learned. In other work
[5], we have empirically shown using three data­
sets from the domain of medical diagnosis that
QLC performs better than related cost-sensitive
classification algorithms. In that work actual costs
were used for the medical tests. Future work
should, therefore, examine the perfonnance of
QLC on credit decision malcing when actual credit
investigation expenses are considered for the test
costs.

Due to its stochastic optimization context, our
algorithm can be extended for developing more
sophisticated credit decision making models that
talce into account additional pragmatic consider­
ations of credit granting decisions such as the risk
of cash flows from credit sales [10].

7. Conclusion

This paper examined the problem of minimizing
the expected classification cost due to both tests
and classification errors in credit decision making.
We presented a new cost-effective classification

115

strategy that is realized through the QLC algo­
rithm. The latter is a single incremental learning
algorithm which is based on a stochastic optimiza­
tion framework. QLC scales up Q-learning for
dealing with the intrinsic issues of imperfect state
information and of generalization over continuous
spaces and over training data.

We empirically evaluated the performance of QLC
using a dataset of actual consumer loans granted.
Previous work using this dataset focused only on
misclassification costs. QLC performed better than
the algorithms reported in that work. When test
costs are assumed QLC performs better than both
the EG2 algorithm that takes only test costs into
account.

Further experimentation is needed to analyze the
performance of the QLC algorithm especially
when actual credit investigation expenses are con­
sidered. Other pragmatic considerations of credit
decision making should also be investigated.

8. References

[l] Anderson, J.R. & Matessa, M. Explorations of
an incremental, bayesian algorithm for categoriza­
tion. Machine Learning, 9, 1992, 275-308.

[2] Berger, J.O. Statistical decision theory and
bayesian analysis. New York: Springer, 1985.

[3] Breiman, L., Friedman, J., Olshen, R., & Stone,
C. Classification and regression trees. Wadsworth,
1984.

[4] Borowsky, M. Looking for a Net Gain. Credit
Card Management Europe, Vol. 2, 1993, 40-42.

[5] Karakoulas, G.J. Q-Learning for Cost-Effective
Classification. KSL-IIT Technical Report, National
Research Council Canada, May 1995.

[6] Keyes, J. Winning Back Investor's Confidence.
Information Strategy: The Executive's Journal,
Vol.1, 1992, 42-44.

116

[7] Murphy, P.M. & Aha, D.W. UC/ Repository of
Machine Learning Databases. University of Cali­
fornia at Irvine, Department of Information and
Computer Science, 1994.

[8] Nunez, M. The use of background knowledge
in decision tree induction. Machine Learning, Vol.
6, 1991, 231-250.

[9] Pazzani, M., Merz, C., Murphy, P., Ali, K.,
Hume, T., & Brunk, C. Reducing Misclassification
Costs: Knowledge-Intensive Approaches to Leam­
ing from Noisy Data. Proceedings of the Eleventh
International Conference on Machine Learning,
ML-94, 1994.

[10) Scherr, F.C. Credit-Granting Decisions Under
Risk. The Engineering Economist, Vol. 37, 1992,
245-262.

[11) Seitz, J. and Stickel, E. Consumer Loan Anal­
ysis Using Neural Networks. In: Adaptive Intelli­
gent Systems, S.W.I.F.T. (ed.), pp.177-192.
Elsevier Science Publishers, 1993.

[12) Srinivasan, V., Kim, Y.H. Credit Granting: A
Comparative Analysis of Classification Proce­
dures. Journal of Finance. Vol. XLII, 1987, 665-
681.

[13) Sutton, R. Introduction: The Challenge of
Reinforcement Learning. Special Issue on Rein­
forcement Learning, Machine Learning, Vol. 8,
1992, 225-227.

[14) Tumey, P. Cost-Sensitive Classification:
Empirical Evaluation of a Hybrid Genetic Decision
Tree Induction Algorithm. Journal of Artificial
Intelligence Research Vol. 2, 1995, 369-409.

[15] U.S. Banker. Lots of Ways to Make Credit
Decisions. U.S. Banker, Vol. 102, 1992, 57-59.

[16] Watkins, C.J.C.H. Learning from delayed
rewards. Ph.D. thesis. King's College, cambridge
University, UK, 1989.

Copyright© 1995 Software Engineering Press

GECCO : An Expert System for Mining Investment-Quality Loans

Sue Bynum, Robert Noble, Cheri Todd GE Capital Mortgage Corporation
6601 Six Forks Rd.

The Guideline Eligibility
Compliance Criteria Organizer
[GECCO], is a knowledge-based
application which automates the
information-intensive process of
compliance underwriting for
mortgage loan resale in the
secondary market. GECCO was
originally built and deployed as a
tool for third-party underwriting
services m one business
component of GE Capital
Mortgage Corporation [GECMC],
and has then been successfully
integrated into two other GECMC
businesses for internal use - in
wholesale loan pricing, and in loan
origination, and closing. The
latest GECCO project
development has resulted in its
integration with the GENIUS™
Automated Underwriting System,
as a commercial product offered to
mortgage lenders. This paper
chronicles the evolution of the
GECCO tool, and describes the
latest effort to combine its

* Ben Bloom

Raleigh NC 27615

Inference Corporation

Abstract

compliance underwriting expertise
with the evidential reasoning
model of risk underwriting
provided by GENIUS™.

Successful incorporation of AI
methodologies into critical
business application software has
reaped numerous significant
benefits for GECMC, including
higher loan throughput, improved
consistency of underwriting
decisions, and more effective
quality control. GECMC has
further distinguished its position as
a leading provider of mortgage
services through use of AI-based
systems, and the GENIUS™
product equips GECMC with a
competitive edge for extending its
top market share in the mortgage
insurance business. GECCO is an
exemplary case of leveraging
corporate knowledge through reuse
of a formalized business model of
the compliance underwriting
process.

Keywords: Mortgage banking, rule-based expert system, automated compliance underwriting

* Please address correspondence to Ben Bloom, 8517 Sleepy Creek Drive, Raleigh, NC 27613. Email
address: bloom@inference.com. Phone: (919) 870-0901. Fax: (919) 870-2445.

Copyright© 1995 Software Engineering Press 117

Background

GE Capital Mortgage Corporation is

a leader in the home mortgage banking

industry, with substantial portfolios in

mortgage insurance, origination, and

private-label mortgage-backed securities. A

new GECMC business initiative was

launched in 1989 with the creation of GE

Mortgage Management Systems [GEMMS],

to provide third-party processing and

underwriting services to mortgage lenders.

The Guideline Eligibility Compliance

Criteria Organizer [GECCO] began in

March 1992 as a GEMMS project to design

and build a knowledge-based application for

internal use as a tool for automating the

information-intensive process of

underwriting mortgage loans according to

investor guidelines. GECCO was put into

production in January 1993 at GEMMS for

third party loan processing and

underwriting.

During this same period when the

GECCO compliance checker tool was

developed, the GENIUS™ project was in

progress at the GE Corporate Research and

Development center. AI specialists at the

R&D center built a formalized risk

assessment model based on training

examples provided by mortgage

underwriting experts from the GECMC

Company [GEMICO]. The GENIUS™

Automated Underwriting System is the

software implementation of the example-

118

based evidential reasoning model of

mortgage insurance risk assessment. has

proven to be a remarkably successful

productivity tool for the Mortgage Insurance

branch offices since going into production

in February 1993.l

The natural marriage of the two AI

systems has been brought about as the result

of the PC GENIUS™ project, began in May

1994. The project focused on incorporating

the compliance underwriting function of

GECCO into the GENIUS™ risk

assessment function. The rearchitecture

effort involved reimplementation of

GENIUS™ from a mainframe application

into a Windows®-based client/server

environment, and writing GECCO rulesets

for the two largest mortgage investing

agencies, Fannie Mae and Freddie Mac. The

combined compliance and risk automated

underwriting GENIUS™ functionality was

made available as a commercial product to

mortgage lenders in January 1995.

Business Context: Mortgage
Banking

The field of loan underwriting has

proven fertile ground for the application of

AI technology for mortgage funding and for

mortgage insurance. (See, for example,

1 See [Gol95] for a thorough presentation of
the GENIUS™ project.

Copyright© 1995 Software Engireering Press

[Gol95] and [Tal94]). The GECCO project

is distinguished from related efforts by

focusing on evaluating compliance with the

investor eligibility guidelines which control

resale of mortgage loans in the secondary

market. It would serve to establish the

business context of the GECCO tool by

starting with an overview of the mortgage

banking business and an itemization of the

steps typically involved in the mortgage

loan processing pipeline:

I. Loan origination : application by the
borrower for a mortgage loan from a
lender

2. Registration: Creation of a file for the
loan in the processing pipeline

3. Processing : gathering and validation of
loan documents required to complete
the loan

4. Underwriting : assessment ofrisk
incurred by the lender through
evaluation of subject property, and of
factors which determine the borrower's
ability and willingness to repay.

5. Mortgage insurance [Ml] : mandatory
insurance purchased by the borrower to
protect the lender against loss in the
event of default by the borrower. MI is
usually required when the borrower is
infusing less than 20% of the loan
amount into the transaction.

6. Closing : signing and recording of loan
documents and transfer of mortgage
funds

7. Servicing: Collecting the monthly
mortgage, along with taxes, insurance
and other escrows.

Copyright© 1995 Software Engineering Press

8. Pricing/Repurchasing : Sale of the loan
from the originating lender to a
mortgage investor. The two dominant
agencies in the secondary market for
conventional mortgages are Fannie Mae
(Federal National Mortgage
Association) and Freddie Mac (Federal
Home Loan Mortgage Corporation).
Mortgages which fall outside of agency
eligibility guidelines may be sold to
private investors, who would have their
own purchase criteria.

9. Packaging and Contract Servicing
Collection of investment-grade loans
into pools for issue on Wall Street in the
form of mortgage-backed securities.

A discussion of mortgage banking

terminology is useful to explain the function

served by GECCO. It is necessary to

understand the use of terms in this paper for

the following: loan underwriting, investor

guidelines, and lender compliance. Fannie

Mae gives the term investment-quality to a

mortgage when (1) the borrower's ability

and willingness to pay the loan has been

established and (2) the market value of the

subject property provides sufficient

collateral to secure the loan. The

borrower's ability to repay the loan is based

on income, employment history, assets,

liabilities and source of funds. Willingness

to repay the loan is based on credit history,

separated into examination of mortgage/rent

and revolving/installment accounts. The

appraisal of the property is based on

119

evaluation of comparable properties, market

trends for the neighborhood, and the

property size and condition.

Fannie Mae, like other mortgage

bankers, provides sets of guidelines which

specify the criteria by which a loan can be

judged to be investment-quality. A

guideline may be thought of as a collection

of business rules that evaluate the various

pieces of applicant and property

information. A mortgage loan application

which does not violate any aspect of the

investor's guideline is said to be in

compliance, and may be underwritten by a

mortgage loan analyst with confidence that

the investor (e.g., Fannie Mae, Freddie

Mac) would buy the loan.

Investor guidelines are typically

extensive and are updated frequently (often

quarterly) to adjust to changing housing

market conditions. The size and volatility

of a guideline is compounded by the fact

that many points are open to the

underwriter's interpretation. Certain loan

application parameters are rigidly set by a

guideline, such as dwelling type (single­

family, duplex, condo, etc.), LTV (loan-to­

value) limit, occupancy type (primary or

second home, or investment property), and

mortgage type (purchase, refinance, cash

out refinance). Consideration of the large

remainder of factors however, is flexible.

120

As an example of a soft factor, Fannie

Mae's guideline for the applicant's housing

debt to income ratio is 28%, yet "we also

recognize that some circumstances may

justify your exceeding this ratio. If you use

a higher ratio, you need to fully document

the compensating factors you feel justify

your doing so." Several examples of such

factors are also provided to the

underwriter.2

The underlying notion of salability

of a loan is crucial to the underwriter's

determination that the loan is in or out of

compliance with the rules set forth in the

investor guidelines. A typical mortgage

lender relies heavily on investor capital in

order to maintain a profitable and sizable

portfolio of loans. If the loan does not meet

investor guidelines, the lender must decide

whether to fit the borrower into another type

of loan program, add the loan to the "in­

house" portfolio, or tum away the

borrower's business. Strict interpretation of

a guideline could result in denial to

underwrite a loan which the investor would

in fact have purchased (and, more

importantly, loss of business), while a less

cautious interpretation can result in funding

a loan that cannot be sold and must remain

in the lender's portfolio.

2 [FNM93, p.27]

Copyright© 1995 Software Engineering Press

Project Description :

GECCO I Third-party underwriting

The original inception of GECCO

was within the third-party underwriting and

processing facility at GE Mortgage

Management Systems [GEMMS], a part of

GECMC. GEMMS offered a unique

business concept in providing the service of

loan underwriting to mortgage lenders.

Rather than having to maintain a full staff of

underwriters to process loans, a lender could

contract with GEMMS to process and

underwrite the lender-originated loans. This

arrangement would permit lenders to handle

the resource strain of a peak market. A

technical challenge facing this concept was

that each lender has their own investment

guidelines against which loans were to be

underwritten. After servicing two or three

lenders, it became clear that not even a

superhuman underwriter would be able to

keep up with the customized, voluminous

and often-updated investor guidelines from

several lenders at once. The idea came out

of necessity for an automated compliance

checker that could manage the information

overload of a large number of investor

guidelines for the GEMMS underwriters.

GECCO is embedded in the

VISION loan registration and processing

system, a client/server application which

Copyright@ 1995 Software Engineering Press

uses a GUI to capture the loan application

data elements and stores the information in

a relational database [Figure I]. The

underwriter can invoke GECCO at any point

in loan processing and may rerun on the

same loan at different stages in the pipeline

as new information is entered. GECCO

reports a status of either in compliance or

out of compliance and provides explanatory

messages when the latter is the case. The

messages are divided into two classes -

fatals and warnings - to distinguish between

hard and soft guideline constraints.

Prior method of operation

Manual compliance checking for

loan underwriting generally can be a

tedious, time-consuming and information­

intensive process. Prior to development of

GECCO, the compliance checking process

was performed manually at GEMMS. The

manual process involved checking

compliance of a loan application file by

thumbing through a bookshelf of documents

that specify the details of the investor

guideline for the relevant loan program. On

average, this process took between thirty

minutes to an hour per loan.

A rule-based approach was adopted

as a natural way of modeling the manual

process of guideline compliance checking,

based on identifying the specific eligibility

constraints which apply to a given loan.

121

Loan Processor
• Loan Application

..

Database

Investor Guidelines t
..

Guideline Maintenance

..

Mortgage-backed
Securities Analyst

Quality Control Auditor

Figure 1: Compliance Checker Process Overview

Objectives and Benefits of the

GECCO Compliance Checker

Several objectives were identified

for the original GECCO application within

the initial third-party GEMMS application.

These included:

• Produce a flexible investor guideline
modeling tool -- The initial objective of
GECCO was to make it possible for a
mortgage loan analyst to underwrite a
loan for any mortgage lender subject to
salability constraints of any investor
guideline. This was achieved through
an. architecture for flexible modeling of

122

an unlimited number of guidelines. The
third-party underwriter deployment of
GECCO contains over 170 investor
guidelines for 70 mortgage lenders.

• Improve quality of the underwriting
process -- Underwriters tend to look for
middle ground within the more flexible
aspects of an investor guideline,
offsetting a potentially unacceptable
factor with other mitigating factors.
The goal of GECCO was to provide
consistency to the underwriting process,
by standardizing both the process of
applying the guideline constraints to
loan applications as well as the content
of the compliance warning messages.

• Gain a productivity benefit -- Raise
business volume and shorten turn­
around time by reducing the time
required to process and underwrite a

Copyright © 1995 Software Enginer.ring Press

loan. GECCO runtime of under 30
seconds is a significant time savings
compared with the 45 minute manual
compliance checking process.

• Provide a remedial course of action -­
GECCO gives an explanation of which
guideline rules are being violated, and
provides suggestions of what must be
done to correct a variance.

• Tracking and monitoring capability -­
GECCO provides an audit trail for
underwriting, and keeps track of
documents required by lenders for
closing the loan. This information
management reduces the burden of
knowledge placed on the analyst.

Versatility of the Application

The early success of GECCO for

third-party processing and underwriting

raised awareness of other ways in which the

rule-based application could be applied to

other GECMC businesses in which the

questions "Should we buy these loans?" or

"Can we sell this loan?" are central to the

process.

Several of the possibilities
identified for GECCO reuse were:

• Secondary market/ post-closing
(wholesale pricing): Batch process a
pool of loans to filter out non-compliant
loans prior to purchase for repackaging
in a mortgage-backed security
investment instrument. This filtering
process determines that each loan that
has already been closed does in fact
meet the guidelines of an investor to
whom the loan is to be sold. Should a
loan fail to comply with investor
guidelines at this point, the lender must

Copyright© 1995 Software Engineering Press

keep the loan until it is seasoned (i.e.,
hold and service the loan for a period of
time until salable under a different
guideline). Each lender may have a
customized contract with Fannie Mae
and/or Freddie Mac. In addition,
lenders have their own group of
investors who provide the base of
working capital for funding the lender's
mortgage originations.

• Point of sale/prequalification: At this
point in the loan application process, the
borrower is volunteering data about
employment, assets, liabilities and
credit history. Though the information
has yet to be verified, it is still useful
for a lender at a point-of-sale branch of
a mortgage company to run GECCO as
an early screening mechanism for fitting
the applicant into the best available loan
program for which he or she qualifies.

• In-depth processing and underwriting:
Determine and track receipt of the
required documents, and grant
conditional approval subject to
satisfactory resolution of any pending
items.

• Closing: As a final quality assurance
check. Use GECCO to maintain an
audit trail of warning or fatal messages
that have been issued at points during
loan processing.

• Quality assurance: Pull a
representative sample of loans from the
portfolio to measure the underwriter
judgments against the known outcome
of the loan. Used in this manner,
GECCO can alert an underwriting staff
to an undesirable trend if for example
loans of a particular type (e.g.,
condominiums in California) are being
rejected by a lender's investors, contrary
to what the underwriters had thought to
be in compliance with investor
guidelines.

123

From the above list of candidate
applications for GECCO reuse, the
following have been implemented to date:

GECCO I Wholesale Pricing

A partitioning of the existing

GECCO knowledge base was made to

facilitate a need for integration of

compliance checking capability into the

Wholesale Pricing and Registration

[WHOPR] project at GE Mortgage Services

[GECMSI]. The WHOPR project purpose

was to build a rule-based system that would

conditionally apply a variety of price

adjustment factors to loans delivered to

GECMSI for purchase from originating

lenders. Determination of compliance with

GECMSI resale guidelines was a

precondition for loan purchase. The pricing

rules would determine the purchase price of

a loan once it had passed the compliance

check.

The GECCO rules were accordingly

divided into checks for lender compliance,

used by GEMMS third-party processing,

checks for wholesale pricing, and a group of

core checks used in both businesses.

GECCO I Loan Closing

The Closing project was the

GEMMS follow-on to third-party

processing. The primary focus for GECCO

in this effort was to expand the processing

capabilities with specific functionality

needed for delivery of loans to "the closing

table." This functionality was achieved

124

with the addition of two new GECCO rule

sets: the special conditions rules and the

required documents rules.

Special conditions are extra

procedures that may be placed on a loan by

the lender guidelines (e.g., self-employed

borrowers must complete a Fannie Mae

form for self-employed, and must provide

proof of income for the past two years). A

loan may be in compliance subject to

special conditions which have been attached

automatically by GECCO. The required

documents rules generate a list of all

documents needed for closing as specified

by lender and investor guidelines, and keep

track of which documents are still

outstanding. Examples of these documents

are: proof of flood insurance if the subject

property is in a flood zone, or a special form

for energy-efficient dwellings in the state of

New Mexico.

GECCO Functional Description

GECCO is integrated into a loan

entry and processing system, which consists

of a GUI component for capturing and

updating the loan information and a

client/server relational database for efficient

data storage. When an underwriter or loan

processing agent invokes GECCO, the

following process takes place:

Copyright © 1995 Software Engineering Press

1. Retrieval of the relevant data elements

for the loan application into structured

objects.

2. Retrieval of the investor guideline

information for the corresponding loan

program (e.g.,, 15-year fixed rate) into

structured objects.

3. Activation of the appropriate GECCO

rule sets, controlled via command line

Gifts not allowed for INVESTMENT property

arguments passed to GECCO from the

GUI.

4. Agenda-driven rule processing of the

loan and guideline data.

5. Results are posted to the GECCO output

screen [Figure 2] and to the database.

Downpayment and cash reserves : insufficient reserves.

Downpayment and cash reserves: sweat equity is not acceptable.

Borrower [PAI - John Q Public] has a prior history of mortgage late payments. Please review
credit to establish credit worthiness.

Overtime income represents more than 25% of earnings. Borrower [PAI - John Q Public] must
provide past 2 years signed federal tax returns.

Figure 2: Compliance Output Screen

The guideline information is input

initially by a designated guidelines

administrator whose job is to ensure that the

GECCO knowledge base is kept current

with new guidelines and guideline updates

Copyright@ 1995 Software Engineering Press

as they are released by investors. A

graphical guideline editor screen facilitates

this process of defining and modifying

guideline information.

125

The GECCO rulebase contains rules

for the following categories of salability

ch~cks:

• ARM restrictions

• Bankruptcy / foreclosure procedures

• Downpayment / cash reserve requirements

• Mortgage insurance requirements

• Loan amount limits

• Limits on seller contributions

• Cashout refinance restrictions

• Appraisal requirements

• Non-base income limits

• LTV limits

• Employment-related checks

• Limits on gifted funds

• Qualifying ratios

• Second home/investment prop. restrictions

• US Citizenship status

The GECCO output consists of warning

messages that relate soft guideline

constraints and fatal messages that

correspond to violation of strict guideline

rules. In addition, GECCO provides

processing packets which give the user

suggestions on how to correct specific

variances. The user always has the option to

override a GECCO out of compliance

overall result on the basis of compensating

factors which may not be accounted for in

the knowledge base; in this case, the loan is

forced into c_ompliance, and the user is

encouraged to provide a justification for the

override in a notes area.

126

System Architecture

Software development for GECCO
/ Third-party underwriting

The GECCO software development

process followed an iterative spiral

methodology, building on a series of

prototypes to produce the first deployed

system. The project began with collection

and analysis of user requirements, followed

by definition of the object model for

investor guidelines and for the necessary

loan application data. Next the database

access layer was designed, followed by high

level design of the compliance rules. The

database access layer is the underpinning of

the knowledge base, encapsulating the

objects and rules from the physical

implementation of the database that houses

all of the loan application data as well as

investor guideline information.

The GECCO knowledge base

consists of a collection of objects which

hold the relevant data elements referenced

in the guideline checks and a collection of

discrete rules.

Software development for GECCO
/ Wholesale Pricing

The project began with an analysis

of rules currently enforced by GECCO.

These rules were reviewed by business

analysts and grouped into distinct sets for

third-party underwriting, for wholesale

pricing, and for both. The knowledge base

Copyright© 1995 Software Engineering Press

was then partitioned accordingly and the

GECCO calling interface was modified so

that the activation of individual rule sets

could be controlled via external command

line arguments.

The reorganized GECCO was

regression-tested on a database of test loans

and then redeployed to both GEMMS for

third-party processing and GECMSI for

wholesale pricing.

Software development for GECCO
/ Loan Closing

The feedback from lenders for

enhanced processing capabilities further

advanced GECCO functionality. The new

development began with analysis of the

types of special conditions that lenders

wanted to be able to attach to loans and of
Hardware and software environment

the types of documents that conceivably

could be required. The analysis was

followed by a design specification for the

new database and knowledge base structures

required for storing and modeling both

special condition and required document

information. Business analysts then

gathered all of the specific business rules

for both from each GEMMS lender. The

rules were then implemented in separate

rule sets, one for special conditions and one

for required documents, and these new rule

sets were then added to the GECCO

knowledge base, bringing the number of

rules up to 230 in four distinct rule sets.

The identical hardware and software environment applies to the third-party processing

and underwriting, wholesale pricing, and loan origination deployments of GECCO:

GECCO is written in ART-IM and is deployed as a C executable on a client/server
architecture.
Operating system
Database
Software
Hardware
Network

: OS/2 2.1
: Sybase 4.9.1
: ART-IM 2.5, Microsoft C 7.0, Sybase DB Library for C
: Client: 486 desktop, Server Sun Sparc-20
: Local: Token ring/Novell 3.11, Wide-area: T-3 link

For integration with GENIUS™, the latest development effort has resulted in
redeployment of GECCO for Windows, for both client/server and single-user
environments.
Operating system
Database
Software
Hardware
Network

: Windows 3 .1
: Watcom SQL Server
: ART-IM 2.5, MS Visual C, Watcom libs, MS Visual Basic
: Client/Server or standalone : 486 desktop
: site-specific

Copyright© 1995 Software Engineering Press 127

Description and significance of AI

techniques used

The GE Compliance Checker is an

excellent candidate for a rule-based solution

because the processing involved fits the

model of asynchronous testing of a large

number of discrete logical conditions. This

approach was facilitated by using a highly

optimized inference engine and a powerful

pattern-matching rule language. The

specific architectural features, and their

significance as employed by GECCO,

include the following:

• Agenda-driven inferencing fires only for
rules that apply as opposed to
exhaustively testing for each rule
sequentially.

• Partitioned rule sets provide the
flexibility of customizing the behavior
of the compliance checker accordingly
with the specific eleigility constraints of
the selected investor.

• Ruleset partitions also serve to make
actual distinctions in the business model
explicit, so that categories of rules (e.g.,
credit checks, property checks) may be
easily enabled or disabled through the
GUI.

• Selective, optimized database access is
controlled through the rules -- only data
required by the given process/ruleset is
loaded.

• Platform independence is achieved by
insulation of the knowledge base from
the platform and the database (See

Figure 3). A generic ART-IM/SQL
interface was developed for GECCO.
The interface is based on functions
which define mappings between the
physical database model and the object
model created in ART-IM. The
accessor function names are properties
of the ART-IM objects and are
analogous to create-instance methods,
called to generate instances of ART-IM
schema. The ART-IM/SQL interface
used in GECCO is robust in that it
permits arbitrarily complex object
mappings to be written and compiled
incrementally. The ART-IM
deployment compiler which generates
compilable "C" code for the complete
contents of the knowledge base, thus
allowing platform independence.

• Rule parameterization, the separation of
declarative knowledge, allows the user
to customize compliance rules
dynamically through the GUI
maintenance screens without requiring a
change to the executable.

• Object-oriented inheritance allows
GECCO to exploit the large overlap of
information contained in investor
guidelines, so that only the differences
need to be stored. This method
produced a drastic performance
improvement as well.

• High level rule language permits a
straightforward software coding of a
compliance business rule; this high
level representation not only makes the
rules easier to write and debug, but has
a positive impact on maintenance of the
rulebase as well.

128 Copyright© 1995 Software Engineering Press

An ODBC Database

OS/2

Figure 3:

Rulebase

ODBC
Access Functions

=O

Data Layer

Windows3.l

SYBASE
Access Functions

UNIX Workstation

Platform - Independent Architecture

SYBASE

The following code fragment from the knowledge base gives the flavor of a typical compliance
checker rule:

(defrule check-geographic-non-conforming-loan-amount
"Check if the loan amount exceeds the guideline limit for the given type of
dwelling in the given state."

ii Match a property instance
(schema?

{instance-of property)
{prop-dwelling-type ?dwl-code)
{prop-state ?state))

ii Bind the loan amount
{schema?

{instance-of loan-application)
{loan-amount ?loan-amt))

ii {e.g., single-family, duplex, ...)
i i { e . g . , NY, FL, CA ...)

ii Check if the loan amount exceeds the guideline loan amount limit
ii for the matching property state and dwelling type.
(schema?

{instance-of geographic-loan-limit)
{gee-loan-limit-dwelling-type ?dwl-code)
{gee-loan-limit-property-state ?state)
{gee-loan-limit-amount ?loan-limit&:{< ?loan-limit ?loan-amt))
)

=>

Copyright© 1995 Software Engineering Press 129

f $ 0 ld 1 • • t of $%ld." (bind ?msg (sprintf "Loan amount o -.; over imi
?loan-amt ?loan-limit))

ii Post a fatal message for exceeded loan limit.
(gee-message FTL ?msg)
)

GECCO In Production

GECCO I Third-party processing
and underwriting

The GECCO third-party

underwriting deployment contains over 170

investor guidelines for 70 mortgage lenders.

The knowledge base contained

approximately 120 guideline compliance

rules. The usage data for the fiscal years

1993-4 shows that GECCO was run on

approximately 15,400 mortgage loans, with

an average weekly volume of 150 loans.

During this period GECCO was run over

52,000 times - over 3 times per loan on

average.

Because the loan application

information can fluctuate during the 20-30

day window during which a loan file is

typically open for processing, it is useful to

rerun the Compliance Checker at various

points during the process to ensure that

important changes are noted, such as with

borrower's income, employment status,

assets, or credit profile, and their

consequences for the salability of the loan

taken into account. It is also often

130

customary for GECCO to be run at any

point when the loan file passes between

mortgage loan processors, as a safeguard

against possible oversights.

GECCO I Wholesale Pricing

Usage data for GECCO/Wholesale

Pricing reports that for the period from

February through December 1994, GECCO

has been run on over 7000 loans, of which

1700, or roughly 1/4 were found to violate

GECMSI guidelines for purchase.

GECCO I Loan Processing and
Closing

The addition of the required

documents ruleset and the special conditions

ruleset grew the knowledge base to 230

rules. Some database optimizations resulted

in a performance improvement which

reduced GECCO runtime from 40 to 25

seconds per loan on average.

GECCO/ Loan Processing has been run on

over 5000 loans for the six-month period

from July through December, 1994.

Copyright© 1995 Software Engineering Press

Application Payoff

Improved throughput and productivity:

The time savings of at least 30

minutes per loan (45 minutes average)

directly increased the number of loans

processed and underwritten by GEMMS;

GECMSI and outside lenders. Comments

from underwriters who have used GECCO

suggest that they have noted a greater

feeling of accomplishment due to increased

productivity, that exposure to state-of-the­

art information technology makes their job

more interesting, and that they have more

confidence in the consistency of their work.

Improved risk management

GECCO produces a consistent

evaluation of compliance with investor

guidelines; this helps to equalize the

disparate levels of underwriter experience

and gives standardization to the subjective

art of underwriting. The result of better

quality of underwriting is a stronger

portfolio and a fewer number of loans

refused by the investor.

Improved customer service:

GECCO for third-party

underwriting provided a high-quality and

timely level of customer service to

mortgage lenders who dispatched loans to

GEMMS for processing and underwriting.

GECCO is now offered directly to lenders

Copyright © 1995 Software Engineering Press

as a commercial product for assessing

salability of their mortgage loans.

Improved business process:

GECCO /third-party underwriting

made it feasible for GEMMS to pursue the

loan processing overflow market.

GECCO /wholesale pricing allowed

GECMSI agents to quickly approve or reject

purchase of individual loans in a package

for resale on the secondary market.

GECCO I PC GENIUS™ allows

GECMC to offer their customers a

W• d ® m ows product for assessing investor

requirements for mortgage loan resale.

It was not conceived at the time that

the initial effort to build a compliance

checker for third-party underwriting would

result in a tool that is germane to so many

different aspects of the mortgage loan

business process. GECCO exploits the

overlap of data used across the processing

pipeline while providing the flexibility to

apply the set of business rules distinct to

each of several specific phases, including

conditional prequalification at origination,

underwriting for salability and for mortgage

insurance, processing of required

documents, appraisal and credit reports, and

quality control.

131

Present and Future Work

It is expected that the flexibility

gained through the GECCO application will

continue to have a positive impact on the

efficiency of several key GECMC

businesses. The GENIUS™

product will continue to be enhanced and

supported as driven by external customer

needs.

Plans are underway to rearchitect

the GECCO data access layer so that it can

be available as a plug-in tool for new and

existing GECMC software applications with

a minimum of integration work Currently,

the GECCO guideline maintenance screens

are being expanded to allow authorized

users to modify existing rules and to define

new ones as new mortgage products are

offered in the market place. This flexibility

to represent any investor's eligibility criteria

has generated interest in use of GECCO to

build custom portfolios automatically ..

The National Processing Center is a

major reengineering project now in

development at GE Capital Mortgage

Insurance; the NPC is focused on

streamlining the process so that the

mortgage insurance underwriting step may

be performed as quickly as possible. The

132

combined capabilities of GECCO and

GENIUS™ will be the heart and soul of

NPC operations. A new GECCO ruleset for

compliance with GECMC Mortgage

Insurance guidelines is being defined for

this effort. New guidelines are also being

defined to increase GECCO functionality

for FHA,VA and affordable housing loans.

Summary

GECCO has proven to be an

effective tool for the underwriter who must

balance the need to bring in new business

against the imperative of keeping a portfolio

of salable loans. GECCO also gives the

benefit of applying standardization to a

process that in practice is subjective and

prone to variances introduced by different

underwriting philosophies.

The reuse of the GECCO as a

generic tool for loan salability assessment,

prequalification, underwriting, and quality

assurance has been a remarkable success for

GE Capital Mortgage Corporation.

Copyright© 1995 Software Engineering Press

Acknowledgments

The authors thank Tony Keller, Diane Lecco, and Stan Patterson of GECMC for their useful discussions
about the project. In addition, special thanks to Phil Klahr of Inference for his helpful comments on the
paper.

List of Figures

Figure 1:
Figure 2:
Figure 3:

References

Compliance Checker Process Overview
Compliance Checker Output Screen
GECCO Platform-independent Architecture

[Den92] Dennis, Marshall W. Residential Mortgage Lending, Third Ed 1992. Prentice Hall Inc.
Englewood Cliffs, NJ.

[FNM93] Basics of Sound Underwriting. 1993. Fannie Mae Customer Education Group, Washington, DC.

[FHL94] FHLMC Underwriting Guidelines Quick Reference. October, 1994. MRI.

[FNM94] FNMA Underwriting Guidelines Quick Reference. October, 1994. MRI.

[GEC93] GE Capital Mortgage Insurance Underwriting Manual. July, 1993. GE Capital Mortgage
Insurance Corp. Raleigh, NC.

[Gol95] Golibersuch, David et al. GENIUS, Combining Knowledge Engineering and Machine Learning to
Achieve Balanced Risk Assessment in Mortgage Insurance. Proceedings of the IAAI '95 Conference, to be
published in August 1995, Montreal, Quebec.

[Pow90] Powell, Lynn S .. Residential Mortgage Banking Basics. 1990. Mortgage Bankers Association of
America, Washington, DC.

[Tal94] Talebzadeh, Houman et al. Countrywide Loan Underwriting Expert System. 1994. IAAI 1994
Proceedings.

Copyright © 1995 Software Engineering Press 133

Paper Session: Data Analysis, Modeling, and Representation

Chair: Ypke Hiemstra, Vrije Universiteit Amsterdam

Software for data analysis with graphical models

Wray L. Buntine
RIACS at NASA Ames Research Center

Mail Stop 269-2, Moffett Field, CA 94035-1000, USA
wray©kronos.arc.nasa.gov

H. Scott Roy
Heuristicrats Research, Inc.

1678 Shattuck Avenue, Suite 310, Berkeley, CA 94709-1631, USA
hsr©heuristicrat.com

Abstract

Probabilistic graphical models are being used
widely in artificial intelligence and statistics,
for instance, in diagnosis and expert systems,
as a framework for representing and reasoning
with probabilities and independencies. They
come with corresponding algorithms for per­
forming statistical inference. This offers a uni­
fying framework for prototyping and/or gen­
erating data analysis algorithms from graph­
ical specifications. This paper illustrates the
framework with an example and then outlines
a software toolkit that allows rapid prototyping
of data analysis algorithms. Tools available for
this task including methods from Bayesian net­
works, statistics, and neural networks.

1 Introduction

This paper argues that the data analysis tasks
of learning and knowledge discovery can be
handled using techniques for graphical models,
and therefore rapid prototyping of data anal­
ysis algorithms can be done. The ability to
adapt data analysis or learning algorithms to
the user's application is a key capability for
the financial markets, for instance in knowl-

136

edge discovery1 . This meta-level use of graph­
ical models for learning was first suggested by
Spiegelhalter and Lauritzen [25] in the context
of learning probabilities for Bayesian networks.
An extension of the standard graphical model
is used here that allows this kind of learning
to be represented. The extension is the notion
of a plate introduced by Spiegelhalter2 . Plates
allow samples to be represented explicitly on
the graphical model, and thus reasoned about.
This makes data analysis problems explicit in
much the same way that utility and decision
nodes are used for decision analysis problems
[23].

Consider, for instance, Figure 1. This
presents a situation where a mixture model
with hidden variable class is used for subse­
quent prediction of var1 from var2 and var3 .

The part to the left of the parameters </> and
0 is the graphical representation of a sample.
The contents of the plate (the box around the
nodes for class, var1, var2 and var3) on the
left indicates that a sample of N cases with
variables var1, var2 and var3 are given, while

1 For instance, Evangelos Simoudis cites this as one
of the key selling points of the knowledge discovery tool
RECON from Lockheed AI Center.

2 Personal communication. The notion of a "repli­
cated node" was my version of this developed indepen­
dently. I have adopted the notation used by Spiegelhal­
ter and others for uniformity.

Copyright © 1995 Software Engineering Press

N

Figure 1: Simple unsupervised learning, with
general prediction

class is hidden, being unshaded. The plate
indicates that its contained subgraph is repli­
cated N times. The part on the graph to the
right of the parameters <p and 0 represents the
prediction task. The value node on the right,
the diamond, indicates that subsequent pre­
diction accuracy is the goal of learning. To­
gether, this graph indicates that the utility for
the problem is (var1 - vari(var2, var3)), and
the joint distribution of the parameters takes
the form

with the knowledge representation and stan­
dard search methods. A simple connection­
ist feed-forward network (using the notation
of Hertz, Krogh and Palmer [14]) and its cor­
responding Bayesian network is given in Fig­
ure 2(a) and (b) respectively. Similarly, other

(a)

Figure 2: A simple feed-forward network: (a)
in native form (b) as a DAG.

neural networks can be modeled with graphical
models ("probabilistic networks").

This general approach, engineering using
principles of probability, is now becoming
widespread. The basic tools of probabilistic

p(</>, 01, 02, 03; class, var1, var2, var3, (Bayesian) inference used for this process are
classi, var1,i, var2,i, var3,i : i = 1, ... , N) reviewed, for instance, by Tanner [26], Kass
p(cp)p(01)p(02)p(03)p(classl</>) and Raftery [16], Neal [21], and Madigan et

(I l 0) (I l 0) (I l 0
~

. [19]: various exact methods, Markov chain
p var1 c ass, 1 p var2 c ass, 2 p var3 c ass, C 1 h d h G"bb •
N onte ar o met o s sue as 1 s samplmg,

IIP(class·l,1..)p(var ·!class· 0) the EM algorithm, and the Laplace approxima-
i '+' t,i ii

1 • w· h • b" • h bl tion. 1t creative com mat1on, t ese are a e i=l
p(var2,ilclassi, 02) p(var3,iiclassi, 03) . to address a wide range of data analysis prob­

lems. Gilks, Spiegelhalter and Thomas have
taken this process a step further by developing
a compiler that generates Gibbs samplers from
graphical specifications [10]. This handles a
surprisingly broad number of statistical tasks.

There has been a recent push within the ma­
chine learning and neural network communities
to dispel the magic and art from the various
learning fields and present them more as engi­
neering disciplines. Decision tree methods [4]
and feed-forward networks [18, 6] are some ex­
amples that show how already popular algo­
rithms can be re-engineered from well under­
stood principles of probability in combination

Copyright@ 1995 Software Engineering Press

It is the thesis of this paper that these tech­
niques are now sufficiently well developed so
that software support can be provided for their
use in data analysis problems. That is, we
are now able to generate components of data

137

analysis algorithms, and even entire algorithms
themselves from high-level specifications. The
paper demonstrates the thesis by presenting a
framework based around the use of graphical
models as a specification language.

We begin with two examples. The first illus­
trates the intended use of the software we en­
visage, and the second gives some more math­
ematical detail. Then we outline in more de­
tail the specification language we are develop­
ing. A low-level implementation of these ideas
demonstrates the feasibility of our software
[22]. More details of the underlying theory
for our approach can be found in [3], including
results for deterministic nodes and techniques
for doing differentiation, both used in model­
ing neural networks with probabilistic graphi­
cal models.

2 Two examples

The software we are developing is intended
to be used in an iterative prototype-refine
cycle using standard data manipulation and
visualization packages such as Matlab, PV­
Wave/IDL, or S-Plus. An important observa­
tion is that prepackaged data analysis software
such as clustering, linear regression, and feed­
forward neural networks are sometimes inade­
quate for the particular task at hand. While
these packages are often good for exploratory
data analysis, our experience and that of many
others indicates that data analysis and knowl­
edge discovery requires more flexibility in gen­
eral. The first example below illustrates the
kind of prototyping our envisaged software is
intended to assist, and the second example il­
lustrates some more of the mathematical de­
tail.

138

2.1 Prototyping data analysis

This example will demonstrate how the system
we are developing would operate, reducing a
problem that might require weeks of effort into
an afternoon's work. Figure 3 plots the raw
data for this example. The data give mean

$
o 1.560

1.550

1/3:46:40 2/7:33:20 3/11:20:0 4/15:6:40 5/18:53:20 6/22:40:0
Doy/Time

Figure 3: The mean bid-ask price for DM/$.

bid-ask prices posted by banks at various time
points over the course of a week for turning
dollars into Deutsch marks. The mean bid-ask
price (average of the two) is a more stable in­
dicator of the bank's pricing position because
the bid or ask price alone also includes effects
due to the banks policy on the bid-ask spread.
The mean bid-ask price helps reduce the arti­
facts of "returning to the mean" and "stable
patterns" reported in the bid price data or the
ask price data alaone [20, l]. Original data
takes the form of a date and time, the bid and
asking price, and the bank code.

Sep 1
Sep 1
Sep 1

Date

13:42:40
13:42:45
13:43:14

Bid

1.5737
1.5735
1.5735

Ask
1.5742
1.5745
1.5740

Bank
CONY
MGTX
BBIX

Copyright© 1995 Software Engineering Press

Our goal is to model the time series and to
understand individual differences among the
banks. The data we have at our disposal con­
sists of the tick data in Figure 3 together with
various properties of the banks, such as their
geographical location.

We hypothesize that the tick data is effec­
tively a random walk, but where the percent­
age change at each time point is influenced by
the bank posting the price. For example, we
might suspect that some banks tend to post
larger differences from the previous tick than
the average change, or that some banks post
more frequently during upswings than down­
swings, so that the ticks posted by such a bank
run contrary to the downward trend. Figure 4
shows the kind of thing we are after, plotting
the empirical frequency of percentage changes
for all the ticks, for a bank that only posts large
changes from the previous tick, and for a large
bank that posts many changes.

We sit down at our data analysis system,
pull in the raw data, and set up a quick model
to do an unsupervised clustering of the banks.
Our first pass uses the random so that we can
get a basic feel for the different kinds of banks.
For each bank we have:

• The mean of the bank's bid-ask spread.

• The bank's geographical location.

• The average number of posts the bank
generates per day.

• The massaged tick data giving the bank's
relative price change over the immediately
preceding price (probably posted by a dif­
ferent bank)._

The graphical model, shown in Figure 5, is cre­
ated using a drawing tool. In this model, the
relative change that a bank will offer is as­
sumed to be determined by its class, but is

Copyright © 1995 Software Engineering Press

f.
u
l
i

r~pero.0001

,:

i
~
i
3 g
2.

~
[
i
?
g-
i
,:

'.JI
"

~

J.

u
l
i

i

i
i
,g
a
3

~

I J.
2. u g:
[

l
l i
?
[
;o

~

i

Figure 4: Frequencies for different relative
price changes.

139

:,:

f a
3

~
3 g
2.
[

[
i
?
0

g
ll"

Bank
Price

Figure 5: Basic clustered random work model
for price changes.

otherwise a random walk. Notice this model
has multiple banks, and each bank gives mul­
tiple prices, so this model has multiple plates
indicated a double product occurs in the full
joint distribution for the data (over banks and
over the bank's price changes). For the current
problem we simply drag a prefabricated mix­
ture model and appropriate components from
a palette or component library into the work
area, and make some modifications to it. The
model should include complete specification of
all distributions and parameters (e.g., all pa­
rameters of the Dirichlets in Figure 5 be sup­
plied). For instance, we would have to set the
various parameters for the conjugate priors ap­
pearing in the model. The model of Figure 5
is not a standard clustering model so could not
be obtained from any standard statistical pack­
age. In other problems we could create a free
form model by drawing individual nodes, links,
and probability annotations. The drawing tool
contains the necessary hooks to associate vari­
ables on the plate with the fields from the bank

140

database, and the computed fields from the
tick database.

We now press the RUN button. At this point
the system performs all the drudgery such as
mathematical calculations, programming, and
validation, previously requiring weeks of effort:

• It performs known symbolic simplifica­
tions on the graphical model. For in­
stance, it knows about sufficient statis­
tics and some closed form solutions to ex­
pected values.

• It computes all required derivative func­
tions.

• It chooses an optimization algorithm.

• It finds the parameter values of maximum
posterior probability, together with the
Bayes factor and the Hessian of the poste­
rior evaluated at the final parameters.

• It generates optimized C code to evaluate
the model by performing a data flow anal­
ysis over the needed computations.

Now we could provide the system with an algo­
rithm scheme, such as EM or Gibbs sampling
(additional examples are given later), and have
the system come up with the necessary code for
the derivatives, expected values, probabilities,
and so forth. However, in this case the default
algorithm matching the graph is good enough.

We can now analyze the final model to see
what it tells us, for instance using available vi­
sualization tools. (All this is make believe.)
The classes that it finds are natural ones we
might expect. The banks are broken into differ­
ent classes according to whether they are closer
to the New York or London markets. Banks
that post infrequently tend to have a higher bid
ask spread than those that post often. Each
of these groupings also has different random

Copyright© 1995 Software Engineering Press

walks for their pricing. Some smaller banks,
for instance, tend to make larger changes.

We now go back to the drawing tool and re­
fine the model to account for the context of the
tick data. In the previous model, the relative
change that a bank will offer is assumed to be
determined by its class, but is otherwise a ran­
dom walk. In this case we also make the price
sensitive to the current average trend which is
dependent on previous prices. This new model
is given in Figure 6. Having drawn the new

irichlet

A,

Normal-Gamma

Price

Bank

Figure 6:
changes.

Trend sensitive model for price

model, we simply click the RUN button and
let the system re-optimize for the new config­
uration. This time, we could use the previous
classification got as the initial values for the
new extended model.

For this more complex model, we would
probably have to modify the default algorithm
scheme suggested by the system. This is some­
thing we expect in general, so the system in-

Copyright@ 1995 Software Engineering Press

eludes both a graphical model and a general
algorithm scheme as inputs. If the algorithm
scheme is missing, the system can provide a
default using general purpose algorithms such
as Gibbs, EM or MAP algorithms.

2.2 A more detailed example

An example of a graphical model for a simple
clustering problem is given in Figure 7. To be

N

Figure 7: A simple unsupervised learning prob­
lem.

explicit, we also have to give the full distribu­
tions for the variables in the graph. Assume
there are 10 classes, so class E {1,2, ... ,10},
and the variables vari are binary. The graphi­
cal model is a mnemonic for the following dis­
tributional assumptions for the j-th case being

var·· i,J

claSSj

~ Bernoulli with prob. success Oi,class1 ;

~ 10-dimensional Multinomial with

probabilities </>1, ¢2, ... , ¢10;

and for the parameters ¢ and O being

¢ ~ Dirichlet(0.1, 0.1, ... , 0.1) ;

Oi,c ~ Beta(Dq;, D(l - q;)) ;

for the hyper-parameters D, q1 , q2 , q3 . Using
an empirical Bayes approach, we set q; to be
the observed frequency of success for var; and

141

set D = 4 to yield reasonable prior standard
deviation for the possible values of 0i.

A matching algorithm scheme for this model,
an iterated EM algorithm in pseudo-code, goes
as follows:

1. Repeat, 5 times.

(a) Initialize the parameters </>, 0 ran­
domly according to their prior.

(b) Repeat until the maximum relative
difference in parameter values </>, 0 is
less than 1.0e - 5.

i. Reassign the sufficient statistics
for </> as follows:

N

problems with this algorithm scheme, for in­
stance, if a </>i approaches zero the score will
become ill-defined because some of the param­
eters will become redundant. This is irrelevant
for the purposes of our illustration.

3 High-level specification of
data analysis algorithms

An overview of the basic framework is given in
Figure 8. Inputs to the system are a graphical

ss(</>) ~ lclass·ivar1 · var2 • var3 • ,,_ 0 (clas .L...,; ' ,, , ,, ' ,, ,If',

i=l

11. For
c = 1, ... , 10, reassign the suf­
ficient statistics for 01,c, 02,c, 03,c
as follows:

i=l

Algorithm templates

lc1ass; lvar1 ,i ,var2 ,; ,var3 ,; ,¢,,q (lc1ass; =c var j,i)'-A __ ___::_ _ __,

iii. Replace </> and 0 by their MAP
values given the sufficient statis­
tics as above.

(c) Compute the score for the final pa­
rameter values as

_ d (d
2

logp(<f>,0lsample))
score - et d(</>, O)

2. Return the parameters </>, 0 matching the
best score.

The system would automatically compute the
derivatives, expected values, MAP calcula­
tions, and so forth and insert the code effi­
ciently into the major loops. Notice there are

142

'
'

Probability model

C program --------------- ' ------------

Figure 8: The basic framework for specifica­
tion.

model to specify the variables and their rela­
tionships, and an algorithm scheme to spec­
ify the algorithm. These two inputs can be
patched together from libraries.

Copyright © 1995 Software Engineering Press

3.1 A language to specify variables
and their relationships

Probabilistic graphical models (chain graphs
(27]) extended with plates are used here as a
specification language. When augmented with
specific functional forms such as the Gaussian
and the logistic, this language is sufficient pow­
erful to represent a broad range of problems
across several fields: generalized linear mod­
els, feed-forward networks, Jordan and Jacobs
mixture of experts (15], unsupervised learning
of many different kinds, and hybrids of these
models. A review of some of the learning prob­
lems represented appears in [5].

A graphical model implies a probability
model, thus it defines how probabilities, log­
probabilities, their derivatives, and some ex­
pected values can be computed, and in some
cases how sampling can be done. For a Gaus­
sian or discrete Bayesian network, for instance,
the usual exact computations are implied by
the graph (24]. Techniques for computing
these quantities are of course more complex
in other cases. In general, exact methods for
expected values are not known, and probabil"
ities are not in general easy to compute for
chain graphs and Markov networks, although
ratios of probabilities are. The automatic cal­
culation of derivatives on structures such as
graphs is a well understood problem [11]. In
neural networks, this corresponds to the Back­
propagation algorithm and its extensions for
second derivatives [7]. Likewise, the calcula­
tion of derivatives on probabilistic graphical
models is an application of the chain rule for
differentiation. Details appear in [3].

3.2 Algorithm schemes

Algorithm schemes are high-level algorithms
used as input for code generation and compi­
lation. The algorithm scheme refers to vari-

Copyright @ 1995 Software Engineering Press

ables, probabilities, log-probabilities, deriva­
tives, and expected values for items on the
graph whose computation can be determined
automatically. Thus the scheme is free of many
of the cumbersome equational details found
in most languages. Algorithm schemes them­
selves can be produced automatically from al­
gorithm templates for problems matching the
right preconditions, and in other cases may be
provided or refined by the user. We do not
give a specification of the scheme and template
language itself here, but the reader can infer
from the examples that the scheme language
is a fairly standard procedural language with
appropriate hooks into the matching graphical
model. Some sources for algorithm templates
are as follows:

• Gilks et al [10] have developed general al­
gorithms to perform Gibbs sampling on
Bayesian networks with plates.

• Other algorithms such as conjugate gradi­
ent, Fisher's scoring method, or Laplace
approximations [16] can be applied once
first and second derivatives are calculated
for model parameters.

• Lauritzen describes the application of the
EM algorithm [9] to Bayesian networks
with a single plate [17] in the context of
missing values. The more general applica­
tion of the EM algorithm for hidden vari­
ables is obvious, as for instance done in
unsupervised learning [12].

4 General discussion

One task that can never have direct software
support is the design of an appropriate model
with an appropriate prior. This is a knowledge
elicitation problem. Techniques here are var­
ied and range from careful choice of the repre-

143

sentation to simplify elicitation [13], to tech­
niques for working with components and li­
braries [2]. But the elicitation task still has
to be done afresh with each different problem,
except in those prototypical situations that
are routinely addressed by standard statisti­
cal packages. While one might use a standard
package in initial modeling, as the problem be­
comes better understood specific requirements
are needed that canned software may not pro­
vide. Of course, tools for software generation
alleviate the modeling task greatly by provid­
ing rapid prototyping. Nevertheless, it is my
view that a sizeable burden in the Bayesian
analysis of data is software engineering rather
than the statistical analysis itself, and there­
fore software generators and support tools are
both a realistic and important goal.

Naturally, an important part of such a
framework is component libraries containing
modules for common sub-tasks. Almond et
al. [2] point out that parts of a graph, com- ,
ponents, are often shared in a series of applica­
tions. Learning and data analysis are no dif­
ferent.

References

[1] Y. Abu-Mostafa. Financial market appli­
cations of learning from hints. In Neu­
ral Networks in the Capital Markets. John
Wiley & Co., 1994.

[2] R.G. Almond, J.M. Bradshaw, and
D. Madigan. Reuse and sharing of graphi­
cal belief network components. In Cheese­
man and Oldford [8], pages 113-122.

[3] W. Buntine. Operations for learning with
graphical models. Journal of Artificial In­
telligence Research, 2:159-225, 1994.

144

[4] W.L. Buntine. Learning classification
trees. In D.J. Hand, editor, Artificial
Intelligence Frontiers in Statistics, pages
182-201. Chapman & Hall, London, 1991.

[5] W.L. Buntine. Representing learning
with graphical models. Technical Report
FIA-94-14, Artificial Intelligence Research
Branch, NASA Ames Research Center,
1994. Submitted.

[6] W.L. Buntine and A.S. Weigend. Bayesian
back-propagation. Complex Systems,
5(1):603-643, 1991.

[7] W.L. Buntine and A.S. Weigend. Com­
puting second derivatives in feed-forward
networks: a review. IEEE Transactions
on Neural Networks, 5(3), 1994.

[8] P. Cheeseman and R.W. Oldford, editors.
Selecting Models from Data: Artificial In­
telligence and Statistics IV. Springer­
Verlag, 1994;

[9] A.P. Dempster, N .M. Laird, and D.B. Ru­
bin. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the
Royal Statistical Society B, 39:1-38, 1977.

[10] W.R. Gilks, A. Thomas, and D.J. Spiegel­
halter. A language and program for com­
plex Bayesian modelling. The Statistician,
43:169-178, 1993.

[11] Andreas Griewank and George F. Corliss,
editors. Automatic Differentiation of Al­
gorithms: Theory, Implementation, and
Application, Breckenridge, Colorado, Jan­
uary 6-8 1991. SIAM.

[12] R. Hanson, J. Stutz, and P. Cheese­
man. Bayesian classification with correla­
tion and inheritance. In IJCAI91, editor,

Copyright@ 1995 Software Engineering Press

International Joint Conference on Arti­
ficial Intelligence, Sydney, 1991. Morgan
Kaufmann.

[13) David Heckerman. Probabilistic Similarity
Networks. MIT Press, 1991.

[14) J.A. Hertz, A.S. Krogh, and R.G. Palmer.
. Introduction to the Theory of Neural

Computation. Addison-Wesley, 1991.

[15) M.I. Jordan and R.I. Jacobs. Super­
vised learning and divide-and-conquer: A
statistical approach. In Machine Learn­
ing: Proc. of the Tenth International Con­
ference, pages 159-166, Amherst, Mas­
sachusetts, 1993. Morgan Kaufmann.

[16) R.E. Kass and A.E. Raftery. Bayes factors
and model uncertainty. Technical Report
#571, Department of Statistics, Carnegie
Mellon University, PA, 1993. To appear,
Journal of American Statistical Associa­
tion.

[17) S.L. Lauritzen. The EM algorithm for
graphical association models with missing
data. Computational Statistics and Data
Analysis, (19):191-201, 1995.

[18) D.J.C. MacKay. A practical Bayesian
framework for backprop networks. Neu­
ral Computation, 4:448-4 72, 1992.

[19) D. Madigan, A.E. Raftery, J.C. York, J.M.
Bradshaw, and R.G. Almond. Strategies
for graphical model selection. In Cheese­
man and Oldford [8], pages 91-100.

[20) J. Moody and L. Wu. Statistical analy­
sis and forecasting of high frequency ex­
change rates. In Proceedings of Neu­
ral Networks in the Capital Markets. '94,
Pasadena, CA, 1994.

Copyright© 1995 Software Engineering Press

[21) R.M. Neal. Probabilistic inference us­
ing Markov chain Monte Carlo methods.
Technical Report CRG-TR-93-1, Dept. of
Computer Science, University of Toronto,
1993.

[22) H. Scott Roy. A Theory of Learning Clas­
sification Rules. PhD thesis, Stanford
University, 1995. Pending .

[23) R.D. Shachter. Evaluating influence di­
agrams. Operations Research, 34(6):871-
882, 1986.

[24] R.D. Shachter, S.K. Andersen, and
P. Szolovits. Global conditioning for prob­
abilistic inference in belief networks. In
R. Lopez de Manta.ms and D. Poole,
editors, Uncertainty in Artificial Intelli­
gence: Proceedings of the Tenth Confer­
ence, pages 514-522, Seattle, WA, 1994.

[25] D.J. Spiegelhalter and S.L. Lauritzen. Se­
quential updating of conditional probabil­
ities on directed graphical structures. Net­
works, 20:579-605, 1990.

[26] M.A. Tanner. Tools for Statistical Infer­
ence. Springer-Verlag, New York, second
edition, 1993.

[27] N. Wermuth and S.L. Lauritzen. On sub­
stantive research hypotheses, conditional
independence graphs and graphical chain
models. Journal of the Royal Statistical
Society B, 51(3), 1989.

145

Summarizing Time Series Data for Optimizing the Settings
of Technical Indicators

George K. Georgiou Bon K. Sy David B. Sher
Nassau Community College

State Univ. of New York
Dept. of Mathematics

Garden City, NY 11530
(516) 572-7203

Queens College and Queens College and
The Graduate School of The Graduate School of

The City Univ. of New York The City Univ. of New York
Dept. of Computer Science Dept. of Computer Science

Flushing, NY 11367 Flushing, NY 11367
(718) 997-3500 (718) 997-3500 sher@amanda.dorsai.org

georgiou@qcvaxa.acc.qc.edu bon@bunny.cs.qc.edu

Abstract

Finding the optimal setting(s) of a technical indica­
tor with respect to the historical data of a given stock
is a computationally expensive task because the size
of the data is normally large. This paper presents
a method for partitioning the data into equivalence
classes such that each class contains data blocks of
similar patterns. Then, optimizing the settings of
a technical indicator with respect to an instance is
equivalent (or close to equivalent) to that for the en­
tire class. We discuss the metrics involved in the
derivation of equivalence classes and an example il­
lustration of the optimization process.

1. Introduction

Developing intelligent trading systems that sig­
nal profitable entry and exit points of the long
(or short) trades of a stock (or commodity) is
a research area which may produce useful tools
for alerting and assisting traders in critical deci­
sion making. A "good" intelligent trading sys­
tem should advise its users taking a position at
the optimal (or close to optimal) trading oppor­
tunities. By optimal we mean the peak and the
bottom of each upward/ downward trend.

A critical task related to the development of an
intelligent trading system is the choice of a set of
technical indicators [1,2,6-10) with optimal pa­
rameter settings that maximizes a pre-defined
utility function. For example, a utility function
can be defined in terms of the net profit (loss)
resulted from the trades initiated at a certain
period of time [4).

There are two optimization problems involved
in the task just mentioned: (i) the optimal set­
ting(s) of a technical indicator with respect to
the historical data of a given stock/ commodity,

146

(ii) the optimal combination of the technical in­
dicators that maximizes a utility function. In
this paper, we focus on the first optimization
problem.

Optimizing the parameter setting of a technical
indicator with respect to the historical data of a
given stock/ commodity is very computationally
expensive because the size of historical data is
normally large. This paper presents a method to
deal with the computational problem by "sum­
marizing" the behavior of a stock/ commodity.
Our approach is based on the partition of the
data into equivalence classes such that each class
contains data blocks of similar patterns. By do­
ing so, optimizing the parameter setting of a
technical indicator with respect to an instance
is equivalent to that for the entire class, thus
reducing the computational cost. In this paper,
the equivalence class is induced by the criterion
that the data patterns exhibited by the data
blocks of the same class closely resemble each
other.

Partitioning a data set into equivalence classes
of similar patterns requires the identification of
data patterns which exhibit similar behaviors.
Patterns that are not similar to any other data
pattern in the data set, are called unique pat­
terns or data signatures [3] and each forms a class
of its own. Therefore, the lower bound of the
number of classes that a data set may be par­
titioned into heavily depends on the number of
data signatures.

In section 2 we discuss the concept of similarity
between data patterns. Section 3 presents a dis­
cussion on class equivalence and a classification
algorithm for summarizing a data set. Section
4 describes an alternative method of classifica­
tion that first identifies the data signatures in

Copyright@ 1995 Software Engineering Press

a data set and then derives classes from all the
non-signatures. We describe the optimization of
the settings of a technical indicator along with
an example illustration in section 5. Finally, we
conclude the paper in section 6 along with future
research directions.

2. Similarity Between Data Patterns
The similarity (or sameness) between two enti­
ties can be thought of as a predicate that re­
turns truth or falsity depending on the criterion
that we use. This criterion can be an n-tuple
of attributes and two entities are rendered sim­
ilar if they have matching attributes. For ex­
ample, if we are interested only in shape, then a
green pepper and a yellow pepper are similar ob­
jects, but if we are interested in shape and color
then they are not. In matching individual at­
tributes in some cases one might only accept ex­
act matches, while in some other cases one might
accept an almost exact match, particularly when
an exact match is virtually impossible to get due
to the subjectivity of the attribute.
In dealing with time .series data we are inter­
ested in summarizing the "behavior" of the se­
ries. One way to derive this summarization is to
consider the various subsets of the series (given
some subset size) and describe the behavior of
each subset in relation to other subsets .. The be­
havior of each subset is an ordered description
of the consecutive data points involved, with re­
spect to their respective values. For instance, a
subset of three points, Pi, P2 and Pa has an up­
down (or{+,-} or a peak) behavior, if the value
of P2 is higher than the other two. Moreover, we
are interested in the magnitude of this behavior;
i.e., the actual shape of the peak relative to the
values of the points involved. For these reasons
and for the purpose of determining similar be­
havior among subsets of the series (which we call
data patterns), we are using the linear correlation
coefficient, a standard and widely applied mea­
sure of the degree of association between two
series of values (also known as Pearson's r and
product-moment correlation coefficient). For pairs
of values (xi, Yi), i = 1, • • ·, m, the linear correla­
tion coefficient pis given by [5]:

E(xi - x)(Yi - ii)
i

p = --;:====--;::==== Jr; (x, - ii:)
2 Jr; (y; - ii)

2

The coefficient, p, is bounded between -1 and
+1, inclusive. A value of p close to 1 denotes

Copyright© 1995 Software Engineering Press

positive correlation (i.e., x and y are increas­
ing or decreasing together), while a value of p
close to -1 denotes negative correlation (i.e., y
increases as x decreases or vice versa). A value
of p near zero indicates that the two series are
uncorrelated.

Each pair of terms considered in the statistic is
scaled by the expected value (mean) of its cor­
responding subset series. Therefore, it is not
necessary to de-trend a series before attempting
to summarize its behavior. In our case, two sub­
sets (of equal size) of consecutive data values are
considered similar to each other, if they have a
high positive correlation. At this point we can
see that the criterion of similarity between two
patterns is some predefined correlation thresh­
old, p. Then, the closer pis to 1, the stricter the
acceptance for similarity.

3. Deriving Equivalence Classes

Each data pattern in a time series, X(t), is char­
acterized by its size (number of data points), k,
and its time stamp (its time of occurrence), ta
(Figure 1). For the rest of the paper we denote a
data pattern by P}(ta)• Then, given k, it can be
easily seen that in a series X(t) there are n-k+l
data patterns, where n is the size of X(t).

~
Q)

140

::J 120

«s 100
> 80

80

40

20

0

time

Figure 1: A time series and a pattern

Our task is to partition these n - k + 1 pat­
terns into groups (classes, Cl~k (i)s) of similar
patterns. In each class we include only data pat­
terns whose pairwise correlation (with all other
data patterns of the class) is equal or higher than
a predefined correlation threshold, p. By do­
ing so, we ensure that the transitivity property
holds true within the class. Each derived class is
an equivalence class (i.e., a class whose members
satisfy the RST properties; namely, Reflexive,
Symmetric and Transitive) and each instance
(data pattern) in a class is a summary of the
class.

147

To derive these equivalence classes we first de­
cide on the size of the patterns we wish to an­
alyze (i.e., set the value of k) and the criterion
of similarity (i.e., the correlation threshold, p).
Then, initially we consider that each possible
pattern of size k in the series is in its own class.
Subsequently, we start processing pairs of pat­
terns (in an ordered fashion) in an attempt to
find pairs whose correlation is above the thresh­
old. For example, if P_¾(t 1) is found to correlate
with P_¾(t5) then we know that we can group

- k
these two patterns in the same class, say CllJt (1).
Keeping track of a parent-child association be­
tween these two patterns, we continue to pro­
cess P_¾(t5) in an attempt to add members to
the already established class. So, if say, P}(ts)
correlates with P_¾(t 16), we will include P_¾(t16)
in the class CtlJi"(l) only if it correlates also with
P}(t1). In addition, the parent-child association
between P_¾(t5) and P}(t15) is established only
if P}(t16) is accepted as a member in the class.
For instance, if P}(t16) does not correlate with
P_¾(t 1) then P}(t16) is not accepted in CllJi"(l)
and the search proceeds by testing P_¾(ts) with
Pk(t 17). The process is an iterative one, and at
each iteration it only considers patterns which
are not classified by previous iterations.
Following is the algorithm to derive these equiv­
alence classes.

Algorithm 1: Derivation of equivalence classes
from set X(t).

Input: A time series data set, X(t), data win­
dow, k, correlation threshold, p.

Output: The set, CtlJi", of all equivalence classes,
Cl~"(i)s, in .X(t).

Description: Let CllJi" - {} and set p, k.
Set a - 1, /3 - 2, , - 1, x - l
and n - IX(t)I

/* initialize each pattern to be in its own class * /
loopl: if x > n - k + l then goto 1

else P_¾(tx).parent - x
P}(tx).child f- x
x-x+l
goto loopl

/* compute classes * /
1: if a ~ n - k + l then goto 2 else goto 7

2: if P}(ta).parent = P}(ta).child then goto 3
else a - a+ 1

goto 1

3: if /3 ~ n - k + l then goto 4

148

else insert P_¾(ta) in Cl~"(i)
insert c11Ji"(i) in c11Ji"
i -i+ 1
,-,+1
O:' - 'Y
/3-a+l
goto 1

4: if P}(ttJ).parent = P}(ttJ).child then goto 5
else /3 - /3 + l

goto 3

5: if p(P}(ta), P}(t/J)) 2: j5 then goto 6
else /3 - /3 + 1

goto 3

6: if Pk(ta).parent = a then
insert P_¾(ta) in CllJi"(i)
P_¾(ta).child - /3
P}(ttJ).parent - a

O:' - /3
/3-a+l
goto 3

else x - a
a - P}(ta).parent

loop2: if p(P}(ta),P}(t/3)) 2'. p then
if P}(ta).parent # a then

a - P}(ta).parent)
goto loop2

else insert P_¾(tx) in CliJi"(i)
P_¾(tx).child - /3
P}(ttJ).parent - x
O:' - /3
/3-a+l
goto 3

elsea-x
/3-/3+1
goto 3

7: Return CllJi"

4. Data Signatures and Equivalence
Classes

In the previous section we discussed an algo­
rithm for deriving the equivalence classes of pat­
terns in a data series. In this section, we de­
scribe an alternative two-step method of deriv­
ing equivalence classes. First, we discover the
unique patterns of the series which we call data
signatures[3].

Formally, a data signature is a block of consecu­
tive time varying data points which exhibits low
or no statistical correlation to any other block of
data in the same data set.

Copyright© 1995 Software Engineering Press

For instance, the two patterns shown in Fig­
ure 2a are data signatures since they have low
correlation. In Figure 2b the middle pattern is a
data signature, since it does not correlate highly
with either one of the extreme blocks. The two
extreme blocks are not data signatures because
they are almost identical (highly correlated).

Figure 2a Figure 2b

A data signature is found if its correlation with
all other data windows in X(t) is less than a
predefined correlation threshold, p.
Once we derive the data signatures for a par­
ticular correlation threshold, we know the lower
bound of the number of equivalence classes we
would deal with, which is # of data signatures +1.
In other words we know that a data signature
forms a class by itself. In addition, we do know
that if a data pattern is not a data signature,
then there exists at least one other data pattern
(possibly more) with which it is highly corre­
lated, and therefore, together they may form an
equivalence class. At this point we proceed to
the second step. The data patterns which were
found to be non-signatures are further consid­
ered in the derivation of the remaining equiv­
alence classes using the algorithm described in
section 3.
Although for the purpose of deriving equivalence
classes this approach is never better (computa­
tionally) than the straightforward approach de­
scribed in the previous section, by first identi­
fying the unique patterns of a series, we do get
a better insight on the number of true single el­
ement classes. A unique pattern is guaranteed
to be its own class regardless of which method
we use. But, with the straightforward approach
we do not really know whether a particular one­
element class contains a unique pattern or a pat­
tern which correlates with a few but not all of
the patterns of some other class.

5. Setting a Technical Indicator
The basic function of a technical indicator is to
assist a user in making trading decisions (i.e.,

Copyright© 1995 Software Engineering Press

when to buy and when to sell). The indicated
trading actions are dictated by a set of parame­
ters incorporated in the formula of the indicator.
A popular such indicator is the Wilder Relative
Strength Index, (RSI) [9,10]. RSI is a momentum
oscillator that measures the velocity of direc­
tional price movement by comparing a stock's
highest highs and lowest lows over a period of
time, thus able to indicate trend reversals at an
early point. The formula for RSI is:

where

RSI = 100 - lOO
l+RS

RS_ Average of Up Clo,es for X Number of Days
- Average of Down Closes for X Number of Days

The number of days considered in RSI is thus a
parameter. Moreover, a second pair of settings
involves the thresholds for a buy and/ or a sell
signal. For example, setting these two parame­
ters at 30 and 80 respectively, then a buy signal
is triggered when RSI goes from a value of less
than 30 to greater than 30 and a sell signal is
triggered when RSI goes from a value of greater
than 80 to less than 80. Figure 3 visually dis­
plays the series of the daily closing price of a
stock (upper graph) for a two-year period and
its corresponding 9-day RSI (lower graph) with
30 and 80 trading thresholds.

Figure 3: A stock and its 9-day RSI

The optimization of a technical indicator is the
setting of the aforementioned parameters such
that a utility function, e.g., net profit, is max­
imized. Generally speaking, optimizing the pa­
rameters of the indicator is specific to the stock
and in particular to a specific time period. In
other words, the optimized setting of the indica­
tor for some period of the stock may be different
than the optimized setting of the same indicator
for some other period.

149

Traders are usually interested in the settings of
an indicator which historically have a "good"
performance, with the belief that they will work
effectively in the future as well. In finding those
settings, one might decide to consider a fixed
length time period, say 100 days, and pull sev­
eral 100 day periods from the historical data and
check for a consistent performance of the setting
of the indicator for these periods. By consistent
performance we mean that the chosen settings
return a value (or values) of the utility function
which are approximately close. While this is a
common and practical approach, theoretically,
there are n - 100 + 1 different 100 day periods
that the user would have to consider when op­
timizing the indicator. Immediately we can see
that this raises computational concerns.
By summarizing the stock data in classes of sim­
ilar patterns we want to avoid optimizing the
parameters of an indicator for patterns that are
found to be similar, since setting these parame­
ters for similar patterns would be approximately
the same. The question that arises is how consis­
tent those settings are for members of the same
class under different values for the pattern size
and correlation threshold.
To address this question we experimented with
the daily closing price of International Business
Machines stock (IBM). We applied our classifi­
cation algorithm on the data using different cor­
relation thresholds (0.5, 0.6, 0.7, 0.8, 0.9 and
0.95) at different pattern lengths (20, 50 and
100). Our preliminary results indicate that the
larger the pattern size the smaller the number
of classes we partition the series into (i.e., an
increased ratio of number of possible patterns
over the number of classes found which trans­
lates to more patterns per class) regardless of
the correlation threshold. Our criterion for set­
ting the trading thresholds of the 9-day RSI in­
dicator was set to be the value crossing the bot­
tom (buy signal) and the value crossing the peak
(sell signal) of the indicator's pattern. We found
that these values for patterns in the same class
for higher correlation thresholds such as 0.9 and
0.95 were significantly more consistent than for
lower correlation thresholds. Also, analysis with
patterns of length 100 resulted in more consis­
tent results than for the smaller lengths.

6. Conclusions
A theoretical optimization of the parameters of a
technical indicator on a time series data requires

150

the processing of all the patterns from the data
of some length k. We presented a method to
deal with this computational complexity, parti­
tioning the series in patterns of similar patterns
and then optimizing the parameters using only
one pattern per class. In our preliminary exper­
imental results we found that the level of consis­
tency for settings of the 9-day RSI indicator for
a particular stock, increased with higher corre­
lation thresholds and larger data patterns.
In our future work, we will conduct experiments
with various technical indicators and different
utility functions in an attempt to derive an opti­
mal combination of indicators over a wide range
of stocks.

Acknowledgments
We would like to thank the anonymous refer­
ees for their valuable suggestions and comments.
This work has been supported in part by a grant
from the City University of New York: (PSC­
CUNY Research Award Program).

References
[l] R. Amacher, H. Ulbrich, Principles of Eco­
nomics, South-Western Publishing, 1986.

[2] R. W. Colby, T. A. Meyers, The Encyclopedia
of Technical Market Indicators, Homewood, ill. :
Dow-Jones-Irwin, 1988.

[3] G. K. Georgiou, B. K. Sy, D. B. Sher,
Data Signatures for Validation and Evaluation
of Temporal Associations, in Proceedings of the
1995 Florida AI Research Symposium, Melbourne
Beach, Florida, April 1995.

[4] J. E. Granville, New Strategy of Daily Stock
Market Timing for Maximum Profit, Prentice-Hall,
Englewood Cliffs, NJ, 1976.

[5] M. Hamburg, Statistical Analysis and Decision
Making, HBJ, 1991.

[6] P. J. Kaufman, The New Commodity Trading
Systems and Methods, New York:Wiley, 1987.

[7] G. C. Lane, Stochastics, Trading Strategies,
Futures Sym Intl, 1984.

[8] G. C. Lane, Lane's Stochastics, Technical
Analysis of Stocks and Commodities, June, 1984.

[9] Telescan Inc. Telescan Reference Manual,
Houston, Texas, 1993.

[10] J. W. Wilder, Jr., New Concepts in Tech­
nical Trading Systems, (Trend Research, Box 128,
McLeansville, NC 17301), 1978.

Copyright© 1995 Software Engineering Press

A NEWS CATEGORISATION SYSTEM FOR TRADERS AND ANALYSTS

L.Gilardoni, P.Prunotto, G.Rocca
Quinary SpA

via Crivelli, 15/1
20122 MILANO, Italy

Tel: +39-2-58302712 ; Fax: +39-2-58305374
E-mail {lg,pp2,gr}%quinary@iunet.it

Abstract

In this paper we discuss how different techniques
have been integrated in a system designed to
perform fine grain text categorisation, involving
information extraction, of natural language
texts. The texts analysed are agency news
(Reuters news), while the target users are traders
and analysts of an Italian merchant bank, which
requested the possibility of having both a broad
and a fine grain text categorisation. The need
for a flexible text categorisation system which
could be able to perform a rich categorisation
lead to the development of a new system
integrating different text analysis techniques.
The techniques used range from pattern based
text analysis, used for a first 'shallow'
categorisation, to full NLP, including full text
parsing and semantic analysis of the text.

The work reported has been done in the
framework of the LRE (Linguistic Research and
Engineering) project COBALT (LRE 61-0I 1);
LRE projects are partially funded by CEC. The
COBALT prototype was developed by a team
composed by Quinary SpA, Italy, UMIST-CCL,
UK, Cril, France, Reuters SpA, Italy, and
Euromobiliare, Italy.

1. Introduction

Managing the overwhelming amount of
unstructured, textual information made available
in electronic form, either via on-line information
sources or via e-mail or in CD-ROM is
becoming a crucial task. The main requirements
to attack this problem are the ability of
recognizing concepts mentioned in the texts and
to relate a portion of text to a set of conceptual
categories.

When dealing with financial news, several
systems have been built performing a broad
categorisation, recognizing the main topics the
news deal with, but a more powerful approach is

Copyright © 1995 Software Engineering Press

F.Deotto, A.Di Cresce
Euromobiliare S.I.M S.p.A

via Turati, 9
20121 MILANO, Italy

Tel:+39-2-62041

needed to perform a richer categorisation, able
to discriminate also on details reported in the
agency news. The requirements of performing a
precise categorisation, with a high degree of
recall and precision, and of managing big
amounts of texts, impose severe constraints on
the possible approaches to the problem.
Keyword search and pattern matching
techniques on their own are fast and cost
effective, but can't achieve the accuracy users
need from an automated system. On the other
hand, more complex systems, based only on
natural language understanding technologies,
are still much too slow and not robust enough
for practical uses.

The basic idea behind the Cobalt approach is
therefore to integrate different technologies such
as shallow pattern matching and robust syntactic
and semantic analysis in order to get the
advantages of each while overcoming their
weaknesses. The main challenge is obviously to
manage the integration, both from the point of
view of effectively being able to obtain the best
result from each component and from the point
of view of building a robust, extendible system.

The main glue among the different components
is given by the use of knowledge representation
techniques to describe the main concepts in the
application domain and the relationships among
the different kinds of information that can be
extracted by the different modules. This allows
us to define a 'common substrate' for each
component specific knowledge and therefore to
manage integration defining opportunistic
strategies depending on 1) partial results of each
component 2) domain knowledge available to
the system and 3) known capabilities of each
component. Moreover it becomes possible to
exploit domain knowledge to manage the
complexity of patterns and analysis rules,
making it easier to maintain and extend the
system.

151

2. The Cobalt Project

The COBALT project ([1]) was concerned with
the problem of capturing factual and
definitional knowledge from textual sources.
The main aim of the project was to demonstrate
that different text analysis techniques can be
used together to provide a system able to
perform a fine grain classification, placing it at
the boundary between text categorisation
systems and text understanding systems (which
are generally characterised by tasks such as
being able to extract information from texts or
to summarise or abstract texts [2]).

Research and development activities in COBALT
resulted in the production of an experimental
"empty categorisation shell", which has been
used for the real-world prototype described in
this paper. The main aim of the prototype is to
be able to recognise news which are interesting
for the end user from the set of news distributed
by Reuters' datafeed and to make them available
for routing and retrieval. The possibility of
filtering important news at a particular moment
will greatly aid end users in their work since it
will make it possible for them to concentrate
only on the potentially important news without
being diverted by the big amount of
uninteresting ones distributed by the datafeed.

Both end users of this prototype, the analysts
and traders, are mainly interested in financial
news, related to specific companies and stock
markets as well as to the economic and political
situation of the country. Although the two
different types of users are interested in the same
kind of news, they however have quite different
requirements with respect to the kind of
categorisation that must be performed.

Traders, who are in charge of buying and selling
stocks on the market need help in quickly
discriminating between news; for this type of
user, a broad categorisation identifying the main
topics pertaining to the financial news types is
sufficient since they need to keep an eye on the
overall market situation without being
overwhelmed by the great amount of incoming
news. Their major requirements are a high speed
of the system (since the arrival of a relevant news
may imply an immediate reaction in the market)
and a high recall, which is preferred to a high
precision since they do not have to miss out any
of the possibly relevant news.

On the other side, analysts are usually assigned
to specific sectors and they use news as a source
of information for making analyses and writing

152

reports regarding their sector and the companies
belonging to it. Unlike the traders, time is not so
much a constraint, since they do not have to
react immediately to a news but have instead
plenty of time to reflect on its contents and on
the longer term impact it may have. Moreover,
this kind of user needs a fine grain news
categorisation since they are usually interested in
filtering news depending on particular
information regarding the main topics identified
by the broader categorisation; for example, they
might be interested in filtering news depending
on who is the vendor in a stake modification
story.

While the first users mainly need a broad
categorisation, supplied by what we will refer to
in this article as "base categories", the second
users' need implies the necessity for the system
to have some capabilities of information
extraction which is to be used for the
identification of the fine grain categories. In the
following we will refer to this fine grain
categorisation as "compound category"
assignment, since it implies the identification and
extraction of information which will fill some
slots (what we call 'category relevant slots') that
have been associated to the base categories thus
rendering them "compound".

While base category assignment may be
achieved with quite a high accuracy through a
shallow analysis of text (in Cobalt done using
pattern matching techniques), the identification
of compound categories requires a deep
syntactic and semantic analysis of the contents
of the text. Information to be inserted in the
relevant slots to build compound categories
could then be extracted from the text
representation that results from the deep
analysis.

The mechanism that controls text analysis is
based therefore from one side on knowledge
about how to perform categorisation and on how
to extract relevant information from texts, and
from the other side on user needs, explicitly
stated in terms of filters, expressed as boolean
combinations of the categories that have been
defined for the system.

3. Categories and Concepts defined for the
Cobalt Prototype

The end users are interested in financial news
both related to specific companies listed in the
Milan stock exchange as well as to news related
to the behaviour of certain foreign stock markets

Copyright@ 1995 Software Engineering Press

and to the political and economic situation of
the country.

In the prototype, a set of categories has been
defined (in a hierarchical manner) for the
company news and for the foreign _st_ock market
behaviour news; the political and
macroeconomics news related to the country
(Italy) have not been treated.

The total number of base categories defined is
240; where 15 pertain to the stock market news
and 225 to the company news. Out of the
defined categories, 180 are explicitly assigned
by categorisation rules an~ the rest act. as
containers for grouping the different categones.
Approximately 155 of the explicitly assi~ned
categories actually correspond to either
company or stock market . instance~.
Approximately 100 concepts _(1.~; gen~nc
concepts, such as "stake_sell~ng , hav~ng
patterns defining them) and 150 mstances (1.e.
concept instances, such as "Fiat" which ~ave
associated specific patterns) have been defmed
to treat the company news; 22 concepts and 14
instances have been defined for the stock market
news for a total number of approximately 550
patterns.

Regarding the hierarchical structure of the
category KB, there is a root category named
category_ which has two main subtrees
respectively for the company news and for the
stock market news.

For the company news, the further identified
categories correspond to the single company
instances the user is interested in (companies
listed in the Milan stock exchange) defined
hierarchically reflecting their sectorial
subdivision as already used by the users, and
categories identifying topics pertaining to
company news. Such topics are for example:
share capital changes . (capital increase and
decrease), stake selling and buying, share
offerings, initial public offerings, quarterly,
yearly and half yearly economic re~ults, c~anges
in the management of the compames, ratmg of
companies.

For the stock market news, the single foreign
stock markets the user is interested in, and the
different behaviour of the markets (we have
identified them as up, down and steady)
constitute the further classification.

For some of the categories, a set of relevant slots
has been defined thus allowing the users (mainly
the analyst) to specify compound categories.
Fine grain categorisation rules have been
initially defined for: stake_modification,

Copyright© 1995 Software Engineering Press

share offer and form_joint_ venture. For these,
we will give therefore a more detailed
description both regarding the base category
and its relevant slots.

stake modification: should be assigned if the
news speaks about the sale/acquisition of a stake
or shares of a company. In a stake modification
event there are different roles: the vendor of the
stake, the buyer of the stake and the object of
the sale, i.e. shares or a stake of the company
whose share/stake is being traded. Other
information such as the amount of the
stake/shares, and the price paid are relevant for
the creation of compound categories. Attributes
have therefore been defined for this base
category to take into account this information
and in particular they are: ":vendor",
":buyer", ":company_name", ":goods",
":number-of-shares", ":stake-percentage",

' " 1 • " d " " ":unit-price' , :tota -pnce an :currency .
An example of compound c~t~go~y t~at co~ld
be formulated is :stake_modificat10n m which
the stake-percentage being traded is greater than
50%.

share offer: should be assigned if the news
speaks-about either an offer to buy or to sell
shares of a company. The relevant information
for this base category are: whose shares are
being offered and by whom, the amount of
shares and the price for the offer, which are
identified respectively by the following relevant
slots: ":company-name", ":offerer",
":amount", ":unit-price", ":total-price" and
":currency".

form.Joint_ venture: should be assigned if ~he
news speaks about two or more compames
joining up to form a joint venture. The outcome
of a joint venture is usually a new co~~any_ or
the modification of one of the part1cipatmg
companies with an exchange of shares_ among
them. Information that has been associated to
this base category are represented by the
following relevant slots: ":companies­
involved:" identifying the companies involved
in the venture; ":venture-outcome:" which is
the new company formed as a results of the
venture; ":investment:" indicating the quantity
invested in the venture; ":currency" which
identifies the currency the investment is
expressed in; ":activity" of the new joint
venture; (for example: production, sale, design,
marketing, services); ":phase:" identifying in
what phase of the venture agreement the venture
is in (whether we are in a plan, agreement or in
the actual activation of the venture); ":sales"
which identifies the expected sales or sales
volume of the new venture; ":stake-

153

partitioning:" which identifies the stake division
in the new venture of the participating
companies.

Figure 1 below reports a portion of the
~iera_rchy as shown through the system
mtertace; bold nodes represent base categories,
with underlying text reporting available relevant
slots; boxed nodes mean that a subhierarchy
exist below the node.

ORM AGREEMENT

HARE CAPITAL
(:cocnpaay- name)

TAKE RELATED
(:cocnpaay-name)

OMPANY RE SUL TS
(:cocnpaay- name :yn1)

Fig. 1: a portion of the category hierarchy

In order to assign the categories to the texts, a
knowledge base of concepts has been defined in
:,vhich the domain knowledge is expressed both
m terms of properties and relations existing
between concepts, and in terms of patterns which
are used to perform the shallow analysis.
Concepts are organised in a hierarchy which can
be exploited for score inheritance by the shallow
categorisation rules [3].

Entities describing the domain range from the
single instances identifying the stock markets,
and the corresponding market indexes, the user
is interested in; the companies listed in the Milan
stock exchange organised in a hierarchy
reflecting the sectorial division used by the user;
entities appearing in the balance sheet and
res~l~s stat~m~nts; currency instances; personal
pos1t10ns w1thm an enterprise. Such entities are
obviously described by properties (for example,
:company-name for the concept company_) and
relati_ons linking these entities (for example, the
relation :stock-market-index and its inverse
:related-bourse which link instances of the
concept stock_market to instances of the
concept stock_market_index). The KB contains
also concepts describing the possible actions that
are relevant in assigning the categories

154

identified, such as, for example, the
buying/selling of shares/stakes in a company, the
increase or decrease of the share capital, the
upward and downward behaviour of shares and
stock market indexes, the forming of a joint
venture, the election to or dismissal from the
board of directors and so on.

4. Prototype Functionalities

The main functional requirement for the
prototype is that of being able to filter news
coming from a datafeed according to user
specified interests. User interests vary both from
user to user, and, for each user, from moment to
moment according to the specific situation or
work he is doing in a particular moment. Thus
the necessity of a user configurable system
which allows him to specify from moment to
moment his interests in terms of categories (base
or compound) to be satisfied by news in order
for them to be reputed interesting. The news
which satisfy the user's interests will then be
made available to him and will displayed on the
screen.

Besides specifying the meaning of interesting
news, the users wanted to have the possibility of
displaying the different kinds of news in
different windows on the screen thus aiding
them in further visually classifying among the
filtered relevant news.

For this reason the idea of "user profile" has
been introduced in the prototype and has been
defined as a set of windows to which a set of
filters is associated. Profile execution should
then consist in the display on the screen of the
windows defining it, and in the display of the
headlines of the incoming news in the windows
which have associated at least one filter which is
satisfied by the category assignment that has
been performed on the news by the system. The
user could then read or print the entire text of
the news whose headlines appear in the profile
windows.

Filters ai:e defined by specifying both a name, a
level of importance and a definition in terms of
boolean combinations of categories (be them
base or compound). The level of importance for
a filter defines the action to be performed when
the filter is satisfied. Simple actions involve
evidencing the title using different colours, or
directly displaying the news contents, or sending
alert messages to the user via e-mail.
Straightforward extensions could include
integration in workgroup environments and

Copyright@ 1995 Software Engineering Press

storing of classified texts in specialized data
bases.

Following is an example of filter definition
containing the base category formjoint_ venture
and the compound category defined by
specifying. the slot :vendor for the base category
stake_modification:

"(or form_joint_ venture
(stake_modification where :vendor Fiat))

5. Cobalt Architecture

The COBALT system is composed of four main
modules; one which performs shallow analysis,
two devoted to deep analysis, performing
syntactic and semantic analysis of text, and a
control module.

The shallow categorisation component of
COBALT (TCSM, Text Categorisation System
Module) is based on a commercial product, and
is aimed at identifying in each considered text
portion references to known concepts. Such
references are recognised thanks to the presence
of defined combinations of keywords
("patterns") that are associated with the
concepts' definitions.

The basic text categorisation system has been
enhanced by integrating it with a knowledge
representation language that allows to describe
the domain of interest, expressing entities'
properties and relations. Domain concepts are
represented as frame-like objects organised in a
hierarchy, and patterns exploit domain
knowledge represented in the concepts
knowledge base; moreover, the concepts
hierarchy allows inheritance of patterns as well
as of match results. This work, which is
described in detail in [3], represents an attempt
to increase the capability of the pattern match
based analysis and to ease the construction of
the search patterns.

This first level shallow analysis sets up a rough
representation of the conceptual content of each
considered portion of text, which can then be
used to evaluate its "relevance". "Relevance"
in our context is both application dependent and
user dependent, in that different users are
generally interested in different topics and at
different levels of detail. Therefore, the
"relevance" associated to different news may
involve the number of retrieved concepts as well
as the presence of references to some
"important" concept, and will also take into
account the ranking defined by the different
users.

Copyright© 1995 Software Engineering Press

The deep text analysis is based on NLP
techniques. Relevant portions of text can then be
submitted to the syntactic analysis module
(SCAM, Surface COBALT Analyser Module)
which is based on a sort of unification-based
"categorial grammar", see [4].

The output of the module is the input to the
semantic parser (CLAM, COBALT Language
Analysis Module) which produces, by applying
a set of substitution and triggering rules, a
formal representation of the content of the
original text in terms of NKRL ([5]) a
specialised Knowledge Representation
Language.

The semantic analysis is in charge of producing
a 'normalised' representation of the text in
terms of concepts and relations among them,
resolving syntactic/semantic ambiguities and
anaphora. The representation is necessarily rich,
to take into account the real text contents and
will directly reflect the text structure.

A specific module, the COBALT Control
Module (CCM), provides the application
developer with a general approach and
languages for defining, in each specific
application, which categories have to be handled,
which information is carried with them, and how
to perform categorisation. The category
definition language enables the application
developer to define the categories for the
application, which are characterised by a name a
definition and a set of attributes. Attributes,
defined as slots of specific types,' could contain
either control information (such as references to
mechanisms needed by the control structure to
perform categorisation) or domain information,
such as additional attributes that could be
relevant to the specific category (e.g. the fact
that for "stake_selling" category a "buyer"
could be a relevant information potentially
associated to the category). A rule based control
language allows to specify the control strategy.

In the prototype developed, the categorisation
flow is dependent on both the results obtained
from the textual analysis components (TCSM,
SCAM and CLAM) and on the user preferences
set through the profile definition. Both the rules
to assign the base categories, the rules that fill
the relevant slots of the base categories, and the
control rules that activate deep analysis when
needed and decide which slot filling rulesets to
fire are written in the COBALT Rule Language

First of all, news texts are read into the system
from an external source via a reader program
which is in charge of reading the news items
from the news feed and transforming them into

155

their internal format. Each text then undergoes
the surface analysis performed by the TCSM
module. Then, a first set of CCM application
dependant rules is fired. This set of rules is in
charge of analysing TCSM pattern matching
results and performing base categories
assignment.

After base categories assignment, filters defined
in the current profile(s) running are verified; for
each compound category mentioned in a filter
for which an assignment of the corresponding
base category has been made, a specific ruleset is
activated.

The activation rulesets that are fired whenever a
compound category has to be matched are in
charge of actually trying to provide the
information requested in the compound
category or to fail. In the prototype, each ruleset,
different for each base category, will activate
deep analysis (SCAM and CLAM in sequence)
and then fire a set of rules in charge of
analysing the results and perform compound
category assignment. These rules will try to fill
the category relevant slots with the results
obtained by the deep analysis (i.e. on the NKRL
representation of the text). The category with the
relevant slots filled will then be the compound
category assigned to the text.

If the categories (base and/or compound) that
have been assigned to the text satisfy any of the
filters defined in the currently running profile,
then the action corresponding to the filter
relevance will be executed, namely to display the
news' headline or contents in a window.

It's worthwhile noticing that

• only shallow analysis is always performed on
the text; deep analysis is performed only on
demand depending on the user needs
(usually analysts' needs);

• by partitioning slot filling rules depending
on specific categories, the system will only
look for requested information, not trying to
extract from deep analysis results
information which is not needed

an obvious advantage of this approach is the
gain in speed; on the other side however, if
categorisation results need to be saved for later
retrieval this implies that deep analysis need to
be done again to retrieve further compound
categories. •

156

6. Evaluation

A complete evaluation of the prototype has
already been performed on a set of unseen texts.
The evaluation involved shallow categorization
(i.e. assignment of base categories) of about 500
texts, automatically computing accuracy
measures on the results. A subset of 50
randomly chosen texts then underwent full
analysis, involving information extraction and
recognition of compound categories,.

A full analysis of evaluation results has already
been completed concerning shallow analysis
results, while the analysis of compound
categorization results is still ongoing, due to the
higher complexity of evaluation data.

Shallow categorization results showed an overall
accuracy of over 85%; in figure 2 the results
obtained on all the categories for which at least
10 texts in the evaluation corpora were relevant
are reported. Most of the categories reached
over 90% in both recall and precision, and the
few that fall below these figures were also the
ones less recurring in texts and to which lower
attention was paid during development.

1

0.8

0.6
recall

0.4

0.2

0

Categories (texts> 10)

[iii F,.
1----+------ll---+--,■,=;;....----1

0 0.2 0.4 0.6 0.8 1
precision

Fig 2: accuracy results for shallow categorization

Preliminary results concerning deep analysis
showed that only about 50% of the information
available in texts could be extracted, but also
showed that the error rate (i.e. wrong
conclusions) is quite low.

Processing time is about 1 sec for shallow
categorization and ranging from 10 to 30
seconds for deep analysis (timings on a
SparcStation 2 with 32 Mb of main memory),
proving effective to satisfy user requirements.
Moreover, it must be noted that the prototype
has been developed with no special attention on
speed optimization

Copyright© 1995 Software Engineering Press

7. Conclusions

The Cobalt prototype was built with the aim of
demonstrating how the integration of shallow
and deep text analysis techniques could be
successfully exploited in performing the kind of
categorisation of financial news needed by a real
end user.

The integration of shallow (pattern based) and
deep (syntactic and semantic) analysis was
envisaged to overcome the conflicting
requirements of a rich categorisation to be
performed quickly. From this point of view, the
integration of the two technologies proved to be
able to deliver expected functionalities, while the
control mechanism developed for the prototype
(and the general idea implemented in the Cobalt
shell of providing a powerful control language)
showed that necessary flexibility could be
achieved.

Although a detailed analysis of the raw results is
still ongoing, some conclusion could already be
drawn. Shallow and deep analysis capabilities
proved themselves effective and complementary
in performing the task. Preliminary results from
the evaluation confirmed the capability of
shallow analysis to perform a quick and accurate
enough categorisation, but also confirmed the
impossibility of doing too much precise
category assignment using it alone. In particular,
while good results could be obtained in
performing generic category assignment (i.e.
determining the main topic the news deal with,
e.g. stock trading), it proved impossible (or not
cost effective) trying to perform richer
categorisation involving information extraction
(e.g. who actually traded the shares) using
shallow analysis directly. Syntactic and semantic
analysis, on the other side, while being still too
inefficient or not robust enough to perform in a
reliable way simple categorisation on the whole
set of possible incoming texts, proved to be
useful in analyzing specific texts to extract
interesting information.

The shallow analysis results confirmed the high
accuracy that could be obtained with the
employed techniques; alternative approaches for
performing a 'pre filtering' stage before a
richer categorisation still deliver lower accuracy.
The known problem related with knowledge
based pattern analysis, namely that of the
development effort needed, were partially
mitigated by exploiting domain hierarchies [3];
moreover, the use of explicit patterns (instead of,
for example relying on statistical techniques or
on semantic dictionary based techniques [6])

Copyright @ 1995 Software Engineering Press

make easy to understand and justify (and thus
modify and extend) system behaviour. The use
of statistical techniques as a support for the
pattern definition activity, although not
exploited within the Cobalt project, is envisaged
to further minimise development effort and will
be considered as prioritary for further
development.

Concerning deep analysis results for relevant slot
filling, while the overall results showed that only
about 50% of the information available in texts
could be reliably extracted, the chosen approach
proved anyway to be robust enough to process
any agency news. Improvements need to be
done to extend the domain specific lexicon and
to enhance the treatment of unknown words,
mainly for proper name recognition and proper
treatment of abbreviations or acronyms.
However, even if the syntactic and semantic
analyses still need further work to enhance the
obtainable results, they proved to be effective in
successfully integrating shallow techniques, thus
justifying the chosen architecture.

7. References

[1] Rocca, G., Spampinato, L., Zarri, G.P.,
Black, W., and Celnik, P. "COBALT:
construction, augmentation and use of
knowledge BAses from natural Language
documenTs" in AI-94, 14th International
Avignon Conference, Paris June 1994.

[2] Lewis, D.D. "Representation and
Learning in Information Retrieval" PhD Thesis,
Comp. Sc. Dept.; Univ. of Mass. Amherst, MA
Technical Report 91-93, 1992

[3] Gilardoni, L., Prunotto, P., and Rocca, G.
"Hierarchical Pattern Matching For Knowledge
Based News Categorization" in RIA0-94, New
York, October 1994.

[4] Wood, M.M. "Categorial Grammars".
London: Routledge, 1993.

[5] Zarri, G.P. "Semantic Modelling of the
Content of (Normative) Natural Language
Documents", in Avignon '92 - Proc. of the
Specialized Conference on Natural Language
Processing and Its Applications. Nanterre: EC2,
1992.

[6] Liddy E.D., Paik W. and Yu.S. "Text
Categorization for Multiple Users Based on
Semantic Features from a Machine-Readable
Dictionary" in ACM Transactions on
Information Systems, 1994-12-3

157

A Knowledge-based System for Early Warning of
Balance of Payments Crises in Emerging Market Countries

Theodore D. Raphael, Ph.D.
Mystech Associates, Inc.

5205 Leesburg Pike, Suite 1200
Falls Church, Virginia 22041

John Varley
Nathan Associates, Inc.

2101 Wilson Blvd., Suite 1200
Arlington, Virginia 22201

Reference Aid for Economic Research (REFER) is a computer-based support environment
for balance of payments (BoP) analysis. REFER currently provides three services. First,
it displays key economic indicators for BoP analysis (calculated from the International
Monetary Fund's International Financial Statistics (IFS) database) and warns the user
when anomalous changes occur. Second, REFER assists analysts in assessing the effects
of domestic and international events on a country's BoP by applying a body of BoP expert
knowledge. Third, it allows the user to browse through the IFS database, conduct statistical
analyses, and generate graphs of the IFS data and the results of the statistical procedures.

INTRODUCTION strategies in their respective domains. The
difficulty with which the knowledge is acquired
and represented increases with the degree to
which the expert's task is cognitive rather than
mechanical and probabilistic rather than
deterministic. One cannot rely on the immutable
laws of the physical sciences to build highly
effective explanatory and predictive models of
human behavior. All of the variables that affect
decision processes cannot be controlled in an
experimental setting and manipulated precisely,
as one endeavors to develop and test behavioral
models. This problem is compounded when one
attempts to apply these models to completely
uncontrolled operational environments. The
difficulty in modeling human behavior

Mystech has developed knowledge-based systems in
domains representative of both the physical sciences
and the behavioral sciences. In the former, for
example, Mystech has modeled, under a wide range of
conditions, the multistep process by which torpedoes
are preset for targeting prior to launch. In the latter
domain, Mystech has modeled, in the field of political
psychology, the decision-making behavior and
effectiveness of political leaders.

Key differences between the physical and behavioral
sciences have substantial implications for the
knowledge base system design and development

158 Copyright© 1995 Software Engineering Press

intensifies further as one considers the size and
complexity of the models required to account for the
relevant variables and the relationships among them. A
number of research efforts have addressed this problem
(Anderson, 1987; Hudson, 1987; Thorson, 1984).

In Mystech's experience, knowledge-based systems
have demonstrated promise in modeling human
behavior, as they excel at handling numerous, complex
combinations of variables and their interrelationships
when they are not subject to a priori determination.
They also have the capability to integrate probability
and confidence factors in the model, a necessity in the
behavioral sciences.

SYSTEM DESCRIPTION

Reference Aid for Economic Research (REFER) is a
computer-based support environment for balance of
payments (BoP) analysis. It supports two major
analytic functions. First, it supports the proactive
search for information and the detection of significant
trends and patterns for analysis. Second, it supports the
identification of early warning indicators of potential
problems and the assessment of the effects of discrete
events that occur with little or no warning.

REFER currently provides three services. First, it
displays key economic indicators for BoP analysis
(calculated from the International Monetary Fund's
International Financial Statistics (IFS) database) and
warns the user when anomalous changes occur.
Second, REFER assists analysts in assessing the
effects of domestic and international events on a
country's BoP by applying a body of BoP expert
know ledge. Third, it allows the user to browse through
the IFS database, conduct statistical analyses, and
generate graphs of the IFS data and the results of the
statistical procedures.

Statistical Data Analysis

With regard to the first function, the user may apply
sophisticated statistical procedures to the IFS or
user-created databases, browse through these
databases, and dump subsets of data to a spreadsheet
for further analysis and fast, easy graphing. The

Copyright © 1995 Software Engineering Press

combination of a statistical package,
spreadsheet, and the IFS and user-defined
databases provides a powerful environment for
quantitative analyses of economic data.

Knowledge-based Data Analysis

With regard to the second function, a knowledge
base of international economics expertise is
employed to provide two additional services, key
economic indicators and key economic events.

Key Economic Indicators. Predefined key
economic indicators are calculated based on IFS
data updated monthly; their levels and trends are
measured; anomalous changes and key warning
threshold violations are identified based on expert
rules; and the results are reported to the user.

A default set of indicator threshold values is
customized for each country in the system. The
user may also create an optional, user-defined set
of threshold values for each country and,
thereafter, select which set will be invoked when
the IFS database is analyzed. This feature allows
the user to adjust the sensitivity of the warning
thresholds as desired.

The current key indicators are:

• Budget Deficit/Surplus, Level of (expressed
as a percentage of GDP);

• Exchange Rate (nominal), Percentage Change in;

• Exchange Rate (real), Percentage Change in;

• Exports Less Imports;

• Exports Less Imports Trend;

• Foreign Exchange Reserves, Level of (ex­
pressed as months of imports (MOI));

• Foreign Exchange Reserves, Percentage
Change in (in terms of MOI);

• Interest Rate, Real; and

• Wholesale Prices, Percentage Change in.

159

Additional indicators are displayed that should be
monitored, but for which no thresholds are specified;
they are:

• Exports Less Imports, Change in (to be monitored­
no specific threshold);

• International Terms of Trade (to be monitored-no
specific threshold); and

• Investment Less Savings (to be monitored-no spe­
cific threshold).

Line graphs of historical trends are provided for each
indicator and for three indicator pairs that represent the
terms of the basic balance of payments equation
(import/exports, investment/ savings, and government
revenues/ expenditures).

By this process, a massive database is analyzed, key
economic indicators are evaluated, and the results are
returned to the user in seconds.

Significant Economic Events. In addition, an analyst
who is confronted with the occurrence of one or more
events may enter information about those events, and
REFER will assess the magnitude and direction of
their effects on the country's balance of payments.
Approximately three dozen event types are avail_able
for selection (domestic and foreign; financial and
nonfinancial), ranging from interest and exchange rate
changes to trade regulation and price changes. Event
definition data entry forms are provided for each event
type, so that the user may define the particular event
in terms of key characteristics of analytic value, such
as direction of change, specific commodity or
instrument involved, temporal boundaries, etc.

The events in the current typology are:

Domestic Financial

• Central Bank Regulation or Operation Change

• Exchange Controls Change

• Exchange Rate Change

160

• Exchange Reserve Change

• Financial Institution Change

• Inflation/Deflation Change

• Interest Rate Change

• Investment Earnings Change

• Other Capital Flows Change

Domestic Nonfinancial

• Economic Performance (GDP) Change

• Economic Regime Change

• Government Fiscal/Budget Change

• Price Change

• Supply Change

• Quota Change

• Subsidy Change

• Tariff Change

• Unusual Population Shift

Foreign Financial

• Exchange Rate Change

• Exchange Reserve Change

• Foreign Direct Investment Change

• Inflation/Deflation Change, World

• Interest Rate Change

• Investment Earnings Change

• Net Credit (Loan) Availability Change

• Official Assistance Change

• Other Capital Flows Change

• Worker Remittances Change

Copyright© 1995 Software Engineering Press

Foreign Nonfinancial

• Economic Performance (GDP) Change

• Price Change, World

• Supply Change, World

• Quota Change

• Tariff Change

• Trading Arrangement Change

A country profile database was also developed for two
purposes in conjunction with the development of the
event analysis knowledge base. First, the maintenance
of country profiles allows the inference engine to
generate analyses, based on general principles of
balance of payments theory, that are modified
appropriately for each country based on differing
country profile factors. For most events, no single
analysis is appropriate for all developing countries,
according to REFER' s domain experts. The analysis
should, and does, vary from country to country
depending upon one or more country profile factors.

Second, the country profile database supports the
display of country-specific information in the user
interface. For example, when the user wishes to enter
information about an event involving a major world
price change for a commodity, he/she selects the event
from the event typology above and an event definition
data-entry template is displayed. A list of the
country's major commodities, called from the country
profile database, is then displayed for selection. If the
commodity in question is not listed, then the user is to
infer that it is not .an important commodity for the
country under study (as only major traded and
nontraded commodities are listed in the country
profile).

For example, in the commodity price change event
described above, the user would select the appropriate
event type from the event typology and indicate the
direction of change (increase/decrease) on the event
definition data-entry template. REFER would then
check the country profile to determine if the
commodity is a major export, import, or nontraded (but
tradeable) item, note demand and/or supply

Copyright© 1995 Software Engineering Press

elasticities, as appropriate, and draw appropriate
inferences accordingly regarding the impact of
the price change on the country's balance of
payments.

The country profile also contains characteristics
that are fundamentally relevant to a broad range
of events. For example, exchange rate regime
type (fixed/crawling peg/managed float/free
float) affects the analyses of many events,
particularly the domestic and foreign financial
events.

The current country profile factors are:

• economy type (agriculture/industry/
service/mixed);

• elasticities, demand (for each major commod­
ity-elastic/inelastic);

• elasticities, supply (for each major commod-
ity-elastic/inelastic);

• exports (major);

• export competitors (major);

• export customers (major);

• imports (major);

• import suppliers (major);

• level of import controls (low/high);

• monoculture (yes/no);

• nontraded (major);

• raw materials; and

• stock market (yes/no).

A world profile database has also been developed
which currently maintains lists of:

• major industrialized countries;

• international financial centers; and

• large developing countries.

161

For example, if a foreign country (i.e. a country other
than the one being analyzed) experiences a major
adjustment in its interest rate, then the analysis
generated of the impact of the event on the focal
country's balance of payments will vary depending on
whether or not the foreign country is also an
international financial center.

Both the country and world profiles are easily
modified and updated through the user interface by the
system administrator.

Thus, REFER employs a body of expert knowledge
and conducts event analyses based on user-entered
event-definition information and input from the
country and world profiles. The analyses focus on
estimates of the effects inferred from these data on the
country's balance of payments (current and capital
accounts). The analyses also provide guidance in
assessing the importance of the event for the target
country's balance of payments and other economic
effects, the temporal factors involved (time lag and
duration of effects), and common analytic traps to be
avoided.

REFER Session Report

At the end of a REFER session, the user may request
a written report that is sent to a word processor and
displayed for review. The report contains three major
sections:

• Key Economic Indicator Status Report-based on
analysis of the IFS database and the selected set of
indicator threshold values;

• Event Analyses-report of the analyses of entered
events generated by the inference engine and
knowledge base; and

• Balance of Payments Data-table of the principal
balance of payments accounts, based on IFS data.

162

Adding New Countries to REFER

New countries may be incorporated into the
REFER system literally within a matter of
minutes. The system administrator need only
add the name of the country to the Master List
(with IFS country code), create a country profile
and set indicator warning thresholds through the
country profile and indicator threshold editing
utilities, and execute the provided REFER
software to download the new country's IFS data
from IMF's CD ROM to REFER's SQL Server
database. The new country is then available for
BoP analysis with the full range of REFER's
suite of tools.

CRITICAL SYSTEM DESIGN PROBLEMS
AND ISSUES

Perfect design solutions that obviate the need to
accept tradeoffs in pursuit of multiple goals are
rare. The design of REFER is no exception.
Embedded in a key functional requirement of the
system are three goals:

REFER must possess the ability to
treat any domestic or foreign
economic event that may occur at any
time in the future with regard to its
impact on the BoP of any developing
country.

This requirement raises four technical
challenges. How can REFER be designed:

• to assess information about an almost infinite
number of future events in a manner that is
general enough to encompass the universe of
possible cases, but specific enough to differ­
entiate among them sufficiently to provide
assessments relevant to the circumstances of
a particular case?

• to assess the BoP impacts of an event in a
manner that is broad enough to apply to a
wide range of developing countries, but is
tailored sufficiently to the focal country to be
valid and accurate for a particular case;

Copyright © 1995 Software Engineering Press

• to reflect accurately the characteristics of the coun­
tries and the international system on which its infer­
ences are partially based, as those characteristics
change over time, without requiring onerous main­
tenance of the system or, even worse, time-consum­
ing and costly continual iterative development (in
an effort to modify the knowledge base to reflect
accurately the inexorably changing economic and
political systems of the world); and

• to assess the magnitude of expected change for a
specified event with sufficient precision to provide
a meaningful assessment on the effects on BoP.

To address the first problem, Mystech and Nathan
developed the event typology and event definition
data-entry templates to provide a compromise between
an attempt to accommodate an infinite number of
specific events or force a choice among highly
generalized events that may be marginally relevant to
any specific event.

To be effective, the typology must reflect the universe
of events that can affect the balance of payments. To
meet this requirement, the typology was
systematically designed to reflect the inputs to all of
the elements of the BoP accounting structure (current
account, capital account, and their respective
subaccounts) and reflect as well the terms of the
fundamental relationships expressed in the BoP
identity: x-m = (i-s) + (t-g), (where x = exports, m =
imports, i = investment, s = savings, t = government
revenues, and g = government expenditures).

The event data-entry template enables the user to
provide REFER with information about a particular
event that goes beyond defining it as simply one of the
general event types. On the template, the user can
specify the direction of change (characterized
appropriately for the event type, e.g. price
change-increase/decrease or exchange controls
change-tighten/relax) and other factors that define the
event. In this manner, REFER obtains sufficient
information to provide an assessment that is relevant
to the user's particular case, without requiring the
impossible, near impossible, or at least
impractical-maintenance of an exhaustive (and
exhausting) catalogue of potential specific cases.

Copyright@ 1995 Software Engineering Press

Another problem with the catalogue method, of
course, is the maintenance burden of adding
potential cases as the future reveals situations
previously unanticipated, e.g. the oil price shocks
of the 1970s.

With regard to the second and third problems, if
a decision is made to implement knowledge that
is tailored to each country and its contemporary
problems in order to maximize policy relevance,
then the knowledge base may be valid for only a
short period of time, since circumstances in an
economy and political system can change
rapidly. It also makes the addition of new
countries a labor-intensive process, since
reliance on country-specific knowledge requires
the acquisition, representation, and
implementation of a new body of know ledge for
each additional country.

On the other hand, if general models of
developing countries and international economic
theory form the core of the knowledge base to
maximize the useful life of REFER and to
minimize maintenance burdens, then one runs
the risk of providing a system that, in any specific
situation, offers guidance that is too simple, too
general, and of marginal relevance to be of much
analytic value.

To address this dilemma, Mystech and Nathan
structured the knowledge by relating a core
knowledge base of BoP theory for each event to
the country profile of the focal country and the
world profile, so that for any single situation (i.e.
need to assess the BoP effects of a specified event
for a specified focal country) the analysis is
general enough to be robust over time and
circumstances, but sufficiently tailored to the
focal country, through use of the country profile,
to be relevant to the specific case.

By this approach, a flexible, robust, but relevant
analytic aid is maintained with little effort as the
world changes and the system is expanded to
accommodate additional countries.

163

The fourth problem concerns the determination of
sufficient precision in expressing the magnitude of
BoP effects that result from the occurrence of a given
event. This issue was considered at length during the
design phase, and, for three principal reasons, the
decision was made to eschew econometric modeling
in favor of a general nonparametric approach.

First, the risk of failure was deemed to be unacceptably
high, especially considering the cost of developing
econometric models. While there was high
confidence in our ability to develop a knowledge base
that would support forecasting of the direction of
effects and nonparametric measures of their
magnitude (e.g. very large/large/moderate/low/nil),
there was considerably less confidence in our ability
to develop a knowledge base that could generate
forecasts with the level of precision associated with
econometric models, while meeting simultaneously an
acceptable standard of accuracy.

Second, an econometric approach requires very
substantial database support. Missing or substantially
lagged data can cause major problems that may render
the system inoperable from time to time; this is a
significant and unacceptable vulnerability.

After an exhaustive survey, we found that the IMF/IFS
database was the most complete and relevant database
available for BoP analysis; but even IFS contains
missing data and, in some cases, significantly lagged
data. Moreover, we found that data for certain critical
variables, such as those that measure indebtedness, are
not available reliably from any sourcein electronic
form for developing countries. For example, the most
detailed and comprehensive source that we found, the
World Bank's World Debt Tables are updated only
annually.

Third, for an analytic tool to be useful for BoP analysis,
its forecasts do not need to be expressed in parametric
terms. One purpose of REFER is to warn against
analytic traps that lead to erroneous conclusions in
analyzing the BoP effects of events. This purpose is
well-served, therefore, when REFER provides
accurate guidance regarding the expected direction of
change and qualitative estimates of its magnitude.

164

For these reasons, we concluded that, although
an econometric approach would raise forecasting
precision, the result would yield marginal
analytic utility at substantially increased
technical risk and development costs.

KNOWLEDGE BASE DEVELOPMENT
METHODOLOGY

Mystech employs a proprietary methodology for
knowledge acquisition, representation, and
implementation. Structured interviews are
conducted with the domain experts, they are
audio and video recorded, verbatim transcripts
are produced, the transcripts are analyzed by
knowledge engineers, and the knowledge is
extracted from the transcripts and structured in
an object-oriented, hyper-text knowledge
representation environment. The represented
knowledge is then implemented in software
code.

The system is then exercised with test scenarios
and the output is validated by the original domain
experts working with knowledge engineers in an
iterative fashion until acceptance is achieved.

For REFER, Mystech and Nathan have
conducted 46 knowledge acquisition sessions
with leading international economists, yielding
over 200 interview hours of acquired,
represented, implemented, and validated
knowledge.

SOFTWARE DEVELOPMENT
TECHNOLOGY

REFER is currently under iterative development
and employs an object-oriented approach.
Inference Corporation's Automated Reasoning
Tool for Information Management (ART-IM) is
being employed in the development of the
event-assessment knowledge base. The
knowledge is being implemented in frames and
production rules with a forward chaining
approach.

Copyright© 1995 Software Engineering Press

The graphical user interface is being developed with
Glockenspiel's Common View interface development
tool (now published by Computer Associates, Inc.) and
C++.

A key feature of the software architecture is the
separation of the knowledge base and user interface;
the information that appears on the display is
controlled almost entirely by the knowledge base. As
the knowledge base expands (with additional
countries, indicators, events, etc.), necessary changes
to the interface will be handled automatically by the
knowledge base and will require little or no
modification of the interface software.

The ART-IM/C++ combination and software module
separation also maximize REFER' s cross-platform
capability (e.g. MS DOS/Microsoft Windows,
UNIX/X-Widows (OSF Motif), etc).

REFER runs under OS/2 on IBM-compatible personal
computers and is a Presentation Manager application.

FUTURE RESEARCH AND DEVELOPMENT

The following enhancements are currently undergoing
research and development:

• To this point in its development, the knowledge
base focuses on estimating the effects of economic
events on the BoP of developing countries. Ques­
tions remain to be addressed. What policies/instru­
ments are available to governments to respond to
BoP problems? How are particular governments
(perhaps according to economic regime type) likely
to respond to particular problem types? In the view
of expert economists, how should they respond? If
there is a discrepancy between how they are likely
to respond and how they should respond, what are
the implications for the likely, as opposed to the
expected, effects of the anticipated policy choice?;

• In the wake of the 1994 balance of payments crisis
in Mexico, we have begun an effort to develop a
BoP Crisis Early Warning (BoP/CEW) module for
REFER that complements the event assessment
module. The latter reflects a forward chaining ap-

Copyright© 1995 Software Engineering Press

proach, in which economic events are as­
sessed for their unknown impacts on the BoP
of developing countries. Here the stimulus
(i.e. an event) is known but the outcome (i.e.
effects on BoP) is unknown; thus the reason­
ing process employed is characterized as for­
ward chaining. For the BoP/CEW, however,
backward chaining is appropriate. In this
case, the outcome is known or postulated (i.e.
the occurrence of a BoP crisis), but the ante­
cedents to it (i.e. early warning indicators) are
unknown. Initial knowledge acquisition has
been conducted to address the issue of how
expert international economists attempt to an­
ticipate BoP crises;

• A Case-based Reasoning (CBR) tool is cur­
rently under development. This tool will pro­
vide users with the ability to identify and
compare historical cases with known out­
comes (in terms of BoP effects) to a current
situation with similar characteristics for
which the outcome is yet unknown. This com­
parative approach provides a framework for
drawing inferences about the likelihood of
possible outcomes of the current situation
based on an analysis of similar historical
cases; and

• REFER currently uses the IFS database as
supplied by IMF. Unfortunately, as noted
above, the data may be missing or delayed in
reporting. Under development is the capabil­
ity of extending IFS data with user-supplied
data, as desired, to provide the most complete
and current database possible.

REFERENCES

Anderson, P.A. Using Artificial Intelligence to
Understand Decision Making in Foreign
Affairs: The Problem of Finding an
Appropriate Technology. In SJ. Cimbala
(Ed.), Artificial intelligence and national
security. Lexington, MA: Lexington
Books, 1987.

165

Hudson, V .M. Using a Rule-Based Production System
to Estimate Foreign Policy Behavior:

166

Conceptual Issues and Practical Concerns. In
S.J. Cimbala (Ed.), Artificial intelligence and
national security. Lexington, MA: Lexington
Books, 1987.

Thorson, S.J. Intentional Inferencing in Foreign
Policy: An AI Approach. In D.A. Sylvan
& S. Chan (Eds.), Foreign policy decision
making: perception, cognition, and
artificial intelligence. New York: Praeger,
1984.

Copyright© 1995 Software Engineering Press

Paper Session: Optimization: Portfolios and Profit

Chair: Ken Kleinberg, Gartner Group

Copyright © 1995 Software Engineering Press 167

A Genetic Algorithm Approach to Optimizing Portfolio Merging
Problems

Abstract

William Edelson
Computer Science Dep't
Long Island University

University Plaza
Brooklyn, N.Y. 11201

The portfolio merging problem can be viewed
as finding the optimal mix of k different cat­
egories of portfolios in a combined aggregate
portfolio to maximize expected profit or min­
imize risk subject to numerous constraints.
This optimization problem is important in as­
set allocation applications. Conventional opti­
mization techniques have been used effectively
in the past on problems involving the merging
of portfolios. However, there are many real
world portfolio merging problems whose solu­
tion do not lend themselves readily to conven­
tional techniques. A genetic algorithm (GA},
a biologically inspired optimizing search proce­
dure, is more suitable for solving these types
of problems.

We apply a GA to various portfolio merging
problems leading up to the problem of maxi­
mizing the return/risk ratio with the added
constraint of a satisficing expected return. We
make use of goal programming techniques to
recast the problem into one that is more suit­
able for solution by a GA. This is shown to
have advantages in generating initial feasible
solutions quickly, without compromising the
effectiveness of the GA.

168

1

Michael L. Gargano
Computer Science Dep't

Pace University
Pace Plaza

New York, N.Y. 10038

Introduction

The portfolio merging problem can be viewed
as finding the optimal mix of k different cat­
egories of portfolios in a combined aggregate
portfolio to maximize expected profit or min­
imize risk subject to numerous constraints.
The portfolio categories might be equity sec­
tors such as banking, energy, healthcare, util­
ities, etc., or they might be asset categories
such as corporate bonds, equities, money mar­
ket instruments, municipal bonds, etc.

Conventional optimization techniques have
been used effectively in the past on problems
involving the merging of portfolios. How­
ever, there are many real world portfolio
merging problems whose solution do not lend
themselves readily to conventional techniques.
These more complicated problems are usually
characterized by a solution space which is un­
structured (eg, multimodal), discontinuous, or
poorly understood. A genetic algorithm (GA),
a biologically inspired optimizing search pro­
cedure, is more suitable for solving these types
of problems.

The genetic algorithm paradigm [1,4] is an
adaptive method based on Darwinian nat­
ural selection. It applies operations of re­
production (based on survival of the fittest),

Copyright© 1995 Software Engineering Press

crossover, and mutation, to a given population
of potential solutions to generate a new, more
fit, population of potential solutions. The pro­
cess repeats itself until it converges to a stable
optimal (or near optimal) solution. A GA is
particularly suitable for multi-parameter opti­
mization problems with an objective function
subject to numerous hard and soft constraints.

We apply a GA to three portfolio merging
optimization problems. We first investigate
a mean-variance optimization problem solv­
ing for the optimal allocation mix which mini­
mizes risk subject to an equality constraint for
the expected return. Next, we maximize the
expected return subject to an inequality con­
straint (upper bound) for the risk . Lastly, we
maximize the return/risk ratio subject to the
additional constraint of a satis:ficing expected
return. We make use of goal programming
techniques in these problems to recast them to
ones that are more suitable for solution by a
GA. This is shown to have advantages in gen­
erating initial feasible solutions quickly, with­
out compromising the effectiveness of the GA.

2 Model

An investment is allocated among k portfolios

in accordance with corresponding portfolio al­
location weights

The Expected Total Return is:

where P j is the expected return of the jth
portfolio and must be measured statistically.
The Total Risk is:

Copyright © 1995 Software Engineering Press

where Rj is the risk in the jth portfolio and
must be measured statistically.1

The following additional constraints are ap­
plied to the model:

O<L·<C·<U·<l J - J - J

where Lj and Uj define the range of the port­
folio allocation weights Cj and generally de­
pend on market fundamentals and/or investor
preferences.

3 Optimization Problems

Problem #1

Minimize portfolio risk subject to an equality
constraint for the expected return. That is:

subject to the constraints:

This is a mean-variance optimization prob­
lem producing an efficient portfolio (minimum
risk) for a given expected return (D).

1 For simplicity we are assuming there is no statisti­
cal correlation between portfolios; however, the results
should generalize to the case of correlated portfolios.

169

Problem #2

Maximize the expected return subject to an
inequality constraint for the risk. That is:

subject to constraints:

This optimization problem can be considered
a risk averter and is treated in [6,10].

Problem #3

Maximize the return/risk ratio subject to the
constraint of achieving at least an expected
return (D). That is:

subject to the constraints

In contrast to the model of problem #1, this
model permits the acceptance of a higher risk
to realize a higher profit. This optimization
problem is a basic underpinning of modern
portfolio theory and is similar to a problem
investigated in [8].

170

4 Goal Programming

We borrow from the technique of goal pro­
gramming [2,3], which stresses the satisfaction
of multiple objectives, to recast the optimiza­
tion problems in section 3.0 into ones that are
more suitable for solution by a GA. Goal pro­
gramming indirectly determines the unknown
variables in an optimization problem by di­
rectly minimizing positive and negative devi­
ations from the goal constraints' right hand
side values. In effect, it uses slack variables.
This process of minimizing deviations from a
prespecified level (rather than satisfying this
level absolutely) relaxes the rigidity of the con­
straint and results in a larger space of feasible
initial populations for the GA. This suggests
the possibility of generating initial feasible so­
lutions quickly, even for problems with numer­
ous and complicated constraints.

Recasting Problem #1, we have a new ob­
jective function to minimize:

subject to new constraints:

F(C1,Cz, ... ,Ck)+d- 2'.: D

C1 + C2 + •••+ck = 1

O < Lj ::; Cj ::; Uj < l
d+ 2'.: 0, d- 2'.: 0

where d+ and d- are the positive and negative
deviations (ie, the slack), respectively, from
the threshold expected return D. Here, (3 =
(3(d+, d-) scales the deviations d+ and d- in
the new objective function in accordance with
their importance2 .

2 Large values of the deviations were scaled quadrat­
ically while small ones were scaled linearly.

Copyright © 1995 Software Engineering Press

5 GA Methodology

Our genetic algorithm requires an initial popu­
lation of feasible members (potential solutions
satisfying the constraints), an evaluation func­
tion to score each member of the population,
conventions for creating new members of the
population by mating and random mutation,
and a grim reaper mechanism to discard low
scoring members of the population to make
room for new ones.

In these optimization problems, the popula­
tion POP= {(C1,C2,---,Ck)} is a large sub­
set of all the feasible members. POP is ini­
tially chosen randomly and consists of a large
but finite number of members. Each Cj is en­
coded withs bits. Thus, the encoding is a bit
string of k * s bits. The evaluation function
(objective function) scores the performance or
worth of individual members of the popula­
tion. (In our optimization problems where we
minimize risk, the closer the score is to zero,
the higher is the score). The mating conven­
tion is such that only high scoring members
will preserve and propagate their "worthy"
characteristics from generation to generation
and thereby help in continuing the search for
an optimal solution.

Selection of parents for mating involves
choosing one member from the high scorers by
a "roulette wheel" approach and choosing the
other member randomly. The reproductive
process is a simple crossover operation where
two selected parent members (bit strings) are
cut into head and tail sections at some ran­
domly chosen position and then have their
tails swapped to create two offspring mem­
bers. The crossover operation is repeated on
the parents until at least one offspring is fea­
sible. A grim reaper mechanism replaces two
low scoring members in the population with
two newly created feasible offsprings or one
newly created feasible offspring and one par-

Copyright© 1995 Software Engineering Press

ent. Mutation is a GA mechanism where we
randomly choose a member of the population
and change one randomly chosen bit in its bit
string representation. If the mutant member
is feasible, it replaces the member which was
mutated in the population. This process is
done infrequently and is useful in creating new
areas of search.

We can now state the genetic algorithm
which we used:

Step 1: Initialize a large feasible population.

Step 2: Evaluate any member which has not
yet been evaluated.

Step 3: Sort the members of the population
by their scores.

Step 4: Select parents for mating from the
upper three quartiles of the population;
one using a. "roulette wheel" approach
and one randomly.

Step 5: Generate offsprings using simple
crossover. Replace the lower quartile of
members of the population with feasible
off springs.

Step 6: Mutate a randomly selected member
of the population at a randomly selected
bit once every generation.

Step 7: If time is up then return best
solution found else go to Step 2.

6 Results

We generated a number of computer solutions
for these optimiztion problems using the GA
package GENESIS [7]. and a customized GA
software package developed in c++ by the au­
thors. The input data for these problems [9]

171

consists of the percentage annual expected re­
turns and risks for a three-asset class portfolio
as shown in the table below:

Class Return Risk
Stocks .13 .034200
Bonds .08 .003600
Treasury Bills .06 .000016

Estimates of the weights for an efficient
portfolio producing a yield of 8% (Prob­
lem #1) using a GA with a population of
32 without Goal Programming techniques are:
C1 = 0.1666, C2 = 0.4166, and C3 =
0.4166. Convergence ocurred after 12 genera­
tions. This is a near-optimal result which com­
pares favorably to the true efficient portfolio
of C1 = 0.16, C2 = 0.44, and C3 = 0.40 cal­
culated by quadratic programming techniques
[5.]. The number of tries to generate an initial
feasible population is 6,527. Solving the same
optimization problem using a GA with a pop­
ulation of 32 with Goal Programming tech­
niques described in section 4.0 also converges
to C1 = 0.1666, C2 = 0.4166, and C3 = 0.4166
after 12 generations. However, the number of
tries to generate an initial feasible population
is reduced to 780, an improvement of about a
factor of 8.

Similar results were observed for Problem
#2 and Problem#3.

7 Conclusions.·

Genetic Algorithm solutions of portfolio merg­
ing problems which we generated consistently
compare favorably to known solutions. Re­
casting the optimization problem using goal
programming techniques (slack variables) is
shown to have advantages in generating initial
feasible solutions quickly, without compromis­
ing the effectiveness of the GA. This suggests
the posibility of significantly reducing the time
to generate an initial feasible population for

172

larger portfolios problems with complicated
and numerous constraints.

We feel that the genetic algorithm paradigm
is both a powerful and flexible tool for solving
portfolio merging problems.

8 References

References

[1] Goldberg, D., Genetic Algorithms, Addi­
son Wesley Publishing Co., 1989.

[2] Ignizio, James P., Goal Programming and
Extensions, D.C. Heath & Co., 1976.

[3] Schniederjans, Marc J., Linear Goal Pro­
gramming, Petrocelli Books Inc. , 1984.

[4] Davis, 1., Handbook of Genetic Algo­
rithms, Van Nostrand Reinhold, 1991.

[5] Hillier, F. and Lieberman, G. , Opera­
tions Research, second edition, Holden -
Day Inc., 1974.

[6] Gargano, M.L., Chamoun, P., von
Kleeck, D.L., Using Genetic Algorithms
to Solve Financial Portfolio Problems Re­
lated to Optimal Allocation, Portfolio In­
surance, and Performance Prediction in
Second Int'l. Conference on AI Applica­
tions on Wall St., New York., 1993.

[7] Grefenstette, J.J., Davis, 1., Cerys, D.,
GENESIS and OOGA: Two Genetic Al­
gorithm Systems. TSP, Melrose, Calif.,
1991.

[8] Freedman, Roy S., Digiorgio, Rinaldo, A
Comparison of Stochastic Heuristics For
Portfolio Optimization in Second Int 'l.
Conference on AI Applications on Wall
St, New York. , 1993.

Copyright © 1995 Software Engineering Press

[9] Arnott, R., Fabozzi, F., Active As­
set Allocation, Probus Publishing Co.,
Chicago., 1992.

[10] Haugen, R., Modern Investment Theory,
Prentice-Hall, N.J., 1986

Copyright© 1995 Software Engineering Press 173

Genetic Algorithms for Predicting Individual Stock Performance

Sam Mahfoud & Ganesh Mani

LBS Capital Management, Inc.
311 Park Place Blvd., Suite 330

Clearwater, FL 34619
Phone: (813) 726-5656

E-mail: {sam, ganesh}@lbs.com

Abstract

Genetic algorithms are applied to predicting the
performance of individual stocks. A method is
introduced that extends genetic algorithms from
optimization problems to classification and
prediction problems. The resulting genetic
algorithm system is compared to a neural
network system.

Introduction

Artificial Intelligence (AI) techniques have been
used for a number of tasks ranging from playing
grandmaster-level chess to predicting protein
secondary structures. Expert systems, neural
networks, and genetic algorithms are three
popular AI paradigms. Typically, characteristics
of the application domain have determined the
particular AI method that is employed.

The investment management domain is
particularly challenging because of the
abundance of noisy, numeric data and the lack of
strong theories of how stock prices move. Even
though the efficient market hypothesis (Fama,
1970) has been challenged from a number of
directions, finding patterns of persistent
predictability is difficult, and typically requires
high-speed computers and clever algorithms. AI
techniques can facilitate the quest for these
patterns of predictability.

In the capital markets and other complex, real­
world domains, it is hard to specify a priori a

174

good set of rules, making knowledge engineering
an extremely difficult task. It is preferable to
learn (automatically acquire from data) a good
set of rules. Expert systems typically do not
learn. Both genetic algorithms and neural
networks, on the other hand, have the ability to
learn from the vast amount of data available in
the financial domain.

While expert systems and neural networks are
seeing increasing use in finance (Barr & Mani,
1993; Fishman, Barr, & Loick, 1991; Hall,
1994; Hutchinson, Lo, & Poggio, 1994; White,
1994), genetic algorithms (GAs) are relative
newcomers. We concentrate on GAs in this study
and illustrate how they can be applied to the task
of predicting the performance of individual
stocks. We compare the performance of a GA
system that incorporates a niching method to that
of a neural network system. The two systems
predict the movement in the price of a stock,
relative to the market.

A criticism of neural-network approaches has
been that they are black boxes, and that the user
can not readily comprehend the final rules that
these systems acquire and subsequently use to
make decisions. An advantage GAs offer is that,
like expert systems, they are capable of
producing user-readable rules, along with the
reasoning underlying each particular rule. The
key to such explanation capabilities is choosing a
rule format for the GA that the end user can
easily understand.

Copyright© 1995 Software Engineering Press

Genetic Algorithms

Genetic algorithms are general-purpose search
techniques for solving complex problems. Based
upon genetic and evolutionary principles, GAs
work by repeatedly modifying a population of
artificial structures through the application of
selection, crossover, and mutation operators.
GAs have traditionally been used for
optimization, but with a few enhancements can
be applied to classification and prediction as
well.

The choice of an appropriate structure for a
particular problem is a major factor determining
a GA's success. GAs are capable of operating
upon a variety of structures, including binary
strings (Goldberg, 1989), computer programs
(Koza, 1992), neural networks (Whitley,
Starkweather, & Bogart, 1990), and if-then rules
(Bauer, 1994).

We first examine how a traditional GA performs
optimization. The goal in optimization is ideally
to find the best possible solution to a problem. In
real-world problem-solving, one does not usually
know the best possible solution. Therefore, a
more realistic objective is to find a good solution;
or, given a current benchmark, to search for a
better solution. A GA's fitness function
measures the quality of a particular solution.

The traditional GA begins with a population of n
randomly generated structures, where each
structure encodes a solution to the task at hand.
The GA proceeds. for a fixed number of
generations. During each generation, the GA
improves the structures in its current population
by performing selection, followed by crossover,
followed by mutation. After a number of
generations, the GA converges, meaning that all
structures in the population become identical or
nearly identical. The user typically chooses the
best structure of the last population as the final
solution.

Selection is the population improvement or
"survival of the fittest" operator. Basically, it
duplicates structures with higher fitnesses and

Copyright@ 1995 Software Engineering Press

deletes structures with lower fitnesses. A
common selection method is to randomly choose
two structures from the population and hold a
tournament, advancing the fitter structure to the
crossover stage. A total of n such tournaments
are held to fill the input population of the
crossover stage.

Crossover, when combined with selection, results
in good components of good structures
combining to yield even better structures.
Crossover forms n/2 pairs from the n elements of
its input population. Each pair advances two
offspring structures to the mutation stage. The
offspring are the results of cutting and splicing
the parent structures at various crossover points.
The crossover stage advances a total of n
elements to the mutation stage.

Mutation creates new structures that are similar
to current structures. With a small, prespecified
probability, mutation randomly alters each
component of each structure. The mutation stage
advances n elements to the selection stage of the
next generation, completing the cycle.

Figure 1 illustrates one generation of a GA with a
population of size n = 4. Structures are
represented as rectangles, each containing two
square components. Components may take on
one of two values, represented by the colors,
black and white. Assume that structures with two
black components have the highest fitness,
structures with two white components have the
lowest fitness, and mixed structures have
intermediate fitness.

The selection stage holds four tournaments
between randomly chosen pairs of individuals.
The crossover stage then cuts and splices
structures at component boundaries. Finally the
mutation stage, through random choices, mutates
only the leftmost component of Structure 9,
yielding Structure 13. Although the initial
population has no optimal structures, after the
generation shown, an optimal structure emerges
(Structure 14).

175

Selection

Crossover

Mutation

Figure 1. One generation of a genetic algorithm

Compared to traditional parameter optimization
techniques, genetic algorithms offer several
advantages. The first advantage is general
applicability. GAs do not require information
such as gradients. If a problem is not
clifferentiable or otherwise well-behaved, many
traditional optimization techniques will be of no
use. A second advantage is resilience in handling
the local optima of difficult problems. While
traditional techniques are likely to converge to a
local optimum once they are in its vicinity, GAs
conduct search from many points simultaneously,
and are therefore more likely to find a global
optimum. GAs. are designed to handle highly
nonlinear spaces.

Genetic Algorithms for Financial Prediction

A few prior studies have attempted to apply
genetic algorithms to financial prediction and
related tasks. Most recently, Richard Bauer's
(1994) book has recommended GAs for stock
selection. His GA finds thresholds for one or
more variables, above or below which a stock is
considered attractive. For instance, if the GA's
structure consists of two variables representing a
particular stock's price and earnings per share

176

(EPS), the final rule the GA returns might look
like the following:

IF [Price< 15 andEPS > l] THEN Buy

Past performance of a particular rule over some
time period serves as a GA's fitness function.
The user is responsible for choosing a potentially
good rule structure for the GA. While Bauer
limits his attention to rules of the above form,
other formats are also possible, such as rules
with fuzzy variable bounds or outcomes. Beyond
stock selection, Bauer's approach also allows a
user to test simple relationships among variables
when the user has only a vague idea of
potentially good variables.

Sikora and Shaw (1994) apply GAs to predicting
loan defaults and company bankruptcies. One of
their approaches is to run a GA repeatedly, each
time generating a different rule. They combine all
final rules to form a database of rules. Allen and
Karjalainen (1993) utilize genetic programming,
a type of GA that operates on computer-program
structures, to find trading rules for the S&P 500.
Packard (1990) applies GAs to time-series
forecasting.

Copyright© 1995 Software Engineering Press

Complex applications such as predicting stock
performance are often highly nonlinear tasks.
This means, for example, that when a 10%
increase in one variable results in a buy signal, a
20% increase in that same variable could result
in a sell signal. Often a single, simplistic rule is
insufficient to model relationships among
financial variables. Sometimes what is required is
a combination of rules. For example, consider the
following two trading rules based on fundamental
analysis.

Rule 1: IF [PIE> 30] THEN Sell
Rule 2: IF [PIE< 40 and Growth Rate> 40%]

THEN Buy

Given only the price-to-earnings (PIE) ratio of a
particular stock, a good rule of thumb is that
stocks with too high a PIE -- in this example
greater than 30 -- are unattractive. Rule l
encodes this rule of thumb. However, if a stock is
a high-growth stock, one may wish to make an
exception to Rule 1. Rule 2 encodes such an
exception. The interacting combination of a
general rule (Rule 1) plus an exception (Rule 2)
results in a better trading strategy than either rule
alone.

Traditional GAs return only one solution. To
return interacting combinations of solutions, it is
necessary to extend the genetic algorithm through
use of a niching method (Mahfoud, 1992, 1995a,
1995b). Unlike the traditional GA, which makes
the population eventually converge around a
single point in the solution space, the GA that
uses a niching method converges about multiple
solutions or niches. The word niche comes from
the field of ecology, indicating the particular
environmental factors that are favorable for a
particular species. The analogy in the financial
forecasting case is that different rules within the
same GA population can perform forecasting for
different sets of market and individual company
conditions, contexts, or situations.

The extension of a genetic algorithm using a
niching method allows the GA to return a final
population that is similar in many ways to the
knowledge base of an expert system. In fact,

Copyright@ 1995 Software Engineering Press

niching GAs represent one method of acquiring
knowledge for an expert system -- without
requiring a human expert. Note that in an expert
system with 100 rules, where each rule contains
15 variables and each variable can take on one of
32 different values, 3.8 x 1022 possible rules
exist. This is more rules than the fastest
computer could expect to evaluate in a person's
lifetime. The number of possible combinations of
100 rules is much higher. Most possibilities
would undoubtedly produce poor performance.
Therefore, it would be nearly impossible to find
one of the best sets of rules by trying arbitrary
combinations. A financial expert could perhaps
develop a good set of rules by weeding out most
possibilities using his or her experience and
background knowledge. However, that expert
would likely produce a set of rules qualitatively
different than one produced by a GA, due in part
to the expert's a priori bias against
counterintuitive or contrarian rules.

Neural Networks

A neural network is a general-purpose model for
handling pattern recognition or classification
tasks. Neural networks were conceived as models
of the brain, but are in fact artificial
computational models that roughly mimic simple
operations of real neurons. For computational
finance tasks, neural networks are useful because
of their ability to handle large amounts of noisy,
numeric data.

A neural network is an appropriately connected
set of simple processing elements or nodes.
Connections between nodes have a strength or
weight associated with them. Each weight is
initially set to a random value. As the network
"learns" to classify or recognize patterns, the
weights change. A popular algorithm for
effecting these weight changes is
backpropagation (Rumelhart, 1986). The central
idea behind backpropagation is to use the error -­
the difference between the network's current
prediction and the actual answer -- to adjust the
weight on each link. This process repeats several
times, each time reducing the error by a small
amount.

177

Output Nodes

Hidden Nodes

Input Nodes

Before Learning After Learning

Figure 2. The training of a neural network

Figure 2 shows an example of a simple neural
network with four input nodes, two hidden nodes,
and one output node. Before learning, all of the
weights are set to small random values. After
learning, some of the weights become
strengthened, and others weakened, as depicted
by the various shaded connections.

Preliminary Results

As a preliminary set of experiments, we attempt
to predict the return, relative to the market, of a
MidCap stock randomly selected from the S&P
400. We call the chosen stock X. We employ
fifteen proprietary inputs representing technical
as well as fundamental information about the
stock. The GA operates upon all of the inputs to
find favorable or unfavorable combinations of
circumstances with respect to the output variable
being predicted. The GA, in combination with the
niching method it employs, evolves a population
of over 100 interacting rules. Each rule indicates,
in terms of the fifteen indicators, the particular
conditions that produce various price behaviors
relative to the market. We look at increases and
decreases over 331 past, overlapping, 12-week
time periods, as well as the values of the fifteen
indicators over these past time periods. Each time

178

period is hence an example. 70% of these
examples are used to form a fitness function for
the GA. (In the parlance of machine learning, this
is the training set.) 20% of the examples are
used to decide when to terminate the GA. (This is
the stopping set.) Finally, 10% of the examples
are used to measure performance. (This is the
out-of-sample or test set.)

We perform 100 different experimental runs of
the GA, allocating examples to the three sets
randomly for each experiment. The results we
report are for the 100 out-of-sample sets. The
GA returns one of three predictions for each out­
of-sample example: up, down, or no prediction.
Averaged over the 100 out-of-sample sets, the
GA correctly predicts Stock X's direction relative
to the market 47.6% of the time, produces no
prediction 45.8% of the time, and incorrectly
predicts the direction relative to the market 6.6%
of the time. Thus, over half of the time (47.6% +
6.6%), the GA makes a prediction. When it does
make a prediction, the GA is right 87.8% of the
time. Note that it would be possible to force the
GA to make a prediction each time. However, the
no-prediction option allows the GA to indicate
those times when a stock is nearly equally likely
to move in either direction.

Copyright© 1995 Software Engineering Press

We apply a second performance measure, called
the average alpha score, that takes into account
magnitude as well as direction. If the GA predicts
a test example correctly, then it receives as a
score, the absolute value of the actual return of
the stock relative to the market. For an incorrect
prediction, the score is the absolute value of the
actual return, negated. The score is averaged
over all test examples and then over the 100
experiments. The GA achieves an average alpha
score of + 10 .2%. By contrast, random guessing
produces an expected average alpha score that is
slightly negative. Another naive strategy,
choosing the most common direction in the
training set, yields a slightly positive score (less
than +2%).

A sample rule that the GA generates in one of the
experiments is of the following form:

IF [Earnings Surprise Expectation > 10% and
Volatility> 7% and ...] THEN Prediction= Up

Such rules can serve as approximate
explanations of how the various technical and
fundamental input factors relate to future,
individual stock returns.

Comparison to Neural Networks

We perform the same set of 100 experiments
using a neural network with one layer of hidden
nodes. Each experiment involves training the
neural network with the backpropagation
algorithm, using the same training, stopping, and
test sets as in the corresponding GA experiment.

For each experiment, the neural network makes
no prediction when the squared correlation on the
stopping set is less than 0.5. Note that this
decision is made experiment by experiment rather
than example by example (as in the GA). The
network makes no prediction in only 5 out of 100
experiments (5% of the time). 79.2% of the time,
the neural network correctly predicts Stock X's
direction relative to the market. 15.8% of the
time, it incorrectly predicts direction relative to
the market. When it does make a prediction, the
neural network is correct 83.4% of the time. The

Copyright© 1995 Software Engineering Press

neural network achieves an average alpha score
of+9.2%.

In the above experiments, the neural network
made many more gue~ses than did the GA. One
way of being more selective with the network is
to allow a prediction only when that prediction is
more than 0.5 standard deviations away from the
mean (across all test examples) of the output
variable. This helps in eliminating many near­
zero or noisy predictions. Under this new
methodology, the neural network makes no
prediction 48.6% of the time, a correct prediction
4 7.4 % of the time, and an incorrect prediction
4 % of the time. When it does make a prediction,
the network is correct 92.2% of the time,
achieving an average alpha score of+ 13 .4 %.

Discussion and Conclusion

The preliminary results demonstrate that GAs
and neural networks are both promising methods
for predicting individual stock performance.
Their success is due to their ability to learn
nonlinear relationships, among the input factors,
that result in a stock outperforming or
underperforming the market. An advantage of
GAs is their ability to output comprehensible
rules.

Both methods achieve a high degree of accuracy
(83% to 93%) in forecasting the direction of the
selected stock relative to the market. Both
methods also achieve high average alpha scores
(+9% to+ 13%). The neural network makes more
predictions, on the average, except when
explicitly restricted. We are currently
investigating methods for forcing the GA to make
more predictions, without substantial loss of
accuracy. With any method, however, there is a
tradeoff between number of predictions and
overall accuracy.

Although the experiments we conduct are similar
for the GA and the neural network, the
experiments are not completely standardized. For
instance, the GA, like the neural network, could
employ a magnitude-based cutoff for deciding
when to make a prediction. Likewise, the neural

179

network could raise its squared correlation
threshold to eliminate more cases with poor
performance. One area of current research is
better standardization of experiments across
different AI methods.

Although the neural network and genetic
algorithm produce very similar overall results, it
is possible that the concepts they learn are
qualitatively different. We know that the "rules"
the two methods generate look different. It is
possible that where one method fails, another
might succeed, leading to a synergistic, combined
approach. This combined approach would be
analogous to having multiple human experts
independently perform the same task and pool
their results afterward. Should the learned
concepts be qualitatively the same, the GA could
provide explanations of what the neural network
is forecasting.

The above comparative results consist of
multiple experiments on a single stock. Genetic
algorithms and neural networks, however, are
widely applicable. LBS Capital Management
currently employs over 3000 neural networks
(one for each stock) to manage large investment
portfolios, totaling over $600 million. We are
currently beginning to use GAs for portfolio
construction (an optimization task) as well as
stock selection (a classification/ prediction task).
We are also working towards applying the GA
prediction method to a broad range of stocks and
indices, and towards enhancing the GA' s ability
to predict magnitude.

Acknowledgments

The authors would like to thank Steve Ward of
Ward Systems Group for help with neural
network implementations, Roy Stringfellow for
graphics, and Kevin Jacobs for miscellaneous
programmmg.

References

Allen, F., & Karjalainen, R. (1993). Using
genetic algorithms to find technical trading rules.

180

Unpublished manuscript, Wharton School,
University of Pen..nsylvania.

Barr, D., & Mani, G. (1993). Neural networks in
investment management: Multiple uses.
Proceedings of the Second International
Conference on Al Applications on Wall Street,
81-87.

Bauer, R. J. Jr. (1994). Genetic algorithms and
investment strategies. New York: John Wiley &
Sons.

Fama, E. F. (1970). Efficient capital markets: A
review of theory and empirical work. Journal of
Finance.

Fishman, M. B., Barr, D. S., & Loick, W. J.
(1991). Artificial intelligence and market
analysis. Technical Analysis of Stocks and
Commodities, 9(3), 18-29.

Goldberg, D. E. (1989). Genetic algorithms in
search, optimization, and machine learning.
Reading, MA: Addison-Wesley.

Hall, J. (1994). Using artificial intelligence to
track market style. Presented at the Quantitative
Analytic Technology Conference, New York,
NY.

Hutchinson, J., Lo, A W., & Poggio, T. (1994).
A nonparametric approach to pricing and
hedging derivative secunt1es via learning
networks. Journal of Finance, 49(3).

Koza, J. R. (1992). Genetic programming: on
the programming of computers by means of
natural selection. Cambridge, MA: MIT Press.

Mahfoud, S. W. (1992). Crowding and
preselection revisited. In R. Manner & B.
Manderick (Eds.), Parallel Problem Solving
From Nature, 2 (pp. 27-36). Amsterdam:
Elsevier.

Mahfoud, S. W. (1995a). Population sizing for
sharing methods. In D. Whitley (Ed.)

Copyright© 1995 Software Engineering Press

Foundations of Genetic Algorithms, 3. San
Mateo: Morgan Kaufmann.

Mahfoud, S. W. (1995b). Niching methods for
genetic algorithms. (Doctoral dissertation,
University of Illinois at Urbana-Champaign).
Dissertation Abstracts International.

Packard, N. H. (1990). A genetic learning
algorithm for the analysis of complex data.
Complex Systems, 4(5), 543-572.

Rumelhart, D. E., Hinton, G. E., & Williams, R.
J. (1986). Learning internal representations by
error propagation. In D. E. Rumelhart & J. L.
McClelland (Eds.), Parallel Distributed
Processing: Explorations in the Microstructure
of Cognition: Volume I: Foundations (pp. 318-
362). Cambridge: MIT Press.

Copyright © 1995 Software Engineering Press

Sikora, R., & Shaw, M. J. (1994). A double­
layered learning approach to acquiring rules for
classification: Integrating genetic algorithms with
similarity-based learning. ORSA Journal on
Computing, 6(2), 174-187.

White, H. (1994). Using artificial neural
networks to develop trading systems for the S&P
500 index futures. Presented at the 2nd
International Workshop on Neural Networks in
the Capital Markets, Pasadena, CA, November
1994.

Whitley, D., Starkweather, T., & Bogart, C.
(1990). Genetic Algorithms and neural networks:
optimizing connections and connectivity. Parallel
Computing, 14, 347-361.

181

Two experiments in the stability of stock statistics

Burton Rosenberg

Department of Mathematics

and Computer Science

University of Miami

Abstract

This paper announces support in the form of the
Spearman rank correlation test for the hypothesis:
stock variance is a stable commodity, but the covari­
ance of stocks varies randomly. Among the conse­
quences of this hypothesis are:

1. Arbitrage equations involving covariances do
not constrain the marketplace.

2. Variance is a stable commodity whose price is
set by the arbitrage opportunities it presents.

3. Portfolio theories depending on estimates of fu­
ture stock covariances are not at present useful
theories.

The result is not unexpected, however the conclu­
sions challenge some of the existing literature.

1 Introduction

The theory of the efficient portfolio aids the investor
to stabilize available capital, as well as provides a
justification for risk-return payoff. However, to cal­
culate with the theory, estimates of market vari­
ances and covariances are required. The question
arises as to how well past variances and covariances
predict future variances and covariances. Besides
this motivation, whether variances and covariances
can be valuable assets depends on whether they
are stable. A predictable market behavior might
be combined with an arbitrage opportunity thereby
pricing the market behavior. If, say, covariances

182

had no predictability, they would also be of no value
as an asset.

The theory by which an optimal portfolio is calcu­
lated is due to Markowitz [6]. For that theory, vari­
ance and covariance information is required. One
possibility would be to calculate the historical vari­
ances and covariances of a universe of stocks and
bring these values forward to the next time step.
We decided to question this supposition. Weaken­
ing the requirements, we tested only how the rank­
ings of stocks from least to most variant and the
rankings of stock pairs from least to most covariant
change from time step to time step. In other words,
is it true that a high variance stock this year will be
a high variance stock next year? Will a high covari­
ance stock pair continue to covary strongly during
the next year?

According to the methods of this paper, it is true
that the variance of a stock moves with the stock
into the next time step. Variance is a property of
the stock and in this sense we say it is stable. How­
ever, they cannot confirm that covariance is stable,
in the following sense: the distribution of the Spear­
man rank correlation coefficient for the two order­
ings of stock pairs by covariance during consecutive
time periods is essentially the distribution achieved
by taking two independent, random orderings.

The problem of prediction of stock price move­
ments has been previously studied from the time­
series standpoint. The work of Granger and Mor­
genstern [4] uses the classical techniques of Fourier
Analysis to study the spectral qualities of stock
price movements. A very detailed study of stock
price variance has been undertaken by Shiller [7] in
order to bring into accord observed variance and the

Copyright© 1995 Software Engineering Press

efficient market hypothesis. In addition, there has
been much work done using the ARCH model in­
troduced by Engle [2] and the extension GARCH
model introduced by Bollerslev [1]. These het­
eroscedastic models assume that stock price is a
gaussian normal random variable with time vary­
ing variance, the variance predicted according to
the parameters of the model.

This paper attacks the problem from a different
angle. We consider it a problem in hypothesis test­
ing, rather than one of model fitting. Furthermore,
we use nonparametric methods and thus have no
hypotheses on distributions.

2 The experiments

Two experiments are described. The first experi­
ment, summarized in Figures 1 and 2, uses a data
set of 212 stocks containing records of at least 280
closing prices since October 30, 1993. The data was
taken from MIT's Stock Market Project [8]. We
use this data to test quarter and semi-annual data
streams running from the third quarter of 1993 until
the fourth quarter of 1994. This data is of limited
depth in time, but does give us a large population
of stocks to work with.

The second experiment, summarized in Figures 3
and 4, uses the CRSP data set on thirteen stocks
running from July, 1962 through December, 1992.
We corrected this data for splits but not dividend
disbursements. This data was used to test a stream
of annualized variance and covariances, normalized
for means, of prices from 1963 until 1993.

The experiment on the stability of a stock's vari­
ance compares two time periods, ji and h for a
sample R of N stocks, picked from our universe of
stock data. In our experiment, ii and h are consec­
utive quarter, semi-annual or annual periods. Sort­
ing by· variances during each of the time periods
gives us two orderings a and /3 of the stocks, from
least to most variable:

and,

where a;, /3; are the various stocks in the sample R.

Copyright © 1995 Software Engineering Press

The rank of a stock r E R under the a order is
the i such that a; = r,

Ranka(r) = {ija; = r}, any r ER.

Likewise,

Rank/J(r) = { i I /3; = r }, any r ER.

We wish to compare these two rankings in order
to reject the possibility that there is no significant
influence of the past on the future. Spearman's rank
correlation coefficient [3], [5] is the correlation of
ranks under the two orders:

r =
1

_ 6 I:rER(Ranka(r) - Rank/J(r))
2

R (N + l)N(N - 1)

Similarly, consider S = R(2) the collection of
all distinct stock pairs, and select a size N sub­
set R C S. Two orders a and /3 can be defined for
consecutive time periods j 1 and j 2 ,

and,

and Spearman's coefficient is calculated to compare
the two rankings.

For Experiment 1, where N is large, if the two
rankings were chosen independently at random, rR
would be approximated as a zero-mean, 1/(N - 1)
variance normally distributed random variable. In
Experiment 1, the underlying space of events is the
choice of subset R. We calculate,

z = rRJN - l.

The event,
I z I 2: 2.575,

will occur only 1 % of the time if a and /3 were in­
dependently chosen orders.

For small N, such as Experiment 2 where N = 6,
the Spearman coefficients are compared in a table
of theoretically calculated values [5]. The approach
here is to consider the set of stocks fixed and the
randomized event to be the choice of a pair of years.

183

In fact, we exhaustively use all consecutive years
within the range of our data set.

Th~ first experiment uses the MIT data set and
is summarized in Figures 1 and 2. Three subexper­
iments are cited, each subexperiment had eighteen
trials. In Figure 1, the third quarter of 1993 is de~
noted 93.3, and so on, and the first half of 1994 is
denoted 94.1-2, and so on.

For the variance subexperiment, two time periods
were selected and forty distinct stocks were picked
uniformly at random from the population of 212
stocks. The variance of these stocks were calcu­
lated and ranked for the two time periods, and the
Spearman correlation coefficient derived. Since N is
large, the z value is calculated and shown in Figure
1. This was done for each of eighteen trials, that is,
eighteen selections of forty stocks.

The covariance sub experiment was similar, how­
ever forty distinct stock pairs were selected rather
than forty stocks. The random selection was done
by selecting uniformly at random twice from the
population of 212 stocks and throwing out the
choice if the pair has already been chosen or if the
two choices happen to be the same stock.

The subexperiment "Random" consisted of se­
lecting forty pairs of values uniformly at random.
That is, if variance or covariance were truly random,
it could yield z values as in this subexperiment.

The data shows that the hypothesis of indepen­
dence is rejected for variance. However, with each
time period, the ranking of covariance appears to
shuffle almost as unpredictably as Random. This
is illustrated in Figure 2, where cumulative proba­
bilities have been totaled and graphed, along side a
normal distribution.

The second experiment uses the CRSP data set
and is summarized in Figures 3 and 4. Fourteen
stocks were selected at random from the CRSP data
base, provided that their histories ran from 1962
through 1992. The prices were adjusted for splits,
at which time one of the fourteen was rejected be­
cause of a long period of missing price information.
In one covariance subexperiment, the thirteen data
sets were arranged into six pairs, leaving one stock
out, and the covariances were rank correlated for
years y and y + l. The covariances were corrected
for stock price by dividing by the mean of each stock
for the year, thus yielding a dimensionless quantity.

184

Each y in the range 1962, ... , 1991 was considered
a trial, and the cumulative distribution function of
the thirty resulting Spearman coefficients is shown
in Figure 3, curve cov2-2. Additional choices of six
pairs were performed and yielded similar results,
which are not shown.

Figure 3 also shows the results of two variance
subexperiments. The six pairs cited in cov2-2
were broken into two disjoint sets of six stocks,
and Spearman coefficients calculated for rankings
of variance divided by mean price squared at time
y versus y + l, for y = 1962, ... , 1991. These thirty
trials were cumulated to form curves var-2 and var-
2bis. Finally, the theoretical null hypothesis curve
for N = 6 is given as curve n-6.

The calculations for this project were done in Perl
on a DEC-5000/125 workstation under Ultrix 4.3.
Further details of the programs and data sets are
included in an extended Technical Report.

3 Conclusions

It appears that stock volatility is stable in time: a
high variance stock yesterday will be a high variance
stock tomorrow. However, the same is not true for
the covariance of two stocks. A strong correlation
of two stocks yesterday does not lead to a strong
correlation of those stocks tomorrow. To test this
idea, we applied nonparametric tests to the rank­
ing of stocks from least to most variant and to the
ranking of stock pairs from least to most covari­
ant. For variance, there is this stability. However,
for covariance, we cannot distinguish between ac­
tual stock data and a purely random shuffle at each
period of covariance ranking.

This means that a portfolio adjusted correctly for
the previous period, according to the methods of
classical portfolio theory, should have no advantage
over a neutral portfolio for the next period, since
the facts upon which the adjustment is predicated
are no more likely to stay put than is a pack of cards
to remain unmodified after a thorough shuffling.

Also, this work underlines a subtlety in the the­
ory of portfolio diversification. The stabilizing ef­
fect of diversification is not due to deterministic oc­
currences of negatively correlated industry cycles.
Rather, negatively correlated stocks arise haphaz-

Copyright© 1995 Software Engineering Press

ardly, provided that the portfolio is large enough.
Furthermore, since covariance cannot be relied

upon to retain its ranking, it cannot be bought and
sold. This would lead one to believe, but one can­
not conclude, that arbitrage equations involving co­
variance are unlikely to constrain the marketplace.
On the other hand, the stability of variance that is
confirmed in this paper concords with current use
of variance, for example in the Black-Scholes op­
tion pricing formula, as a salable commodity and a
source of arbitrage opportunities.

Acknowledgement: The author acknowledges the
help of Prof. Thomas Gosnell of the Finance De­
partment. Without his generous offer of assistance,
the analysis of the CRSP data sets would not have
been accomplished in time for these proceedings.

References

[1] Tim Bollerslev. Generalized autoregressive con­
ditional heteroskedasticity. Journal of Econo­
metrics, 31:307-327, 1986.

[2] Robert F. Engle. Autoregressive conditional
heteroscedasticity with estimates of the vari­
ance of United Kingdom inflation. Economet­
rica, 50(4):987-1007, 1982.

[3] John E. Freund. Mathematical Statistics.
Prentice-Hall, Englewood Cliffs, New Jersey,
1992.

[4] Clive W. J. Granger and Oskar Morgenstern.
Predictability of Stock Market Prices. Heath
Lexington Books, Lexington, Massachusetts,
1970.

[5] Maurice G. Kendall. Rank Correlation Methods.
Hafner Publishing Co., 1955.

[6] Harry M. Markowitz. Portfolio Selection: Ef­
ficient Diversification of Investments. Cowles
Foundation Monographs, Yale University Press,
1959.

[7] Robert J. Shiller. Mark et Volatility. The MIT
Press, Cambridge, Massachusetts, 1989.

Copyright© 1995 Software Engineering Press

[8] Mark Torrance. Experimental stock market
data. http://www.ai.mit.edu/stocks/.

185

186

Trial

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

0.8

0.6

0.4

0.2

Time Period Experiment

II Variance I Covariance I Random

93.3 vs. 93.4 3.42 0.21 1.44
93.3 vs. 93.4 4.32 -1.58 -0.55
93.3 vs. 93.4 3.63 -0.23 -0.90
93.4 vs. 94.1 4.44 0.28 -0.24
93.4 vs. 94.1 2.98 1.05 1.48
93.4 vs. 94.1 2.53 0.0058 -1.31
94.1 vs. 94.2 2.30 -0.76 0.59
94.1 vs. 94.2 1.58 1.41 -0.24
94.1 vs. 94.2 3.13 0.92 -1.56
94.2 vs. 94.3 3.83 2.73 0.58
94.2 vs. 94.3 3.74 1.75 0.20
94.2 vs. 94.3 2.88 -0.51 1.16
94.3 vs. 94.4 4.16 1.29 0.55
94.3 vs. 94.4 3.68 0.13 0.90
94.3 vs. 94.4 4.32 -0.86 0.58

94.1-2 vs. 94.3-4 3.94 0.096 0.060
94.1-2 vs. 94.3-4 1.12 -2.50 -0.26
94.1-2 vs. 94.3-4 2.03 -0.32 -1.17

Figure 1: Table of experiment one results.

' 11 covariahces 11
-

11vari~nces" ----·
11nbrmal 11

••••••

1'r8f1dom 11
•••••••••••

l
r
r
(

r-'
r-

lr
! __ 1

r---•
r __ J

0 .___ ___ _,___ __,_:........L.__,_ ___ J....__.....i.... _ _,___ ___ __,_ ___ ___,J

-6 -4 -2 0 2 4 6

Figure 2: Summary of the first experiment.

Copyright© 1995 Software Engineering Press

Figure 3: Summary of the second experiment.

Sym Description n/g var-2 var-2bis cov2-2
ADX Adams Express Co, NYSE • .1

AL Alcan Aluminum Ltd, NYSE • .2

BHY Belding Hemingway Inc New, NYSE
CAN Continental Can Inc Del, NYSE • .3

DYA Dynamics Corp of America, NYSE *
FP Fischer & Porter, AMEX • .1

GQ Grumman Corp., NYSE • .4

IP International Paper Co, NYSE • .5

LDR Landauer Inc, AMEX • .6

NMK Niagara Mohawk Pwr Co, NYSE • .4

PKE Park Electrochemical Corp, NYSE • .6

RGS Rochester Gas & Elec. Corp, NYSE • .3

sex Starrett L. S. 'A', NYSE • .2

UIS Unisys Corp, NYSE • .5

Figure 4: Table of stocks in experiment two.

Copyright© 1995 Software Engineering Press 187

Paper Session: Improving Neural Network Models

chair: Gia-Shuh Jang, Springfield (Taiwan)

190

Neural Network Model Performance: Comparing Results in Photo Finish Situations

Susan Garavaglia
Dun & Bradstreet Information Services, N. A.

Three Sylvan Way
Parsippany, NJ 07054

garavaglia@dbisna.com

Abstract: When choosing between competing
statistical models, neural networks should be
compared with more traditional and well­
understood statistical methods, such as
logistic regression or linear discriminant
analysis. Two reasons for this are: 1) there is
a greater "installed base" of fanctioning
statistical models using these methods, and,
2) the cost of implementing a neural network
model is somewhat higher due to the
relatively greater number of connection
weights than linear coefficients for the same
given application. When the empirical
performance of competing models is close
enough to be considered a ''photo finish, "
additional analysis should be pursued to
uncover indicators of statistical stability and
robustness. Herein, examples of this
comparative analysis are discussed for four
competing business failure prediction models;
three are backpropagation neural networks,
and the fourth is a logistic regression model.
The results show the backpropagation
network trained on the confasion matrix
criterion to be slightly superior to the logistic
regression model.

1. Introduction and Background

A photo finish in a horse race means
that the true winner must be determined by
examining a photograph taken at the finish
line, because the results are too close to decide
by live observation. By analogy, in financial
modeling there may be a photo finish between
a neural network model and traditional
statistical model. Textbook examples, by
definition, show clear and unambiguous results
of neural network model performance and
favorable comparisons to older methods.
However, real applications, and especially

financial applications, are much more difficult
to develop and justify. Some reasons for this
are:

1. Financial applications are almost
always developed with relatively small samples
taken from large populations. Therefore,
sampling issues, treatment of outliers, and
model stability must be addressed.

2. Financial applications are mostly
probabilistic as opposed to deterministic,
mainly because of the degree of noise in the
data and latent variables. For example, two
companies with exactly the same observable
financial conditions at one point in time may
experience different outcomes later, (e. g., one
may file for bankruptcy protection while the
other may continue to operate as a solvent
business). There are real reasons for one
business failing, but the data available to the
modeler may not reflect these reasons.

3. Many different measures of stability
and performance are available, and the
preferences of individual econometricians may
lead them to make different decisions regarding
the selection of a "best" model. In addition,
some measures of performance are purely
pragmatic, and more technical measures of
goodness of fit may be given a lesser weight in
the decision relative to, say, gains chart
statistics. Gains charts are used to estimate
the relative gains in predictive power of models
vs. other predictive methods or random
selection.

This case study strives to illustrate all
the aforementioned characteristics of financial
applications and to demonstrate how different
measures of performance may lead to the

Copyright© 1995 Software Engineering Press

selection of different models and modeling
techniques. In addition, the contest between
models is made more intriguing by the very
close competition and the nature of the
application itself. The application is
prediction of business failures in the health
care industry, an industry in which the failure
rates are among the lowest for any industry
group. The models to be compared are a
logistic regression model, and three different
neural network backpropagation models.

As background, Dun & Bradstreet has
developed 13 industry specific models that
combine balance sheet data elements, company
"demographics" and company-specific
payment performance information to predict
business failure over an 18 month performance
window. The models were developed using
logistic regression and provide a relative rank
ordering of risk by a universal score, universal
percentiles, and industry specific percentiles.
Thus, a health care firm can be compared to
all of the scored firms in the D&B database or
its industry peers. Although the exact
specifications of the logistic regression model
are D&B-proprietary, the set of predictors
used for all models discussed in this article
include:

1. A continuous variable representing
payment performance at time of
observation

2. A continuous variable representing the age
of the firm

3. A continuous variable representing
payment variability over the last two years

4. An indicator for a set level of Current
Liabilities/Net Worth Ratio

5. An Indicator for Derogatory Payment
Notes in File

6. An indicator for a set level of Cashffotal
Assets Ratio

7. An indicator for a set level of
Sales/Working Capital Ratio

8. An indicator for Derogatory Public Record
Items (Open Suits, Liens, or Judgments)

In addition, the neural network models
incorporate an additional variable, an indicator

Copyright@ 1995 Software Engineering Press

for specific 4-digit SIC (Standard Industry
Classification) codes within the overall health
care industry group of SICs, 8011 to 8099.
These higher risk SICs included nursing homes
and other nursing care services, psychiatric
hospitals, and medical laboratories.

Generally, our experience in trying to
improve the predictiveness of financial stress
models through the use of neural networks has
yielded the kind of photo finish results that are
detailed herein. We believe that this is because
(1) our method of data collection and
representation tends to favor relationships that
are either highly monotonic or linear, and (2)
because the use of probability by logistic
regression compensates for its not having the
additional estimators that are found in a
backpropagation hidden layer. For additional
background on bankruptcy prediction
techniques and results, see Altman [I].

In a photo finish situation there could
be trade-offs in. selecting the neural network
model versus the logistic regression model for
implementation. The logistic regression
model has only as many coefficients as
variables, plus an intercept term, and is
relatively simpler to implement from a
programming standpoint. However, when
expected performance is about equal and there
is evidence of model stability, the model user
has nothing to lose by implementing the neural
network model and valuable experience to
gain. What is learned by using a neural
network model may be transferred to other
neural network opportunities.

2. Development and Testing
Methodology

The data used for all models comes
from D&B's database of health care industry
companies that have supplied full fiscal year
end financial statements within two years prior
to the observation period. In addition, for the
selected companies, Total Assets, Total
Liabilities and Total Current Liabilities were
each required to be positive and the companies'
other D&B data had to be complete for full

191

192

reporting purposes. The final set of data
elements to be included in the models was
determined by performing an exploratory data
analysis of the relationship between individual
data elements and their relationship to the
outcome of business failure or continued
business solvency. A brief discussion of the
appropriate data analysis can be found in
Hosmer and Lemeshow [3].

Once a set of predictors was selected,
three data sets were created: a development
(training) data set, a holdout (testing) data set,
and later on, a validation data set to be used
when more recent business failure data became
available. Table 1 provides a summary of the
data sets.

Data Statistics (Unweighted)
Total Non- Failures

Failures
Development/Training 2316 2210 106
Holdout/Testing 772 742 30
Validation 2970 2908 62

Table 1

For the original sample, a "snapshot"
of the companies' predictive data was taken as
of mid-1991. This is possible because D&B
regularly archives its databases. For each
company, a subsequent "snapshot" of the
outcome, either failed or not failed, was taken
over a number of calendar quarters up to the
end of 1992. Thus, the observation period was
at one point in time and the performance
period spanned the following 18 months. The
validation data set used June and December of
1992 as the observation periods and the entire
year of 1993 as the performance period. This
still fixed the performance period as 18
months, but allowed the computation of an
annual failure rate. In 1992, the business
failure rate for the health care segment that
met the data criteria was 0.8%. In 1993, it fell
to 0.2%.

2.1 The Logistic Model

The challenge from a modeling
standpoint is obvious: as the failure rate is

very low, there are very few 'bads" and model
stability is of great concern. Some techniques
to work around this problem include the
bootstrap and jackknife methods discussed in
Amemiya [2]. Other approaches include
limiting the number of variables while using as
many dichotomous independent variables as
possible, or validating the model based on
quintiles or deciles rather than percentiles.
The approach used for these models was to
transform the data to remove as much noise as
possible. Transformations included the use of
categorical variables and natural logarithms of
continuous variables. As a later test of the
model with the validation data set showed
highly favorable results with regard to
performance and stability, it was decided that
there would not be a significant benefit from
the effort of bootstrapping or jackknifing.

Because the logistic regression method
maximizes a likelihood function, probability
'lnatters." Therefore, the modeling data for a
logistic regression should reflect the expected
proportions of failures and non-failures in the
population. All of the failures and a sample
of the non-failures were used, but the non­
failures were "weighted up" to their expected
proportions in the population that would be
scored by the resulting model. The reason for
using all the failures is simply because there
are relatively few of them.

The performance criteria used for. the
logistic regression model and the neural
network models were:

1. The percentage of failures captured in the
first percentile.

2. The percentage of failures captured in the
first five percentiles

3. The percentage of failures captured in the
first decile

4. The D&B Predictiveness Index (PI), which
is a geometrical measure of the ratio of the
area of the ROC (receiver operating curve)
to a hypothetical ROC for a model that
screens perfectly, (i. e., every failure
scored lower than the lowest scoring non­
failure). See Hutton [4] for more

Copyright© 1995 Software Engineering Press

information on the ROC as it relates to
neural networks.

5. The Kolmogorov-Smimov (K-S) statistic,
which is a point measure of how well the
model '1;eparates"the classes. See Mood,
et al, [7] for a complete explanation.

6. The Kullback-Liebler (K-L) statistic,
which is a more comprehensive measure of
class "separation. "1

7. The Multivariate Wald statistic for the
neural network models and the univariate
Wald statistic for the logistic regression
model (See Wald [9], Hosmer and
Lemeshow [3], and Kuan and White [6]).

It should be noted that all of these
measures are at least somewhat dependent on
the proportion of observations in each class
(reflected here by the failure rate), and cannot
reasonably be used to compare two different
model applications. Thus, absolute measures
of ''.goodness" for each of these criteria are
not relevant. For criteria 1-6, the highest
value for each statistic determines the 'best"
model, and in criterion 7, the Wald test, the
number of parameters for which the Wald
statistic exceeded the critical Chi-squared
value is used to determine the "best" model.

2.2 The Neural Network Models

A number of variations on the size and
number of hidden layers were tried before a
network with a hidden layer of seven units was
settled on for the rest of the development work.
Using this network architecture, three different
versions were trained, varying the optimization
criteria, and using the validation data set to
test. The rationale for using the validation
data set, as opposed to the holdout/testing data

1 White [10] illustrates the use of the K-L statistic
in terms of comparing an estimated conditional
density to a true conditional density, which would
make the best model have the lowest K-L value.
In this case, the K-L statistic is being used to
compare the estimated conditional densities of the
two classes which should be as far apart as
possible, thus giving a relatively large K-L value
for the best model.

Copyright© 1995 Software Engineering Press

set, was that the validation data set had more
failures and contained more recent data.
Basing performance on more recent data also
gives the model a longer "shelf life," in that it
is expected keep its level of predictiveness
longer. The lowest mean squared error, the
highest average correct classification rate, and
highest correlation coefficient based on a
confusion matrix were used as optimization
criteria. The classification rate measures the
average percentage of neural network output
values that fall in the right place on the 45°
diagonal (after any necessary rounding), where
the axes are actual value and desired value.
The confusion matrix method of optimization
uses the correlation coefficient of the points
scattered on and around the same diagonal.
Information about the neural network software
used, NeuralWorks Professional/11®2

, and
how to train a network based on best model
criteria, can be found in NeuralWare, Inc. [8].

The failures in the training set were
duplicated enough times to equal the number
of non-failures, which brought the total
number of observations to 4,330. This
strategy improved the performance by a slight
amount, apparently because the neural network
had more opportunities to learn from the
failures, which enabled it to compensate for its
lack of knowledge of the probabilities used by
logistic regression.

After this first 'tound" of selecting an
overall architecture, the second round involved
selecting the best network from the optimizing
criteria. The confusion matrix criteria
performed best among the three, but still was
not quite as good as the logistic regression
model in some criteria. From this point,
further improvements on the confusion matrix
version of the model were attempted by
additional training and jogging the weights
periodically to see if the network was stuck in
local minima.

After some amount of training, which
included several retreats back to a previously
best network, it was decided that it was

2 Neural Works Professional/II is a trademark of
NeuralWare, Inc.

193

194

unlikely that any additional improvements
could be made within the same architecture
and optimization parameters.

The full comparison of all the models
is in Tables 2a through 2e, with the fourth
column showing how many failures ('Val.
Bads') were screened by each model at the
first, fifth, and tenth percentiles.

Loaistic Rearession
Criteria Dev Hid Val Val. Bads
1% 16 13.3 30.6 19
5% 45.3 33.3 51.6 32
10% 62.3 43.3 66.1 41
Pl 73.4 53.48 75.5
K-S 0.61 0.45 0.5
K-L 1.2 0.88 1.31

Table 2a

Neural Network -
Confusion Matrix Criterion fTvoical Result)

Criteria Dev Hid Val Val. Bads
1% 9.4 12.4 17.7 11
5% 39.6 30 50 31
10% 56.6 40 61.3 38
Pl 75.6 51.56 70.8
K-S 0.62 0.47 0.53
K-L 1.26 0.92 1.33

Table 2b

Neural Network - Classification Rate
Criteria Dev Hid Val Val. Bads
1% 10.4 6.7 14.5 9
5% 41.5 30 46.8 29
10% 67 40 56.5 35
Pl 81.44 49.56 66.4
K-S 0.67 0.48 0.52
K-L 1.52 0.92 1.17

Table 2c

Neural Network - Root Mean Sauared Error
Criteria Dev Hid Val Val. Bads
1% 6.6 6.7 7.6 5
5% 35.7 20 37.1 23
10% 65.1 40 59.7 37
Pl 82.48 51.96 72.44
K-S 0.69 0.43 0.55
K-L 1.49 0.7 1.12

Table 2d

Neural Network - Best Confusion Matrix
Criteria Dev Hid Val Val. Bads
1% 10.4 6.7 10.8 6.7
5% 43.2 26.7 51.6 32
10% 66 40 69.4 43
Pl 82.24 40.96 73.12
K-S 0.7 0.31 0.61
K-L 1.56 0.72 1.42

Table 2e

An overall comparison of the logistic
regression model with the neural network
models is in Table 2f.

Best Model Selection by Criteria
Criteria Holdout Validation
1 % Logistic Logistic
5% Logistic Logistic/Best

10%
Pl
K-S
K-L

Logistic
Logistic
Classification Rate
First Confusion Matrix/
Tied with Class. Rate

Table 2f

CM Tied
Best CM
Logistic
Best CM
Best CM

The Best Confusion Matrix version
gave a better result than the logistic regression
model in three categories and was tied in one.
The logistic regression model was superior to
the neural network in the first percentile
screening rate and the Predictiveness Index.

3. The Wald Test as a Potential Tie
Breaker

The Wald Test is a statistical
hypothesis test to determine the significance of
predictors. The methodology is to propose the
Null Hypothesis, (i. e., that the 'true"
coefficient or connection weight associated
with the predictor is zero, therefore rendering
the predictor irrelevant to the outcome), and
then determine the likelihood that the Null
Hypothesis is false and can be rejected. This
is essentially accomplished by taking the
estimated coefficients or connection weights

Copyright© 1995 Software Engineering Press

from the regression or the neural network
models and calculating their relative
contribution to a correct result versus the
contribution of random 'hoise" to the correct
result. It is related in application to the t-test
and the F-test, but is defined for models that
are more complex than linear models.
Johnston [5] includes an extensive discussion
of tests of significance for linear models; and
Amemiya [2] describes several tests of
significance for more complex models,
including the multivariate Wald Test.

Kuan and White [6] briefly discuss
the use of the Wald Test to determine the
significance of predictors in a neural network
model with one hidden layer and provide the
appropriate form of the test. The Chi-squared
critical value is determined by the number of
hidden units plus one, which should be used in
place of the degrees of freedom in looking up
the critical value in a table. Most statistics
textbooks contain a table of critical values by
degrees of freedom (See either Johnston [5] or
Mood, et al, [7].). For both the multivariate
and the univariate tests, critical values are at
the 5 % significance level, or a probability of
0.05 that a true Null Hypotheses is being
rejected. For one degree of freedom, the
critical value is 3.841, and for 8 degrees of
freedom (defined for this type of test as 7
hidden units plus one) the critical value is
15.507.

The multivariate form of the Wald
Statistic is computationally intensive and is not
often available in standard software. For this
research the calculations were programmed
using Mathematica®3 (Wolfram [11]) and
took several days to run on a standard 386-
based PC. The univariate form of the Wald
Statistic is supplied as part of the standard
output for the SAS®4 Logistic Regression
Procedure. For more information see [9].

As examining the tests of significance
is part of the traditional model development

3 Mathematica is a trademark of Wolfram
Research, Inc.
4 The trademarks refer to the products and seIVices
of SAS Institute, Inc.

Copyright© 1995 Software Engineering Press

process, all eight predictors in the final logistic
regression model had Wald Statistics that
exceeded the critical value of 3.841, which is
consistent with the p-values (significance
levels) all being below 0.05. The p-values are
the probabilities that a true Null Hypothesis is
being rejected. The Wald Statistics on the
neural network models were calculated, after
the fact, on models trained to meet other
criteria, viz., root mean squared, classification
rate, and confusion matrix measures.
Therefore, these statistics served not so much
to determine if the predictors were relevant, as
this was a known result of the logistic
regression, but to determine how well the
network extracted predictiveness from the
data. In addition, since one more input was
used (the SIC indicator within the general
health care group), it could demonstrated that
the neural network was able to make use of
other information that was not statistically
significant in a purely linear estimation.
Therefore, the total number of test statistics
that exceeded the critical value is a relative
measure among the three neural networks. As
the multivariate Wald Statistic determines the
significance of inputs or predictors, it is
appropriate for the input to hidden layer
connections only. Therefore, the percentage of
the total is based on: 9 inputs times 7 hidden
units= 63 connections.

The results were as follows in Table 3:

195

196

Criterion/Dataset Wald Statistics
> Critical Value

Number Percentage
Classification Rate
Training/Dev 55
Test/Holdout 47
Validation 55

RMS Error
Training/Dev
Test/Holdout
Validation

Confusion Matrix

21
7
22

Training/Dev 36
Test/Holdout 18
Validation 36

Table 3

87.30%
74.60%
87.30%

33.33%
11.11%
34.92%

57.14%
28.57%
57.14%

These initial results, which show that
the classification matrix criterion method has
the highest proportion of significant
connections, are consistent with expectations,
given that the average classification rate was
84.29%, based on the failures classification
rate of 83.02% and the non-failures
classification rate of 85.57%. The confusion
matrix criterion method, which uses the
correlation coefficient between the outputs and
the correct classification, had the next highest
proportion of significant connections, with a
correlation coefficient of 0.271602 for the best
model using that criterion. The lowest root
mean squared error obtained was 0.606613,
which is consistent with the expectation of the
worst relative performance. It is proposed that
the confusion matrix method yielded the best
rank ordering power, as shown in the
percentile and PI statistics, because the
rounding used in the classification matrix
criterion caused a number of observations to
be counted in the wrong class.

The exercise of calculating the
multivariate Wald Statistics is also useful to
examine the persistence of certain predictors
across all models. Table 4 shows the sum of
statistics that exceeded the critical values for
all neural network models and all data sets

(training, testing, and validation) for all hidden
units. Payment performance has the highest
number of statistically significant connection
weights, and is also the strongest predictor in
the logistic regression model. This should be
expected as well, because, intuitively, the first
sign of _a business in trouble is usually
delinquency in bill-paying. What is interesting
about this result is that the special SIC
category, (tied with the Current Liabilities/Net
Worth ratio), has the next highest number of
statistically significant connection weights, but
was not statistically significant in the logistic
regression model! This supports the selection
of a neural network model when the data is
very complex.

Predictor Total
Number>Critical
Value

Payment Performance 52
Age of Company 23
Payment Variability 14
Current Liabilities/Net Worth 39
Derogatory Payment Notes 31
Cash/Total Assets 30
Sales/Working Capital 34
Derogatory Public Record 35
Items
Special SIC Category 39

Table 4

4. Economics of Model Implementation

A pragmatic observer of this
discussion might challenge the results in the
tables by saying, ''Look, the Confusion Matrix
Neural Network screens only two more
failures than the Logistic Regression. Who
cares which model gets implemented?" But,
for users of Financial Stress Predictive Scores,
any single business failure could mean very
large losses, and the difference between
screening 43 versus 41 failures at the first
decile represents a 5 % improvement. Of
course, a rational economic decision on which
model to use would be based on the expected
incremental cost to develop, implement, and
maintain the neural network model versus the

Copyright© 1995 Software Engineering Press

expected loss avoidance based on the expected
improvement in performance. There may be
intangibles as well, such as the model user's
reputation and regulatory implications of
imprudent risk taking.

Another consideration is how the
model will be used. For example, the logistic
regression model screened the best of all the
alternatives at the first percentile level. A
company that seeks to minimize its losses and
still approve 99% of its risks would do best
with this model. However, a company that is
seeking the lowest risk with a 90% approval
rate would do better with the Best Confusion
Matrix Neural Network Model.

From this set of research results, it
appears that the logistic regression model may
have slightly better rank ordering power than
the best of the neural network models, as
indicated by the Predictiveness Index and the
screening power in the lowest percentiles.
However, the neural network models were able
to get predictive information out of an
additional input and showed a good proportion
of statistically significant connection weights.
This gives potential users the confidence that
the network has true predictive power and
model stability.

5. Summary and Conclusions

Selecting a best version of a statistical
model is not always straight-forward.
Measures of expected performance and
statistical stability must be evaluated in some
economic context of how the model will be
applied and the relative costs of all of the
alternatives under consideration. The nature
of the data also determines which modeling
paradigm will yield the best result. The results
obtained by this study appear to suggest that
there may be some upper limit of
predictiveness to just about any combination of
model and data set because of unobservable
factors that influence the outcomes. The
neural network paradigm may be able, through
the use of hidden units that have the effect of
combining subsets of inputs, to provide
information that is not immediately observable

Copyright© 1995 Software Engineering Press

in strictly linear analysis. However, the
presence of this type of information can be
detected through data analysis, which often
includes the development of a linear model as
an initial step.

Neural Network models remain a
promising technology, but, as part of the
model development process, a significant
amount of time should be budgeted for
exploratory data analysis, and pre­
implementation analysis such as statistical
hypothesis testing, as described in this article.
If standard programs and procedures are set
up for the analytics, the process will run
smoothly, and each implemented model will be
better understood and accepted by its users.

6. References

[1] Altman, Edward I. 1993. Corporate
Financial Distress and Bankruptcy. Second
Edition. New York, NY: John Wiley & Sons.

[2] Amemiya, T., 1985. Advanced
Econometrics. Cambridge, MA: Harvard U.
Press.

[3] Hosmer, David W. And Stanley
Lemeshow. 1989. Applied Logistic
Regression. New York, NY: John Wiley &
Sons.

[4] Hutton, Larrie V. 1992. Using Statistics to
Assess the Performance of Neural Network
Classifiers. Johns Hopkins APL Technical
Digest. V. 13. N. 2.

[5] Johnston, J. 1984. Econometric Methods.
Third Edition. New York, NY: McGraw-Hill.

[6] Kuan, Chung-Ming, and Halbert White.
1991. Artificial Neural Networks: An
Econometric Perspective. Working Paper. U.
Of California, San Diego.

[7] Mood, Alexander M., Franklin A. Graybill,
and Duane C. Boes. 1974. Introduction to the

197

198

Theory of Statistics. Third Edition. New
York~ NY: McGraw-Hill.

[8] NeuralWare, Inc. 1993. Reference Guide:
Software Reference for Professional II/Plus ®
and NeuralWorks Explorer®. Pittsburgh, PA:
NeuralWare, Inc.

[9] SAS Institute, Inc. 1990. SAS®
Technical Report P-200, SAS/STAT@
Software: CALIS and LOGISTIC Procedures,
Release 6.04. Cary, NC: The SAS Institute,
Inc.

[9] Wald, Abraham. 1943. Tests of
Statistical Hypotheses Concerning Several
Parameters when the Number of Observations
is Large. Transactions of the American
Mathematical Society. V. 54, No. 3. pp. 426-
482.

[10] White, Halbert, Jr. 1990. Learning in
Artificial Neural Networks: A Statistical
Perspective. Neural Computation, Vol. 1, pp.
425-464. Also in White, Halbert, Jr. 1992.
Artificial Neural Networks: Approximation
and Learning Theory. Oxford: Blackwell.

[11] Wolfram, Stephen. 1991. Mathematica:
A System for Doing Mathematics by
Computer. Second Edition. Redwood City,
CA: Addison-Wesley.

The author wishes to acknowledge the help of
Jim Markovitch of D&B in editing the final
version of this article.

Copyright© 1995 Software Engineering Press

Financial Classification: Performance of Neural Networks in Leptokurtotic
Distributions.

Ravi Krovi
Dept. of Accounting & Information Systems

Southern Arkansas University
Magnolia, AR 71753

rakrovi@saumag.edu

Akhilesh Chandra
Dept. of Accounting

North Carolina A&T State University
Greensboro, NC 27411

chandraa@ncat.athena.edu

Abstract

This paper presents the results of a performance
analysis of two popular techniques of
classification: neural networks and FLDA, a
statistical approach. It is suggested that neural
networks which are not limited by assumptions
such as normality and equal variances, would
perform better especially for financial
applications. Several financial applications have
been documented to assume a form of non­
normality called leptokurtosis. Our results
indicate the conditions under which the neural
network might outperform other approaches for
financial applications. Comparisons based on
real world data as well as simulated data provide
strong evidence that the neural network performs
better when ranked data is used.

1. Introduction

The classification problem involves assigning data
cases based on a set of variables to two or more
groups. Classification is a very common problem
encountered in the business world and is of
considerable interest in the financial community.
For example, investors are interested in classifying
a firm on the basis of its financial soundness
(bankruptcy); Stock analysts are interested in
categorizing investments in firms as involving
high, medium or low risk based on their financial

Copyright © 1995 Software Engineering Press

Balaji Rajagopalan
Dept. of Management Information Systems

University of Memphis
Memphis, TN 38152

rajagopa@msuvx l .memphis.edu

Ned Kumar
Dept. of Management Information Systems

University of Memphis
Memphis, TN 38152

kumams@msuvxl.memphis.edu

ratios; the FDIC has an interest in identifying
banks or financial institutions that are likely to go
bankrupt; credit rating agencies are interested in
classifying customers as belonging to high/low
risk categories.

Traditional statistical procedures such as the
Fisher's Linear Discriminant Analysis (FLDA)
have been widely used to find solutions to the
classification problem. While such techniques
have worked well for some problems, the
performance has been unimpressive for most
business applications. This is because statistical
approaches to the classification problem require
some assumptions about the data, the most
important of them being multivariate normality
and the homogeneity of covariance. However,
prior research has consistently shown that
financial data in particular violate the above
mentioned assumptions. For example, it has been
shown that the distribution of changes in daily
future prices is not normal but is actually
leptokurtic; i.e. a distribution with fat tails
(Hudson et al., 1987). An analysis of the
empirical distributions of asset and commodity
prices revealed similar forms of non-normality
(Peters, 1991). Leptokurtotic distributions also
seem to be prevalent in other financial data such
as stock returns (Brock et al., 1991) and exchange
rate changes (Hsieh, 1988).

Recently , neural network approaches have been

199

used effectively to solve classification problems
(Salchenberger et al., 1992; Marquez et al., 1992).
However, there has been no study which addresses
the issue of why or under what conditions one
approach outperforms the other. As a result, no
strong generalizations can be made as regards the
superiority of any particular approach. In this
paper, we present the results of a comparison
between the traditional statistical approach
(FLDA) and neural networks specifically for
leptokurtotic distributions. In our comparisons,
we vary two conditions: the assumption of
homogeneity of covariances, and the effect of
using ranked data versus raw data. Results of a
comparison between the two techniques for the
liquidation / merger alternative are also presented
and discussed vis a vis the results from the
theoretical distribution.

2. The Statistical Model (FLDA)

Fisher's linear discriminant analysis (FLDA) is the
most frequently used classification rule. The rule
works well in situations where the groups to be
discriminated can be separated by a straight line.
Consider the simplest case where two groups have
to be differentiated. Let G1 and G2 denote the
groups. Further, it is assumed that the two group
populations are n-variate (n >= 1) normal and the
homogeneity of variance-covariance is valid.

In such a case, an unclassified data case 1s
assigned to group G1 if
XorS-1(X1-X2) >= l/2(X1-X2?S·1(X1-X2) + ln(pzfp1)

and to group G2 otherwise.

3. Neural Network Classifiers

Neural networks are composed of highly
interconnected neurons or processing elements
organized in layers. The simplest form of such a
network is one that has two layers: input and
output. Feedforward networks are characterized
by unidirectional flow of signals from the input to
the output layer. Connections between the
neurons have a numerical weight associated with
them that explains the influence of input units on
the output units. These weights are learned by the

200

network through training that consists of repeated
presentation of examples from a training set. In
the backpropogation algorithm, there is a middle
layer that transforms and develops internal
representations of the inputs. The transfer
function that describes the relationship between
layers is usually like a logistic continuous
function. The ability of such multi-layered
networks to represent nonlinear functions is well
documented (Kolmogorov, 1963). The present
study uses multilayered networks with a variant of
the backpropogation learning procedure.

4. Methodology

Using a procedure proposed by Fleishman (1978),
a leptokurtotic distribution with a skewness of
0.25 and a kurtosis level of 3.0 was simulated.
The number of variables was five. There were
two levels of manipulation: homogeneity and
heterogeneity of covariance structures. The
design is summarized below:

Equal Unequal
Covariances Covariances

Neural Network U1=(0,0,0,0,0) U1=(0,0,0,0,0)
U2=(l,l,l,l,l) U2=(1,l,l,1,1)
Cov1=Cov2=I Cov,=I Cov2=2I

FLDA U,=(0,0,0,0,0) U,=(0,0,0,0,0)
u2=(1,1,1,1,1) U2=(1,l,l,1,1)
Cov1=Cov2=I Cov1=I Cov,=21

Note: Ul andU2 represent the means of 5
variablesand I represents the identity matrix.

Two hundred observations were generated for
each of the four conditions with hundred cases per
group. Within each cell, hundred observations
were used as the training set and the remaining
hundred were used as a test or holdout sample.
Five simulations were carried out per cell and the
results averaged. Using the same distributions, the
procedures of NN and FLDA were repeated for
ranked data instead of raw data.

5. Network Design

A single hidden layer, feedforward
backpropogation network with five input nodes,

Copyright© 1995 Software Engineering Press

four hidden nodes (based on a 75% rule suggested
by Salchenbarger et al., 1992), and one output
node was developed. The input nodes represent
the five discriminating variables and the output
node is the classification or group node. The delta
rule was used to train the network. A convergence
criterion of root mean square error of 0.01 was
used for training and a sigmoidal function was
used to update weights.
The function used to classify the continuous
output was as follows:

f(0) = 1 if f(0) >= 0.5
0 otherwise.

6. Results

The classification rates of the experimental
comparisons between the neural network and
FLDA for leptokurtotic distributions are presented
below.

RAW DATA

Equal Unequal
Covariances Covariances

NN 80.5% 71.5%

FLDA 80.0% 69.0%

RANKED DATA

Equal Unequal
Covariances Covariances

NN 94.5% 85.5%

FLDA 89.6% 64.4%

7. A Real World Example

With increasing bankruptcies, security analysts,
investors and corporations are paying closer
attention to the survival prospects of a firm. There
is a need to identify firms that might be strong
candidates for being acquired. The variables
chosen for this merger-liquidation model were
based on failing firm theories well document in
prior studies (Palepu, 1986; Eddey, 1991). They

Copyright© 1995 Software Engineering Press

were: Return on assets (ROA), Return on
stockholder's equity, Price-earnings ratio,
Dividend yield, Turnover ratios, Liquidity ratios,
Sensitivity to economic conditions, Firm size, and
Growth resource mismatch. Data for these
variables was collected for one, two, and three
years before the actual event with a training
sample of 60 and a holdout sample of 60 firms.
The results of this comparison are presented
below:

Time=l Time=2 Time=3

FLDA 67.53% 66.43% 64.24%

NN 73.00% 70.60% 70.15%

8. Discussion

The results of the merger-liquidation classification
comparisons confirm some intuitive expectations
about the techniques. As the actual event
approaches, there -is an improvement in the
predictive ability. However, the neural network
model performs only marginally better than the
FLDA. The same conclusion can be reached when
looking at the classification rates for raw data
generated in the form of a leptokurtotic
distribution. This is also irrespective of the
violation of homogeneity of covariances. The
performance of both approaches is by and large
mediocre especially in the case of unequal
variances. However, after using ranked data for
our comparisons, we can make three
generalizations. First, for leptokurtotic
distributions such as asset and commodity prices,
neural networks are a more accurate classification
tool than FLDA. Second, there is a drastic
improvement in the neural network's performance
when ranked data is used. Third, the disparity
between the neural network and the FLDA for
ranked data is most obvious under the condition of
unequal covariances.

Our results provide strong support for the
superiority of the neural network approach in
financial applications, but they also show the
conditions under which performance can· be

201

improved. That is, it seems that the neural
network performs better when the data is ranked
and is not affected by the violation of the
assumption of unequal variances. We are
currently in the process of conducting additional
simulations to determine if such improvements are
consistent across other distributions (purely
guassian, platokurtotic etc.). We are also in the
process of designing and testing a genetic
algorithm based approach to classification.

9. References

Brock, W. A., Hsieh, D. A., and LeBaron, B.
Nonlinear Dynamics, Chaos, and Instability:
Statistical Theory and Economic Evidence,
Cambridge, MA: The MIT Press, 1991.

Eddey, P. H. "Corporate Raiders and Takeover
Targets," Journal of Business Finance and
Accounting, 18(2), January 1991.

Fleishman, A. I. "A Method for Simulating Non­
Normal Distributions," Psychometrika, Vol. 43,
4, December 1978.

Hsieh, D. A. "The Statistical properties of Daily
Foreign Exchange Rates: 1974-1983," Journal of
International Economics, Vol. 24, 129-145.

Hudson, M. A., Leuthold, R. M., and Sarassoro,
G. F. "Commodity Futures Price Changes: Recent
Evidence for Wheat, Soybean, and Live Cattle,"
The Journal of Futures Markets, Vol. 7, 287-
301.

Kolmogorov, A. N. On the Representation of
Continuous Function of Many Variables by
Superposition of Continuous Functions of One
Variable and Addition. American Mathematical
Society Translation, 1963.

Marquez, L., Hill, T., O'Connor, M., and Remus,
W. "Neural Network Models for Forecast: A
Review," The Twenty-fifth Hawaiian
International Conference on Systems Sciences,
Hawaii, Jan 8-10, 1992.

Palepu, K. G. "Predicting Takeover Targets: A

202

Methodological and Empirical Analysis," Journal
of Accounting and Economics, Vol. 8, 1986.

Peters, E. E. Chaos and Order in the Capital
Markets: A New View of Cycles, Process, and
Market Volatility, New York: John Wiley, 1991.

Salchenberger, L. M., Cinar, M. E., and Lash, N.
A. "Neural Networks: A New Tool for Predicting
Thrift Failures," Decision Sciences, Vol. 23, 899-
916.

Ravindra Krovi is an Assistant Professor of
Information Systems at Southern Arkansas
University. He has published in Journal of
Information and Management and presented
papers at conferences such as HICSS, IEEE, and
DSI. His research interests are in the areas of
adaptive systems design and artificial intelligence.
He is currently working on a distributed agents
model of negotiations.

Balaji Rajagopalan is a doctoral candidate at the
University of Memphis. He has a paper accepted
for publication in the Journal of Information
Processing and Management and has presented
papers at conferences such as IRMA and SWDSI.
He has also been invited to present at the DSI
National Conference. He is currently working on
a chaos theory model of information technology
diffusion.

Ned Kumar is a doctoral candidate at the
University of Memphis. He has published in
Information Processing Management and
Decision Support Systems and conferences such as
Decision Sciences Institute and Information
Resources Management Association. He is
working in the area of global information systems
and outsourcing.

Akhilesh Chandra is an Assistant Professor of
Accounting at North Carolina A&T State
University. He has published in the Journal of
Computer Information Systems and Managerial
Finance and conferences such as AAA, DSL and
IRMA. His research interests are in the areas of
managerial accounting and decision making.

Copyright© 1995 Software Engineering Press

Training Robust Neural Nets by
Minimizing Weights not Errors

Patrick J. Lyons, Ph.D. and Santanu Kar
Department of Management

St. John's University
Jamaica, New York 11439, USA

Abstract
A frequent obstacle to applying neural networks to
business is overtraining. The traditional model to
train a neural network minimizes the sum of the
squares of the deviations of the target and computed
output. This paper presents a second model in which
acceptable deviations of the target and computed
output are specified as constraints and the objective
junction is to minimize the sum of the squared weights.
The resulting weights provide a robust solution. As
examples, the experience of using the model in
training the XOR and 3-Parity neural networks is
presented, along with a copper price forecasting
model.

1. Introduction
A frequent obstacle to applying neural networks to
business is overtraining. When overtraining occurs, the
resulting neural network memorizes the training data
veiy well, but does not evaluate new data satisfactorily.
This usually happens when several weights become
large in absolute value and relatively small changes in
input create large changes in output. The objective of
this paper is to demonstrate that by minimizing the
weights and not the errors a more robust neural network
will be produced. To do this, two models will be
introduced and their resulting solutions will be
compared.

The first model is based on the traditional model of
adjusting the weights of a neural network so as to
minimize the sum of the squares of the deviations of the
target and computed output. This will be called the
Error Minimization Model. Several different algorithms

Copyright © 1995 Software Engineering Press

can be used with this model to determine the solution,
such as standard error back propagation with fixed
learning rate, error back propagation with line
minimization (also called steepest descent), quasi­
Newton, and conjugate gradient. In the second model,
acceptable deviations of the target and computed output
are explicitly specified as constraints and the objective
function is to minimize the sum of the squared weights.
This model is called the Weight Minimization Model.
These two models are then applied to the XOR and 3-
Parity Problems. The resulting solutions of the Weight
Minimization Model are more robust than the Error
Minimization Model. The Weight Minimization Model
is also applied to a copper price forecasting model to
demonstrate the use of the technique on a larger
practical problem.

1.1 Review of the Literature
An important factor in applying neural networks to
business is the proper training of the network. This is
especially true for applications that synergistically use
expert systems, neural networks, Lotus compatible
worksheets, and/or dBase compatible files. For
example, Lyons [3] describes a methodology to
integrate neural networks and expert systems for merger
& acquisition analysis. The book and software of
Lyons [5] contains the PC software which demos the
system described in Lyons [3]. Lyons [4] describes
how AI technology can be used technology transfer.
References such as Freeman [I], Kosko [2], Maren [6]
and McClelland [7] discuss the art of training a neural
network with the Error Minimization Model and various
versions of the back propagation algorithm. In the
recent article, Van der Smagt [9] analyzes these

203

algorithms along with quasi-Newton and conjugate
gradient algorithms for the Error Minimization Model.
This current paper extends that analysis by applying
these algorithms to the Weight Minimization Model.

1.2 Overview
In Section 2 of this paper, the Error Minimization
Model is defined. For the XOR problem, the model is
encoded using a Lotus compatible worksheet to
minimize the sum of the squares of the deviations of the
target and computed output. The model is solved with
either the Lotus or Excel solver, and the computational
experience is discussed. The solution does suffer from
the usual problem of over training. In Section 3, the
Weight Minimization Model is presented where the
acceptable deviations of the target and computed output
are specified as constraints and the objective function is
to minimize the sum of the squared weights. The result­
ing weights provide a robust solution. The experience
of using the worksheet solvers in training the XOR and
3-Parity neural networks is included. In Section 4, the
Weight Minimization Model is applied to a copper price
forecasting model. This paper assumes that the reader
has familiarity with training neural networks.

2. Error Minimization Model
In this section, the Error Minimization Model for the
traditional three-layer feedforward neural network
architecture is presented. It is described in precise
mathematical terms so as to compare it with the Weight
Minimization Model of Section 3.

2.1 Statement of Error Minimization Model
The objective of the Error Minimization Model is to
minimize the sum of the squares of the deviations of the
target and computed output. To define this
mathematically, first the equations to compute the
output of the neural network will be specified followed
by the expression for the error. Let X; P denote the input
value to the i-th input processing element for the p-th
training pattern, where i equals I tom, the number of
input processing elements and p equals I to q, the
number of training patterns. Thus, the net input for the
p-th pattern into the j-th processing element of the
hidden layer can be computed as:

ne11; = J;w/ xip - ~- (1)
i

where wi is the weight of the connection from the I-th
input element to the j-th hidden element, and 0/ is the

204

bias term. The h superscript refers to quantities in the
hidden layer. Next, the sigmoidal activation function is
used to compute the output of the j-th processing
element of the hidden layer as:

h]
out1P = (2)

In a similar fashion, the net input into the k-th
processing element of the output layer can be computed
as:

o {""" o h ao
netkp = L- wkJ out1P - vk (3)

j

where wk/ is the weight of the connection from the j-th
hidden element to the k-th output element, 0/ is a bias
term and n is the number of processing elements in the
hidden layer. The o superscript refers to quantities in
the output layer. Again, the sigmoidal activation
function is used to compute the output of the k-th
processing element of the output layer as:

0 1
outkp = (4)

Now that the equations to compute the output of the
neural network are specified, the objective function of
the Error Minimization Model may be defined as:

min£=½ };(tark -outk;J2 (5)
kp P

where tarkp denotes the target value for the k-th output
processing element of the p-th training pattern and
outk/ satisfies Equations (1) - (4).

2.2 Implementation of Error Minimization Model
The Error Minimization Model for the XOR problem is
encoded in a Lotus compatible worksheet and solved
with either the Lotus or Excel solver. The patterns are
entered in the worksheet as depicted in Figure 1. An
initial set of small random numbers is used as a starting
point for the weights and bias terms for the two hidden
processing elements and the one output processing
element. After the worksheet solver is invoked, these
numbers are replaced with the final solution as shown
in Figure 2. The results of encoding Equations (1) and
(2) for the two hidden elements is shown in Figure 3.
The similar results of encoding Equations (3) and (4)
for the one output element is given in Figure 4 along
with the deviations from the target values and the value

Copyright© 1995 Software Engineering Press

of E as determined by Equation (5).
Concerning the performance of the solvers for

different sets of initial random numbers for the weights
and bias terms, the Lotus solver frequently gave the
message that it could not solve the XOR problem.
However, when the same worksheet was input into
Excel, the Excel solver frequently solved the XOR
problem within 30 seconds on a 486 PC. The weights
and bias terms of a typical solution are given in Figure
2, with the corresponding errors shown in Figure 4.

PATTERNS
Input Target

p X1 X2
1 0 0 0
2 0 1 1
3 1 0 1
4 1 1 0

Figure 1 - Patterns for XOR Problem

Weights Bias
Layer Neuron From Neuron

1 2
Hidden j=1 6.771183 -19.4905 -15.1135
Hidden j=2 -116.55 148.6741 -35.4626
Output k=1 -22.7804 -25.1157 -35.6946

Figure 2 - Weights for XOR Problem

Hidden
p Net 1 Net 2 Out 1 Out2
1 15.11354 35.46258 1 1
2 -4.37698 184.1367 0.012407 1
3 21.88472 -81.0872 1 6.1E-36
4 2.394203 67.58689 0.916384 1

Figure 3 - Data for Hidden Elements

Output Errors
Net 1 Out 1 Tar-Act (Tar-Act)"2

-12.2015 5.0E-06 -5.0E-06 2.5230E-11
10.29626 0.999966 0.000034 1.139BE-09
12.91421 0.999998 2.5E-06 6.0654E-12
-10.2967 0.000034 -3.4E-05 1.1386E-09

Obj Fct: l .154BE-09

Figure 4 - Data for Output Element

Copyright© 1995 Software Engineering Press

3. Weight Minimization Model
As can be seen in Figure 4, the absolute deviations of
the target and output are all less than 10-4. For most
business applications, it is not necessruy to have such
high precision. Many times, achieving higher precision
on the training set of data, leads to poorer performance
evaluating new data. This is called overtraining. To
overcome this with the standard error back propagation
method, the training process is monitored and stopped
when it is felt that the summed squared error is
sufficiently small. However, what frequently happens
is that some patterns have small errors while others
have unacceptably large errors. This is the motivation
behind the second model, the Weight Minimization
Model.

The objective of the Weight Minimization Model is to
minimize the sum of the squares of the weights and bias
terms subject to the constraints that, for each pattern
and each output element, the deviation of the target and
output is acceptably small. By analyzing each training
pattern, the analyst can feel confident that the pattern is
appropriate and should be kept or it is inappropriate and
should be eliminated. Sometimes the training data has
inconsistencies. When this is the case, no training
method will work because there is no solution. The old
saying, "Garbage in, garbage out," is especially true
with neural networks. The training data must be
analyzed for inconsistencies. The Weight Minimization
Model provides the analyst a method to do this analysis
explicitly.

3.1 Statement of Weight Minimization Model
The objective function for the Weight Minimization
Model is defined as:

min w = Erw}J2 + Er~-~2

ij j

+ J;(w/;2
+ J;(8/)2

(6)

jk k

subject to the constraints that

I tarkp - outk; I ~ errkp (7)

where errk P denotes the acceptable error of the k-th
output processing element for the p-th training pattern,
tark P denotes the target value of the k-th output
processing element for the p-th training pattern and
outk/ satisfies Equations (1) - (4).

205

3.2 Implementation of Weight Minimization Model
for the XOR Problem
The worksheet implementation of the Weight
Minimization Model is a straightforward modification
of the worksheet created for the XOR Error
Minimization Model. To implement the objective
function of Equation (6), the squares of the weights and
bias terms are computed as shown in Figure 5. For the
solver, this cell is identified as the optimal cell. To
implement the constraints of Inequality (7), an
additional column is added adjacent to the Errors
columns, as shown in Figure 6. Please note that since
the actual output cannot exceed 1.0 nor go below 0.0,
the absolute value stated in Inequality (7) can be
replaced by the one-sided inequalities given in Figure 6.
For the solver, these cells are identified as the constraint
cells.

Concerning the performance of the solvers for the
Weight Minimization Model, here too the Lotus solver
usually gave the message that it could not solve the
problem. However, the Excel solver frequently solved
the problem within 30 seconds on a 486 PC. The
weights and bias terms of a typical solution is given in
Figure 5, with the corresponding errors shown in Figure
6. Please note how the absolute values of the weights
and bias terms are much smaller than for the solution of
the Error Minimization Model as given in Figure 2. In
fact, the sum of the squared weights and bias terms is
40,023 for the Error Minimization Model versus 244
for the Weight Minimization Model. Also the values of
the weights and bias terms of the solution to the Weight
Minimization Model (see Figure 5) have a symmetry,
which one would suspect from the symmetry of the
patterns and network architecture.

The solution of the Weight Minimization Model is
more robust than the Error Minimization Model in two
respects. This can be verified visually for the XOR
problem because the solution is three dimensional. This
is not true of the copper forecasting problem presented
later, which is six dimensional. For example, Figure 7
shows a three dimensional plot of the neural network
output of the Error Minimization Model as a function of
x1 and x2. Note how sharply changing and asymmetrical
the output is. By contrast, Figure 8 shows the output of
the Weight Minimization Model. This surface is
smooth and symmetrical. In general, one solution is
more robust than another solution if small changes in x1

and x2 result in small changes in the output. This is not
true of the Error Minimization solution for values of x 1

and x2 in the neighborhood of the sharply dropping

206

cliffs. Here, a little change in x1 and x2 can cause the
output to jump from the floor of the valley to the top of
the plateau. A similar solution for the copper
forecasting model would cause the forecast to vary
greatly due to small changes in the input variables.
Because of this, the solution of the Weight
Minimization Model is more robust than the Error
Minimization Model.

Another aspect in which the solution of the Weight
Minimization Model is more robust than the Error
Minimization Model is with respect to the initial
random weights. For the Error Minimization Model
making small changes in the initial random weights can
cause large changes in the location and orientation of
the cliffs, whereas the shape of the Weight
Minimization solution changes very little.

3.3 Implementation of Weight Minimization Model
for the 3-Parity Problem
The worksheet implementation of the Weight
Minimization Model for the 3-Parity Problem is a
straightforward modification of the worksheet created
for the XOR Weight Minimization Model. The new
variable is denoted by x3 and the additional four
patterns are appended to the Pattern Matrix. One
additional processing element is affixed to the input
layer and another processing element is attached to the
hidden layer, both fully connected. Figure 9 shows a
typical solution. •

Concerning the performance of the solvers for the 3-
Parity Weight Minimization Model, here too the Lotus
solver usually gave the message that it could not solve
the problem. However, the Excel solver solved the
problem several times within 5 to 8 minutes on a 486
PC. Please note how the values of the weights and bias
terms of the solution (see Figure 9) have a symmetry,
which one would suspect from the symmetry of the
patterns and network architecture. These results also
indicate that this solution of the Weight Minimization
Model is robust.

Weiahts Bias
Laver Neuron From Neuron

1 2
Hidden J=1 4.702212 -4.7022 -2.46581
Hidden J=2 -4.70219 4.702182 -2.46581
Output K=1 -5.8776 -5.87761 -8.63767 Obj Fct:

Sum of sq. Wts 78.76757 78.7675 86.76968 244.3047

Figure 5 - Modification for Objective Function

Copyright@ 1995 Software Engineering Press

Errors Constraints
Tar-Act (Tar-Act)"2

-0.1 0.01000001 0 Tar-Act >=-0.1
0.1 0.010000021 0 Tar-Act <=0.1
0.1 0.00999999 1 Tar-Act <=0.1

-0.1 0.010000019 0 Tar-Act >=-0.1
0.020000021 Constraint satisfaction:

1=Yes 0=No

Figure 6 - Modification for Constraints

-0.SlS

Figure 7 - 3D Plot of Error Minimization Model
Solution

4. Time Series Forecasting
A powerful aspect of neural networks is that they can be
used to create nonlinear forecasting systems which use
more than one time series as input. To illustrate this, a
case of predicting the scrap copper spot market price
index will be considered. The values of the copper price
index for the time period from January I 989 to
December 1993 were obtained from the Survey of
Current Business [8] and encoded in an Excel
worksheet. Figure IO shows a partial listing of the
copper price index for the year I 992. Two other time

Copyright@ 1995 Software Engineering Press

0.5

X2

• 0

Figure 8 - 3D Plot of Weight Minimization
Model Solution

Wemts Bias
Laver Neuron From Neuron

1 2 3
Hidden j=l 4.30269 -4.49167 4.30337 -2.46128
Hidden j=2 -4 "'"" 5.0t'iVf.!. -4:00-143 -??RF.~I

Hidden 1=3 3 41254 -3.63727 3.41301 666029
Outnut k=l -1319687 -13.66774 -7.15128 -958061 UbJ ~ct: I

Sum o1 sa. Wis 92.6764 102.9601 106.3326 133.8946 434.7636

Figure 9 - Solution of 3-Parity Problem

series which may be related to the copper index are:
• Manufacturers' new orders for consumer goods
and materials industries in 1987 dollars (bil. $),
and
• Index of new private housing units authorized by
local building permits (1967= 100).

The values of these two time series for January 1989 to
December 1993 were obtained from the Survey of
Current Business and included in the worksheet. Figure
10 shows the values of these series for most of 1992.

207

4.1 Copper Forecasting Model
A reasonable neural network model to forecast the
future one month change in the copper index would
consist of five input processing elements (PEs), three
hidden layer PEs, and one output PE. The five input
PEs are associated with the input data as follows:

• PE 1 - Manufacturers' Orders
• PE 2 - New Homes
• PE 3 - Copper Price
• PE 4 - Last One Month Change
• PE 5 - Last Two Month Change.

The data for the fourth PE is found by subtracting the
value of the previous month's copper index from the
present month. In a similar fashion, the data for the fifth
PE is found by subtracting the value of the copper index
two months earlier from the present month. These two
time series supply the change and rate of change
information to the forecast.

To train the neural network, the data from the three
year time period March 1989 to February 1992 is
selected. The data for each of the five input PEs and the
one output PE is normalized to range between -1. 0 and
1.0. Figure 11 gives a partial listing of the normalized
data. Equations (1) thru (4) are encoded in the
worksheet as shown in Figure 12. Note that since the
data has been scaled from between -1.0 to 1.0,
Equations (2) and (4) are modified to 2/(1+ exp(x))-1
so that they range from -1.0 to 1.0.

4.2 Solution Procedure
The first step of the solution procedure starts with
initializing the weights to a set of random values, whose
values vary from -0.3 to 0.3. Figure 13 shows a typical
set of initial weights. The range form -0.3 to 0.3 was
determined by experimentation, however little
difference in the overall solution was noted for the
initial random weights varying from the small range of
-0.1 to 0.1 to the large range of -3.0 to 3.0.

The second step of the solution procedure is to invoke
the Solver so as to find an initial feasible solution. The
Solver Parameters are set as follows:

208

• Changing Cells - the neural network weights
• Constraints

■ absolute value of the error (target - output)
for each pattern is less than an acceptable
error tolerance (0.5)
■ absolute value of each weight is less than
3.5

• Target Cell - not specified
• Options - max time 3600 seconds, iterations

10,000, prec1s1on 0.1, tolerance 10%, use
automatic scaling, estimates quadratic, derivatives
forward, and search Newton.

It should be noted that the error constraints are
truncated as follows:

If target> 0.4 and output> 0.3, then error= 0.0.
If target <-0.4 and output< -0.3, then error= 0.0.

The rationale for this is that if the normalized copper
price is up by 0.4 and the forecast is greater than 0.3,
such as 0.8, then this is an acceptable forecast and the
model should not try to make the error any smaller.
Rather it should concentrate on learning the differences
between up and down forecasts. Then the solver is
invoked and usually runs for 10 minutes or more. The
typical response is that the Solver cannot find a feasible
solution which satisfies all of the pattern constraints.

The third step is to inspect the results for
inconsistencies. It is noted that approximately eight
patterns have large deviations with the forecasts. Five
of these patterns are not consistent with expectations.
These months are May 1989, July 1989, April 1990,
June 1990, and November 1991. For example, in May
1989, all the five inputs are positive, yet the future one
month change is negative. This is the difficult
subjective aspect of developing a forecasting model. If
too much data is omitted, then critical relationships are
eliminated. However, keeping inconsistent data results
in poor model performance.

The fourth step in the solution procedure is to remove
these months from the constraints and to use the Solver
to minimize the sum of the squared weights with the
remaining constraints. The rationale for this is that by
minimizing the weights, rather than the errors, a smooth
surface will be created as demonstrated by the XOR
problem. Figure 14 shows a typical set of final weights.

4.3 Evaluation of Forecast
The above neural network model can be used to forecast
the change in the copper price one month in the future.
Figure 15 shows the results for the first ten months
outside of the training data (March 1989 to February
1992). For the first three months, March, April, and
May 1992, the forecasted change in copper price was
about 2 or 3¢, and the actual changes ranged from Oto
5¢, which is acceptable. In June 1992, the forecasted
change is -0.6¢ when the actual change is 10.6¢. This
is an unacceptably large error. For the next four
months, starting in July 1992, the actual changes in
copper prices decrease for every month with a
cumulative drop of 22.4¢. For this same period, the

Copyright© 1995 Software Engineering Press

forecast also predicts a decrease for every month, but
the cumulative drop is only 11.3¢. For the next two
months, both the forecast and actual changes are close.
However, for the year 1993, the actual change in copper
is negative for every month from January to October
while the forecasted change in copper is positive for
every month. This is unsatisfactory. The overall
evaluation of the model is mixed. Perhaps retraining the
model every three months on the last three years of data
would improve perfomiance. However, the incorrect
sign of the forecasts for most of 1993 indicates that it
may be wise to try other time series than manufacturers'
orders and/or new homes.

Mfrs New Copper
Month Oders Homes Price
Dei>-92 110.00 93.80 0.834
Nov-92 105.54 89.20 0.793
Oct-92 104.29 90.30 0.841

Sep-92 101.65 88.80 0.895
Aug-92 101.84 85.70 0.986

Jul-92 102.35 86.80 1.017
Jun-92 102.92 84.30 0.911
May-92 101.14 84.20 0.873
Apr-92 102.21 84.10 0.825
Mar-92 100.66 86.30 0.827

Figure 10 - Partial Data for Copper Data

Normalized Data for Tralnlni: (First 3 Years)
Dala normalized belween -1 and +1.
Normalized= 2'(ac:tual - min)/(max - min) - 1
Actual
Min 92.4800 62.7000 0.5720 -0.1170 -0.1940 -0.1170
Max 114.6000 139.4000 1.0840 0.1060 0.2010 0.1060

Con$lants for normalization • determined manually from Ile above actual min. ma,
Min 90.0000 60.0000 0.5000 -0.1200 -0.2000 -0.1200
Max 115.0000 140.0000 1.2000 0.2000 0.2500 0.2000

Input PE 1 Input PE 2 Input PE 3 Input PE 4 Input PE 5 Oulput PE
Last Last Future

Mir$ New Copper 1Monf-l 2Mont, 1 Mont,
Month Odem Homes Price Change Change Change
Feb-92 -0.1816 -0.2150 0.0114 -0.0687 0.2000 -0.4188
Jan-92 -0.3088 -0.3525 -0.0714 0.0062 -0.0356 -0.0687
Deo-91 -0.3648 -0.3850 -0.1896 -0.4000 -0.2578 0.0062
Nov-91 -0.0328 -0.5376 -0.1200 -0.3063 -0.1244 -0.4000

Figure 11 - Partial Normalized Data

Copyright © 1995 Software Engineering Press

Hdden OuplJ
Nell Nel2 Net3 Out 1 Out2 OUl3 Net1 OU1
0.7211 1.4858 -0.3538 0.3457 0.6309 -0.1751 -0.1610 -0.0803
1.1348 0.9131 -0.6429 0.5134 0.4273 -0.3108 -0.0473 -0.0237
1.0294 0.5834 -0.3372 0.4736 0.2837 -0.1670 -0.0463 -0.0231
1.2046 0.7729 -0.7176 0.5387 0.3683 -0.34-42 -0.0843 -0.0421
1.4668 0.3801 -0.9179 0.6248 0.1878 -0.4292 -0.1325 -0.0662
1.2247 0.4352 -0.6610 0.5458 0.21~ -0.3145 -0.1564 -0.0775

Figure 12 - Partial Computations for Hidden
and Output PEs

Table of Random Weights Using Formulas Bias
Ne .. on From Neuron

1 2 3 4 5
j=1 0.0427 0.1927 -0.0321 0.1927 0.2497 -0.0245
j=2 0.2738 -0.1984 0.1183 -0.1835 -0.1956 0.1064
j-3 0.2440 0.0029 -0.0233 0.1253 -0.0555 0.2427
k=1 -0.2444 -0.2054 0.0589 none none -0.1212

-0.3 Min waighl 0.110302 Formula
0.3 M"" weight

Figure 13 - Initial Weights

W•ighls Bias
I.ayer Neuron From Neuron

1 2 3 4 5
Hd<Mn j•1 0.0282 0.3920 -0.7174 1.3~ 0.0007 0.3996
Hdd.n j-Z -0.0026 0.4216 0.1370 -0.5820 0.2698 -0.1295

Hdd.n f"3 -0.3354 0.9353 -3.2581 -3.2526 1.3697 0.2830

0~ k=1 3.2111 -3.2684 1.4010 none none -1.13181
Sum of sq. Ylls 10.4245 11.8885 13.1111 12.7962 1.9488 1.5375 I

Figure 14 - Final Weights

Fore casted Actual
Change Olange $ Error

in Copper in Copper in

Month Price Price Forecast

Dei>-92 0.040 0.056 0.016

Nov-92 0.026 0.041 0.015

Oct-92 -0.011 -0.048 -0.037

Sep-92 -0.040 -0.054 -0.014

Aug-92 -0.061 -0.091 -0.030
Jul-92 -0.001 -0.031 -0.030

Jun-92 -0.006 0.106 0.112

May-92 0.022 0.038 0.016

Apr-92 0.027 0.048 0.021
Mar-92 0.027 -0.002 -0.029

Figure 15 - Forecast

209

5. Conclusions
This paper has presented two models for training neural
networks. The first conclusion is that, for the basic
XOR problem, the Weight Minimization Model produc.:.
es a more robust solution than the Error Minimization
Model. The second conclusion is that the Weight
Minimization Model can be successfully extended to the
3-Parity Problem and that the resulting solution is also
robust. Future research will investigate the higher order
parity problems.

Another conclusion is that the Weight Minimization
Model can be applied to practical time series forecasting
problems, as demonstrated by the copper price index
forecasting model. With this model, the analyst can
identify and eliminate inconsistent training patterns and
then determine the weights. In general, the Weight
Minimization Model encoded in a Lotus compatible
worksheet provides the analyst with a flexible
environment to develop neural networks. Future
research will investigate larger neural networks. The
authors welcome test cases.

References
1. Freeman, James A. and David M. Skapura, Neural
Networks: Algorithms, Applications and Programming
Techniques, Reading, MA: Addison-Wesley, 1991.

2. Kosko, Bart. Neural Networks and Fuzzy Systems: A
Dynamical Systems Approach to Machine Intelligence,
Englewood Cliffs, NJ: Prentice Hall, 1990.

3. Lyons, Patrick and Stephen C. Persek, "Integrating Neural
Networks and Expert Systems for Merger & Acquisition
Analysis", Proceedings of the First International Conference
of Artificial Intelligence Applications on Wall Street, Oct.
10, 1991, IEEE Computer Society Press, Los Alamitos, CA,
pp. 200-205.

4. Lyons, Patrick, Thomas Abraham, Larry W. Boone, and
Brenda Massetti, "Using AI Technology for Technology
Transfer", Proceedings of the Second International
Conference of Artificial Intelligence Applications on Wall
Street, Apr. 22, 1993, Software Engineering Press,
Gaithersburg, MD 20879, pp. 242-249.

5. Lyons, Patrick, Applying Expert System Technology to
Business, Belmont, CA: Wadsworth Publishing Company,
1993.

6. Maren, Aliannna, Craig Harston, and Robert Pap.
Handbook of Neural Computing Applications, San Diego,

210

CA: Academic Press, 1990.

7. McClelland, James L. and David E. Rumelhart, Parallel
Distributed Processing, Cambridge, MA:Bradford-MlT
Press, 1988.

8. Survey of Current Business, October 1994, Bureau of
Economic Analysis, U.S. Department of Commerce,
Washington, D.C.

9. Van der Smagt, P. Patrick, "Minimization Methods for
Training Feedforward Neural Networks," Neural Networks,
Vol. 7, No. I, 1994, pp. 1-11.

Copyright© 1995 Software Engineering Press

Paper Session: Fundamental and Value Strategies

Chair: Mike Gargano, Pace University

212

Predicting Quarterly Excess Returns:
Two Multilayer Perceptron Training Strategies

Ypke Hiemstra
Faculty of Economics and Econometrics,
Vrije Universiteit Amsterdam
De Boelelaan ll05, 1081 HV Amsterdam,
The Netherlands
email: yhiemstra@econ.vu.nl

Abstract
This paper compares two different training
strategies for multilayer perceptrons to
predict quarterly stock market excess returns.
Finance research suggests that quarterly
stock market excess returns are to some
extent predictable, but only marginal
attention has been paid to possible
nonlinearities in the return generating
process. The paper discusses input selection,
examines the two training strategies, and
evaluates multilayer perceptron performance.
Several performance measures are
calculated, and a test is performed whether
the mean squared errors of the various
models differ significantly. Strong nonlinear
effects appear to be absent, but the multilayer
perceptron predictions produce a much
higher payoff when applying a
straightforward tactical asset allocation
policy.

1. Introduction
Finance research suggests that monthly,
quarterly and annual excess returns are to
some extent predictable assuming a linear
model specification. Only marginal attention
has been paid to possible nonlinearities in the
return generating process. HIEMSTRA

(1993,1994B) applies multilayer perceptrons
(MLPs) to predict quarterly excess returns.
The motivation to consider MLPs is their

Christian Haefke
Department of Economics
Institute for Advanced Studies
Stumpergasse 56, A-1060 Vienna,
Austria
email: chris@ihssv.wsr.ac.at

universal approximation capability (HORNIK
STINCHCOMBE WHITE 1989), and robustness
when distributions are non-Gaussian
(LIPPMANN 1987). This paper compares two
MLP training strategies to predict the
quarterly excess return on the S&P500 and
uses OLS as a simple benchmark. HIEMSTRA

(1994B) trains MLPs by backpropagation,
varying the number of hidden nodes and using
cross-validation to determine optimal stopping
(WEIGEND ET AL. 1990). We extend this
research by considering an alternative way to
train MLPs, and by including a formal test
whether the mean squared errors of the various
models differ significantly. The additional
strategy which we consider seeks to minimize
the in-sample error of MLPs with varying
numbers of hidden nodes using the Polak­
Ribiere Conjugated Gradient (PRCG)
algorithm. In a second step it selects a net of
particular complexity using an estimate for the
prediction risk.

First we discuss excess return prediction and
input selection. Section 3 discusses the
generation of out-of-sample predictions.
Section 4 discusses the two MLP training
strategies. Section 5 presents the MLP results
and compares them to OLS. Section 6 presents
the results of a straightforward investment
strategy based upon the MLP and OLS
predictions, and section 7 contains
conclusions.

Copyright@ 1995 Software Engineering Press

Table I: Regression Statistics

2. Predicting Excess Returns
Evidence has been accumulated that a
significant part of the variation in stock
market returns can be predicted using
information known at the time of prediction,
e.g., CAMPBELL (1987), FAMA FRENCH
(1989), FERSON HARVEY (1991) PESARAN
TIMMERMANN (1994). These studies
invariably apply linear modelling, with a
limited number of independent variables. In
particular evidence has been accumulated that
ex ante information on inflation, interest rates,
the business cycle, and valuation measures like
the dividend yield, can be used to predict
monthly, quarterly, and annual excess returns.

This study focuses on quarterly excess returns.
The linear model we use as a benchmark can
be found in HIEMSTRA (1994B), tables 1 and 2
present the in-sample OLS results on the entire
data set. The model uses four inputs: dividend
yield (YSP), short term interest rate (SIR),
inflation rate based on the consumer price
index (CPI), and the change in the 12-month
moving average of the industrial production
index (DIP). YSP and SIR are instantaneously
available, and so the latest observations prior
to the forecasted period were used to predict,
i.e. the values at the end of the preceding
month. Macroeconomic information is
available typically on a monthly basis with a
lag of some 20 days, and so DIP and CPI were
used with a 2-month lag. The data set consists
of 93 quarterly observations covering the
period 1970-1993, ofYSPt-1, DIPt-2, SIRt-1,
and CPit-2. The desired output is the S&P500
quarterly excess return, defined as total return
(price movement plus dividends related to the
initial investment) minus the risk-free rate of
return, the 3-month T-bill rate.

Copyright© 1995 Software Engineering Press

Table 2: Coefficients oflinear model

Coefficients Standard t Statistic
Error

Intercept -2.87 3.43 -0.84
YSPt-1 4A3 1.26 3.52
CPlt~2 -LOO 0.39: ~2.54
SIRt-1 -0.76 • 0.37 -2.03
DIPt-2 . -6.78 2.12 -3.20

The R2 has a satisfactory value for predictions
at this frequency, and all coefficients pass the
test for significance at the 95% level. The
signs of the coefficients correspond to the
findings of other studies, YSP having a
positive coefficient, and the other variables
having a negative coefficient.

3. Generating Out-of-Sample
Predictions

Given the small sample size at the quarterly
frequency, and the noisy character of the data,
it is crucial to design sufficient out-of-sample
results to reliably estimate generalization.
PESARAN AND TIMMERMANN (1994) apply a
recursive approach to predicting excess
returns, in which case all data available at
time t is used to forecast the excess return at
time t+ 1 .. Cross-validation and bootstrapping
are examples of resampling techniques (see for
example WEISS AND KULIKOWSKI 1991).
Cross-validation uses all data for testing, and
consumes considerable less resources than
recursive prediction or bootstrapping. We
apply 10-fold cross validation to estimate
generalization. The 10 test sets were combined
to form out-of-sample estimations on the entire
data set.

4. Estimating the Multilayer
Perceptrons

The MLP architecture we use is the standard
MLP architecture for nonlinear regression
(HA YKIN 1994) with bias weights and one
hidden layer. The hidden units have tanh
activation functions, the output unit has a
linear activation function. Inputs were
normalized to have mean zero and unit
variance. The question of network design
concentrates on the number of hidden nodes.

' 213

214

The motivation to use backpropagation is to
stop training before the in-sample minimum on
the error function is reached (early stopping),
based on the assumption that in the initial
stages of learning the net picks up the most
overt and accessible patterns (THORNTON
1992). The iterative character of
backpropagation allows to stop learning if at a
certain stage in the learning process the net
starts fitting noise, which may be well before
the error function reaches its minimum on the
training set. WEIGEND ET AL. (1990) suggest
to set part of the training data apart,
introducing a cross-validation set in addition
to the train and test sets, and stop training at
the point where the error function on the cross­
validation set has its mm1mum. True
generalization is estimated by the performance
on the original test set. To apply early
stopping, it is necessary to select the number
of hidden nodes in advance. The sample size is
a constraint on the number of weights in order
to produce reliable training. A rule of thumb is
that there should be at least five training
examples for each weight (KLIMASAUSKAS
1992). HIEMSTRA (1993,1994b) proposes a
MLP with 2 hidden neurons for quarterly
excess return prediction.

On the other hand, · WHITE (1991) points out
that overtraining and overfitting should be
separated. "In the statistical context there is
no such thing as overtraining, because the
closer one gets to 0n the better. " 0n denotes
the estimator for the true parameter vector 0n
of the underlying process. So, given a network
of some complexity, the goal is to find the
global minimum of the error function, and
from the set of alternative algorithms (e.g.,
ordinary differential equations, second order
algorithms, Levenberg-Marquardt, see for
example SARLE (1994)) any algorithm that
efficiently m1mm1zes in-sample error is
applicable. Overfitting occurs when there are
too many free parameters in the MLP, while a
network with too few hidden units has no
capacity for satisfactory internal
representation and will be unable to learn
properly. To select the network with the right

complexity, we apply sequential network
construction (SNC) (MOODY UTANS 1994).
We start out with 1 hidden unit and estimate
the network. Then a hidden unit is added, and
the net is retrained. This is repeated until the
hidden layer contains a predetermined
maximum number of nodes. The fit of each
network is evaluated using an estimator of its
prediction risk (i.e. the expected out-of-sample
performance). We estimate prediction risk for
each net using the Schwartz Information
Criterion (SIC), (SCHWARTZ 1978, RISSANEN
1978, 1980, 1987) which produces very
conservative models, and which can be used
for nonlinear and ARCH models (GRANGER
KING WHITE 1992). An application of this
criterion can be found m HAEFKE
HELMENSTEIN (1995). The SIC of model). is
computed as follows

p
SIC= logMSE + N log N (1)

with MSE being the mean squared error, N the
number of observations and· P the number of
parameters 1. For each of the 10 cross­
validation sets we estimated MLPs using
PRCG2

, selecting the appropriate complexity
through SIC (SWANSON WHITE 1992).

1 We used the number of weights, an alternative is
Moody's effective number of parameters {MOODY

1992).

2 Every single net was estimated using the PRCG
algorithm, as provided by GAUSS. This is a local
optimization algorithm, and so training was
repeated five times. The net with lowest in-sample
error was selected.

Copyright© 1995 Software Engineering Press

5. Evaluation and Comparison of Out-
of-Sample Results

Table 4 compares the SIC-optimal complexity
approach with the results for backpropagation
using 2 hidden neurons (BPN2) and OLS
reported by HIEMSTRA (1994B). Error rate
refers to the ratio of correct sign predictions to
all predictions. Business value calculates. the
sum of the excess returns for those occasions
that the predicted excess return is negative,
and indicates the benefits obtained by
implementing a timing strategy for the whole
period of 93 quarters that exits the sto~k
market when the expected excess return 1s
negative. R2 is computed as the squared
correlation of the predicted and the actual
values. Theil's coefficient of inequality
considers the case of a no-change forecast and
assumes a value ofless than one if the forecast
outperforms a no-change forecast (THEIL
1966). The MLP models outperform OLS in
terms of correlation, error rate and business
value. The poor results on MSE (and NMSE)
of the SIC-optimal MLP are explained by the
high mean of the predictions of this model.

Table 4: Comparison of out-of-sample results of the 3 approaches

/. ·. ·. · SIC.;optbnal BPN2 / 6i:,S ••• •• ••· •••

tsE • \ !rl:Y. ••••· ~t~~~? ~%~~? > ~rJE< /fcfosso•···.•·••···· >o.os41•· •• <~:~;~f•.•·•·· ..

e;Jli~!!l , Ii~ ii:<
An F-test w~s • performed to test whether the
variances of the residuals of the three models
are significantly different from each other. If
so, one model outperforms the other because a
larger variance of residuals is inferior.
Assuming under the Ho that the variances of

t Not significantly different from I at the 95%
confidence level.

• Significantly different from O at the 95%
confidence level.

Copyright© 1995 Software Engineering Press

3 • •
the residuals are equal , the F-test stat1st1c
reduces to:

(2)

where F follows an F-distribution with (N-P1),
(N-P2) degrees of freedom, N denoting the
number of observations and P1 and P2 the
number of parameters for the respective
model. The F-test did not reject the null
hypotheses of identical MS Es.

6. Asset Allocation
Figure 1 compares the performance of asset
allocation strategies using the three models.
The left panel of figure I shows policy
efficient frontiers. A policy efficient frontier
(HIEMSTRA 1994A) represents the annualized
ex post risk-return properties of a particul~r
tactical investment policy for those strategic
portfolios that, given the policy, produced the
highest return for the respective risk
exposures. The investment policies shown
operate on a strategic portfolio consisting of
stocks and bonds, and exit the stock market
when the excess return prediction is negative.
The policies were tested on the period 1976-
1993 (net of trading costs), with the Shearson­
Lehman Aggregate Bond Index representing
bond returns. The bottom line indicates the
results of a buy-and-hold policy, a 100%
bonds portfolio located at the low end, a 100%
stocks portfolio located at the high end. The
line in between shows the results of a tactical
policy using OLS predictions. The solid up~er
line and the dashed line show the results usmg
the predictions of the SIC-optimal MLP and
BPN2, respectively. The latter two lines
basically collapse, reflecting a striking
similarity in the two neural net models from
this point of view.

3 A t-test confirmed that the mean of the residuals
is not significantly different from zero at the 95%
confidence level.

215

216

Figure 1. The left panel shows policy efficient frontiers, the right panel the relative value of a 1976 investment when adopting a strategic
stock weight of I (net of trading costs). In both cases, buy-and-hold is the bottom line, the line above buy-and-hold represents OLS results.
The solid upper line and the dashed line show the results using the predictions of the SIC-optimal MLP and BPN2, respectively.

Annual Retur-n

Figure 1 shows that active management has a
dramatic payoff. For a particular risk
exposure, an OLS-based policy can add well
over 100 basis points annually, and both
neural nets can generate a similar additional
return on top of that. The panel to the right
shows the relative value over time of an initial
investment in 1976 when the three policies
operate on a strategic portfolio of I 00%
stocks.

7. Conclusion
The MLP models that we estimated improve
over OLS in terms of correlation, error rate,
and business value. We did not find
indications for strong nonlinearities, as OLS
captures most of the predictability
demonstrated by the MLPs. Also, on the basis
of the F-test we cannot reject the Ho that the
out-of-sample MSEs of the two MLP models
and OLS are equal. However, in terms of
added value when applying a straightforward
tactical asset allocation policy, the differences
are very significant. The SIC-optimal MLP
results are particularly compelling, since this
model reflects a purely formal approach to
MLP estimation that lets the data determine
model complexity.

8. Acknowledgements
We thank Gerhard Ruenstler, Institute for
Advanced Studies, for helpful comments on
section 5.

Relative Value

20

11.5

I'/
"

12.5
_/2 v ,,,..,..

/

~
~j ~,,..-

,,,,.,. ~ -v ,.,,. -,.s ,,,., .,,-V
-=<I -2.S

Tao
1986 1988 1990 1992 151514

9. References
CAMPBELL, J.Y. (1987): Stock Returns and the

Term Structure, Journal of Financial
Economics, pp 373-399.

FAMA, E., FRENCH, K. (1989): Business
Conditions and Expected Stock Returns,
Journal of Financial Economics, pp. 23-49.

FERSON, W.E., HARVEY, C.R. (1991): Sources
of Predictability in Portfolio Returns,
Financial Analysts Journal, May-June, pp.
49-56.

GRANGER, C. W.J., KING, M.L., WHITE, H.
(1992): Comments on Testing Economic
Theories and the Use of Model Selection
Criteria, University of California, San
Diego.

HAEFKE, C., HELMENSTEIN, C. (1995):
Neural Network in the Capital Markets: An
Application to Index Forecasting, in GILLI,
M. • (ed): Computational Methods in
Economics and Finance, Dordrecht, Boston,
London: Kluwer Academic Publishers,
forthcoming.

HAYKIN, S. (1994): Neural Networks: A
Comprehensive Foundation, New York:
Macmillan.

HIEMSTRA, Y. (1993): A Neural Net to Predict
Quarterly Stock Market Excess Returns
Using Business Cycle Turning Points,
Proceedings of The First International
Workshop on Neural Networks in the
Capital Markets, London Business School,
London.

HIEMSTRA, Y. (1994a), The Application of
Intelligent Systems to Tactical Asset
Allocation, Workshop Al in Finance and

Copyright@ 1995 Software Engineering Press

Business, 11th European Conference on AI,
Amsterdam.

HIEMSTRA, Y. (1994b): Linear Regression
versus Backpropagation Networks to Predict
Quarterly Excess Returns, The Second
International Workshop on Neural Networks
in the Capital Markets, California Institute
of Technology, Pasadena.

HORNIK, K., STINCHCOMBE, M., WHITE, H.
(1989): Multilayer Feedforward Networks
are Universal Approximators, Neural
Networks, pp 359-366.

KLIMASAUSKAS, C. (1992): Applying Neural
Networks, in: TRIPPI, R.R., TURBAN, E,
(eds): Neural Networks in Finance and
Investing, pp. 47-72 Chicago: Probus
Publishing Company.

LIPPMANN, RP. (1987): An Introduction to
Computing with Neural Nets, IEEE ASSP
Magazine, April, pp. 4-22.

MOODY, J. (1992): The Effective Number of
Parameters: An Analysis of Generalization
and Regularization in Nonlinear Leaming
Systems, Advances in Neural Information
Processing Systems 4, San Mateo: Morgan
Kaufman.

MOODY, J., UTANS, J (1994): Architecture
Selection Strategies for Neural Networks:
Application to Corporate Bond Rating
Prediction, in REFENES, A.N. (ed): Neural
Networks in the Capital Market, London:
Wiley & Sons.

PESARAN, M.H., TIMMERMANN, A. (1994):
Forecasting Stock Returns, Journal of
Forecasting, pp 335-367.

RISSANEN, J. (1978): Modelling by Shortest
Data Description, Automatica, pp 465-471.

RISSANEN, J. (1980): Consistent Order­
Estimates of Autoregressive Processes by
Shortest Description of Data, in JACOBS,
0., DA VIS, M., DEMPSTER, M.,
HARRIS,C., PARKS, P. (eds.): Analysis and
Optimization of Stochastic Systems, pp 451-
461, New York, Academic Press.

RISSANEN, J. (1987): Stochastic Complexity and
the MDL Principle, Econometric Reviews,
pp 85-102.

SARLE, W.S. (1994): Neural Network
Implementation in SAS Software,
Proceedings of the Nineteenth Annual SAS
Users Group International Conference, SAS
Institute, Cary, NC.

Copyright© 1995 Software Engineering Press

SCHWARTZ, G. (1978): Estimating the
Dimension of a Model, Ann. Statist., pp 461-
464.

SWANSON, N., WHITE, H. (1995): A Model
Selection Approach to Assessing the
Information in the_ Term Structure Using
Linear Models and Artificial Neural
Networks, Journal of Business and
Economic Statistics, forthcoming.

THEIL, H. (1966): Applied Economic
Forecasting, Amsterdam: North Holland
Publishing Company.

THORNTON, C.J. (1992): Techniques in
Computational Leaming, London: Chapman
and Hall.

WEIGEND, A.S., • HUBERMAN, B.A., and
RUMELHART D.E., (1990): Predicting the
Future: A Connectionist Approach,
International Journal of Neural Systems,
pp. 193-209.

WEIGEND, A.S., LeBARON, B. (1994):
Evaluating Neural Network Predictors by
Bootstrapping, CU-CS-725-94 University of
Colorado, submitted to ICONIP-94.

WEISS, S., and KULIKOWSKI, C.(1991):
Computer Systems That Learn, Palo Alto:
Morgan Kaufman.

WHITE, H. (1991): Parametric Statistical
Estimation with Artificial Neural Networks,
mimeo, Department of Economics and
Institute for Neural Computation, University
of California, San Diego.

217

Automated Understanding of Financial Statements
Using Neural Networks and Semantic Grammars

James Markovitch
Dun & Bradstreet Information Services, N. A.

150 Mount Airy Road
Basking Ridge, NJ 07920-2015

jmarkov@shell.portal.com

Abstract

This article discusses how neural networks and
semantic grammars may be used to locate and
understand .financial statements embedded in
news stories received from on-line news wires.
A neural net is used to identify where in the
news story a .financial statement appears to
begin. A grammar then is applied to this text in
an effort to extract specific facts from the
.financial statement. Applying grammars to
.financial statements presents unique parsing
problems since the dollar amounts of .financial
statements are typically arranged in multiple
columns, with small paragraphs of text above
each column. Text therefore is meant to be read
both vertically and horizontally, in contrast to
ordinary news text, which is read only
horizontally.

1 Introduction

Each year more information becomes
available in electronic form. Some of this comes
from well known, general sources such as UPI,
Reuters and the Internet; still other data comes
from lesser known sources such as the PR
NEWSWIRE and BUSINESS WIRE, which
supply financial and other information.

However, for information to be useful it
must be either indexed or digested to suit each
individual's or company's needs, inasmuch as it
is inevitable that much of the news collected will
turn out be of little or no interest. For an
overview of the attempt to solve this problem via
indexing techniques, and an account of indexing

218

techniques to large data sets such as MEDLINE,
see [3]. This source discusses retrieval methods
and ranking algorithms that help make the data
that has been archived more accessible. The
methods employed take advantage of word
stemming, Boolean queries, word-weighting and
vectoring schemes. See Addison, et al, [l] for a
discussion of indexing techniques specifically
applied to Real-Time news.

An additional method to aid in the
processing of large amounts of news requires that
the news be understood. Unfortunately this
understanding is not easily arrived at in software.
See Shirmer and Kuehn, [5] for a discussion of
understanding news via word experts and neural
nets; they describe a method whose goals are
similar to those described here. Also see
Bearden, et al, [2] for detailed descriptions of
how grammars may effectively mimic human
understanding in limited domains.

The present article offers a partial solution
to one problem in electronic news understanding:
the understanding of financial statements
embedded in text. Figure 1 represents the upper
portion of a typical financial statement.

TYPICAL COMPANY, INC.
CONSOLIDATED FINANCIAL INFORMATION

UNAUDITED (000's)

Net sales

Gross profit

Three Months Ended
October31

1993 1992

$64,314 $63,831

$32,560 $34,281

Figure 1

Six Months Ended
October 31

1993 1992

$121,037 $122,180

$61,931 $63,963

Copyright© 1995 Software Engineering Press

Such a financial statement might be
embedded within an accompanying news story
that tells the reasons for the rise or fall of that
company's profits, sales, etc. Characteristic of
such a financial statement is its columnar
presentation of numerical information. Figure 1
has no fewer than four columns of numbers, each
representing the financial results for a different
time period.

For a human to read such a document
presents surprisingly few problems. The column
headings, which are isolated paragraphs of text
suspended above their respective columns, are
easily read as distinct paragraphs. These columns
are then readily scanned for the sales and profit
information they contain. Unfortunately, for a
computer to accomplish this same visual task
requires that it have the same visual sense that a
human does. It is not clear how to arrive at this
visual sense in software, however.

For this reason a method was developed that
did not depend on a visual sense of the financial
statements, but rather on its grammatical sense.
Although this method of understanding a
financial statement may not accurately reflect
how a human reads such a document, it will be
shown that the method is a reasonably effective
way for a computer to understand financial
statements.

2 Using Neural Nets to Find a Financial
Statement

Before a financial statement may be
examined for its grammatical sense, it is
necessary first to locate one. This task is
surprisingly difficult to accomplish via
programming logic. The first problem is that
there is no single recognizable feature that marks
the start of a financial statement. And secondly,
there are blocks of text, particularly news story
headlines announcing earnings results, that look
like the start of a financial statement, but are not.
Experience has shown that neural networks are
effective in recognizing handwriting, speech and
visual patterns though a process of statistically
based feature extraction [4]. For these reasons a

Copyright© 1995 Software Engineering Press

backpropagation network was used to find the
start of financial statements in each news story.

In order for the neural net to find the start of
the financial statement, a batch program was
written to supply it with a "moving window" of
fifteen lines of text, where the neural net's single
output was trained to produce a score of 1 if the
fourth line of this "window" was the start of a
financial statement, and to produce a O otherwise.
For each of the 15 lines the neural net was told
about:

1) the line's length,
2) the percentage of letters in the line that

were in capitals,
3) the number of leading spaces in the line,
4) the number of embedded spaces in the line,
5) the percentage of the characters in the line

that were digits, and,
6) a Boolean value that told whether or not

the line was centered.

In addition the neural net was told about two
other characteristics of the line: specifically
whether certain keywords, such as inc, and
company occurred in the line; and secondly,
whether words such as month, quarter, year,
financial, and consolidated were present. In
total, the neural net had 120 inputs, representing
8 characteristics, pertaining to 15 lines.

When preparing the training data (i.e.,
development data) and test data (i.e., holdout
data), a line was regarded as containing the start
of a financial statement if it had a company
name, at least one date, and at least one column
of numbers. The requirement that a company
name be present was an arbitrary requirement
that might not be suitable in all circumstances.
The line containing the company name was
regarded as the start of the financial statement.

3 Using Semantic Grammars to Parse a
Financial Statement

Once the start of a financial statement has
been identified, it must be analyzed and
understood. When the financial statement of

219

Figure 1 is rearranged as a stream of text, it
appears as in Figure 2.

TYPICAL COMPANY, INC. <RETURN> CONSOLIDATED

FINANCIAL INFORMATION <RETURN> UNAUDITED (000's)

<RETURN> Three Months Ended Six Months Ended <RETURN>

October 31 October 31 <RETURN> 1993 1992 1993 1992

<RETURN> Net sales $64,314 $63,831 $121,037 $122,180

<RETURN> Gross profit $32,560 $34,281 $ 61,931 $ 63,963

<RETURN>

Figure 2

A close examination of this stream of text
and others similar to it reveals underlying
regularities that may be exploited by using a
semantic grammar. Semantic grammars, which
are described in [2], are an effective means for
understanding sentences within a restricted
domain. The world of financial statements is
clearly such a restricted domain, but can
financial statements be viewed as sentences with
their own grammar?

To resolve this question several hundred
financial statements were analyzed to uncover
sentence-like regularities. . From this analysis a
context-free grammar and a lexicon emerged that
allowed a large percentage of financial
statements to be processed.

HEADING ::= for-the 12-PL end for-the 34-PL end RETURN end
12-PE end 34-PE RETURN 1-Y-E 2-Y-E 3-Y-E 4-Y-E RETURN

12-PL ::= 12-N-L 12-T-L

12-PE ::= 12-M-E j 12-M-E 12-D-E

34-PL ::= 34-N-L 34-T-L

34-PE ::= 34-M-E j 34-M-E 34-D-E

Figure 3

220

A portion of the context-free grammar is
shown in Figure 3, in particular, that portion of
the grammar that helps interpret four-column
financial statements. In this figure ,and the
remaining figures the symbol : : = is read as is
defined as, which follows [2].

12-N-L : := 3 I 6191121 three I six I nine I twelve

12-T-L ::= week I month !year I weeks I months

34-N-L ::= 3 I 6191121 three I six I nine I twelve

34-T-L ::= week! month jyear I weeks I months

12-M-E ::=Jan !Feb !Mar !Apr !May I Jun I etc.

12-D-E ::= first I second I third !fourth !fifth I etc.

34-M-E ::=Jan jFeb !MarjAprjMayjJun I etc.

34-D-E ::= first I second I third !fourth !fifth I etc.

1-Y-E ::= 199011991 j 1992 j 1993 I 1994 j 1995 I etc.

2-Y-E ::= 1990 I 1991 j 1992 j 1993 j 1994 I 1995 I etc.

3-Y-E ::= 1990 I 1991 I 1992 I 1993 I 1994 I 1995 I etc.

4-Y-E ::= 1990 I 199l I 1992 I 1993 I 1994 I 1995 I etc.

for-the ::= for the !for

end ::= ending I ended

Figure 4

Likewise a portion of the lexicon used is
shown in Figure 4.

4 One Special Problem

One characteristic of grammars that are
designed to understand natural language is that
the form of the representation is unimportant.
Accordingly, if in a grammar a verb phrase is
represented as VP, VerbP or V-P, it does not alter
the effectiveness of the grammar in the slightest.
This is not entirely the case when parsing

Copyright© 1995 Software Engineering Press

:financial statements, however. With :financial
statements it is necessary, once parsing is
complete, to distinguish between a dollar amount
found in the first column, and a dollar amount
found in the second column. It is also necessary
to distinguish between a "period end date" that
applies only to column one, and a period end date
that applies to columns three and four. The
easiest way to do this is to build "cases" into the
language that are analogous to the cases used in
normal languages, and to reflect these case
differences by using the symbols of the grammar
itself. Accordingly, a period end date that
applies only to column one is represented in the
grammar as 1-PE, while a period end date
applying to columns three and four appears as
34-PE. This small restriction on the formation of
the grammar has valuable practical consequences
when at a later time the meaning of the parsed
:financial statement must be determined. It allows
the components of the parse tree to be processed
with relative ease to find what period end dates,
and what period lengths, apply to which columns.

5 Neural Network Technical Details

The neural network used had a hidden layer
of 16 nodes, in addition to its input layer of 120
nodes, and its single output node. The training
data was composed of26,880 lines of text, which
contained 228 financial statements. This data
was captured from the PR NEWSWIRE and the
BUSINESS WIRE on Nov. 11, 1993 and Nov.
24, 1993. The single output was trained to be a
1 in the presence of a :financial statement, and a 0
otherwise. Training on the data was terminated
when the worst error for any member of the
training data set was no greater than .25. This
was accomplished after 135 training iterations.

The test data was composed of 13,736 lines
of text, which contained 125 :financial statements.
This data was captured from the PR
NEWSWIRE and the BUSINESS WIRE on Dec
10, 1993 and Dec 17, 1993. When validating
using the test data, an output node score greater
than .1 was treated as signifying the presence of
a :financial statement.

Copyright@ 1995 Software Engineering Press

6 Neural Network Results

When the network was run against the test
data, it proved effective. 118 of 125 :financial
statements were identified for a rate of 94.4%.
Among the 13,611 lines that contained no
statement, just twelve were wrongly identified as
:financial statements, for an error rate of .0881%
(less than 1 in a 1,000).

In general the network performed very
effectively, with only occasional lapses for
"unusual" :financial statements. An unusual
:financial statement might be one whose company
name is not centered, but rather appears flush
left, or one whose company name lacks the word
incorporated, co., or inc., etc.

7 Grammar Results

A program employing a more robust version
of the grammar and lexicon described earlier
proved fairly effective in parsing :financial
statements. Specifically, the headings of 72 of
the 125 :financial statements were understood by
. the grammar (here the word heading refers to the
lines that tell start and end dates, as well as
period lengths). The grammar was slanted
towards understanding income statements and it
:frequently failed in circumstances where it met
with some other form of statement, such as a
statement of cash flow. Adding new statement
types to the grammar can readily expand its
comprehension, however. Currently it supports
only sixteen.

Problem cases arose as a consequence of the
wide variety of :financial statements present in
news stories. In particular, "unique" financial
statements typically appeared at times other than
the end of a quarter, and sometimes appeared to
be edited by hand for special release.

Still other problems arose from the phrases
in thousands and in millions that sometimes
acted as a multiplier on all of the dollar amounts
of the financial statement, or sometimes on just a
limited portion of it. It is hard to anticipate the
variety of ways this multiplier might appear, and

221

failure to anticipate correctly leads to a very
large error. Complex code had to be written to
handle these cases, as well as to search the lines
of text following the headings for the specific
financial information required: e.g. net income,
total sales, etc. This task was done using
traditional programming methods.

One lesson learned is that the neural
network ideally should provide more information
than merely where a financial statement starts.
For instance, it is useful to know where a
statement ends (so as to avoid "falling through"
to unrelated text and data). Likewise it is useful
to know specifically on which line the grammar
should be applied. This line is often many lines
after the company name. Lastly, it appeared that
a moving window of just 15 lines was too short
for a proper understanding of some statements.

8 Conclusions

The above problems notwithstanding, it
proved possible to process financial statements
embedded in news stories. The method used also
proved flexible enough to accommodate new
financial statement types as they were
discovered. In addition, the grammar used
showed a large degree of resistance to
misinterpretation. If text other than a financial
statement was presented to the grammar, it would
readily reject it as unparsable. Currently, the
system described has not been developed into a
deployable system, but the results achieved here
indicate that these methods can be used to create
a practical system to automate the understanding
of financial statements. The general conclusion
is that grammars may prove more effective in a
wider array of contexts than is readily apparent.

222

9 References

[l] Edwin Addison, Judith Feder, Paul Nelson
and Tom J. Schwartz, "Extracting and
Disseminating Information from Real-Time
News." In Proceedings of the Second
International Conference on Artificial
Intelligence Applications on Wall Street. New
York, NY, April, 1993, Gaithersburg, MD:
Software Engineering Press.

[2] Colin Beardon, David Lumsden, and Geoff
Holmes, 1991. Natural Language and
Computational Linguistics An Introduction.
Chichester, England: Ellis Horwood Limited.

[3] W. B. Frakes, and R. Baeza-Yates, 1992.
Information Retrieval: Data Structures and
Algorithms. Englewood Cliffs, NJ, Prentice­
Hall.

[4] Marilyn McCord Nelson, and W. T.
Illingworth, 1991. A Practical Guide to Neural
Nets. Reading, MA, Addison-Wesley.

[5] Kai Schirmer and Michael Kuehn, "Fact
Extraction from Financial News." In
Proceedings of the Second International
Conference on Artificial Intelligence
Applications on Wall Street. New York, NY,
April, 1993, Gaithersburg, MD: Software
Engineering Press.

Copyright© 1995 Software Engineering Press

Using Neural Networks to Predict the Degree

of Underpricing of an Initial Public Offering

Steven Coy, Ravikumar Balasubramanian,
Bruce Golden, Ohseok Kwon, and Heshmat Beirjandi

College of Business & Management
Van Munching Hall

University of Maryland
College Park, MD 20742-1815

Abstract

Underwriters and investors are both
interested in knowing, in advance, the price at
which an initial public offering (I PO) will trade
at the end of the first trading day. In this paper,
we propose neural network models to predict
initial returns for IPOs. Using data from the
mid-1980s, which include 1423 observations, we
develop neural network models as well as
regression models. The neural network models
which include 4 input nodes, 3 hidden nodes,
and I output node consistently outperform the
regression models.

1.0 Introduction

It has been observed that investments in initial
public offerings (IPOs) yield positive average
initial returns. There is no obvious reason why
the issuer does not extract the right price from
the investors at the time of issue. Several
information-based theories have been proposed in
the finance literature to explain this anomaly.
However, regression models have not been able
to predict the first-day trading price and the
expected initial returns with reasonable success.

In this paper, we propose neural network (NN)
models to predict the initial returns using a set of
ex ante variables. Our purpose in using neural
networks is two-fold: (1) To build a NN model
which can predict the first-day trading price with
reasonable accuracy and (2) to compare the
predictive quality of NN models against
regression models for this application.

Copyright© 1995 Software Engineering Press

We begin our discussion with a regression
analysis of the full data set and several subsets of
the full data set. We then use these models to
benchmark the performance of the NN models.
Next, we build two sets of NN models. The first
set of NN models was generated using a
commercially available software package,
Brainmaker. The second set of models was
generated from an original, and more flexible,
code. Our results indicate that neural networks
can be used with a fair degree of success for
predicting initial returns on IPOs. Using Mean
Absolute Error (MAE) as our measure of
performance, we found that our best model using
Brainmaker (from experiment 1; see Table 6)
outperformed our best linear regression model by
about (1030-968)/1030 = 6.02% and it
outperformed our best nonlinear regression model
by about (1007-968)/1007 = 3.87%. The best
model based on our original code (also from
experiment l) outperformed our best linear
regression model by about 8.74%, and it
outperformed our best nonlinear regression model
by about 6.65%.

2.0 Background

The phenomenon of abnormal initial returns to
IPOs has attracted a lot of attention in the finance
literature, and several theories have been
proposed to explain this puzzle. Benveniste and
Spindt [1] argue that information-gathering
activities by underwriters during the pre-issue
period affect the level of initial returns. They
observe that changes in the offer price between

223

the filing of the prospectus and the offer date are
a function of information gathered from investors
during the pre-issue period. When positive
feedback is revealed through high demand for the
issue, the final offer price will exceed the
expected offer price. When negative feedback is
revealed by low demand, the offer price is set
below the expected value. If investors reveal their
true demand, the issuer will increase the offer
price. To induce the investor to reveal
information truthfully, the issuer has to promise
an increase in allocation of shares. Thus,
investors face a trade-off between increased
allocation and underpricing. However, if
allocations cannot be increased beyond a certain
point, then the investor has to be rewarded for
truth-telling mainly through underpricing.

The above theory yields several natural
hypotheses which were then tested by Hanley [2].
Hanley identifies several variables, such as offer
amount and underwriter's reputation, which may
affect the initial returns. The ordinary least
squares (OLS) regression between the initial
returns and the variables (Table 3 of the Hanley

Variable

Initial Returns

Percent Change in the Offer Price

Offer Amount

Percent Change in the NASDAQ Index

Reputation of the Underwriters

Key to Abbreviations

Po = Offer Price

paper) indicates that about 17.8% of the total
variation can be explained by the variables.
While many predictions made by Benveniste and
Spindt have been validated in Hanley [2], the
relatively low R2 value might be explained by one
of the following three reasons (or a combination
of these): (1) One or more explanatory variables
have been omitted from the model; (2) there is a
nonlinear relationship between initial returns and
one or more of the variables identified; and (3)
the data set has a large random noise component.

3.0 Experimental Method

3.1 Overview

In this paper, we first build linear and
nonlinear regression models to predict the initial
returns used by Hanley. These will serve as
benchmarks for our neural network models. We
then build neural network models to explain and
predict the initial returns using the same
variables. Our premise is that the initial returns

Definition

(P1 - Po)/Po

{Po - Pe }/Pe

NPo

(M1 - Mo)/Mo

Average market share for 1983 - 1987

Pe = Expected Offer Price= midpoint of the offer
P1 = Price at the end of the first trading day
N = Number of shares
Mo = NASDAQ index at the time of preliminary filing
M1 = NASDAQ index on offer date

Table 1. Definition of Variables

224 Copyright© 1995 Software Engineering Press

may not be linearly related to these variables. If
significant nonlinearities exist, a neural network
model might be able to capture these
nonlinearities better than either a linear or
nonlinear regression model. If so, this would
improve the predictive power of the model. Our
results are based on two sets of NN models. The
first set of models was built using Brainmaker.
The second set of models was generated using
our original code. Both Brainmaker and the
original code use the backpropagation algorithm
for training the network. Brainmaker allows the
setting of a variety of parameters such as the
sigmoid slope, learning rate, error threshold,
number of neurons, and number of hidden layers
by the user. However, the original code allows
the user more flexibility. For example, it allows
the user to set a different sigmoid slope for each
neuron and it allows the pruning of a fully
connected network.

3.2 Data

For this study, we used data on 1430 firm
commitment IPOs from January 1983 through
September 1987 compiled from Investment
Dealers' Digest Corporate Database reports.
This represents the entire population for this
period. We describe each variable in Table 1.
The first variable listed, initial returns, is our
dependent variable. Based on Hanley [2], we
choose percent change in the actual offer price
from the expected offer price, offer amount,
percent change in the NASDAQ index, and
underwriter's reputation as our independent
variables. Although Hanley [2] includes other
variables in her explanatory regression model, we
omitted these variables in our models since these
were ex post variables which cannot be used for
prediction.

3.3 Experimental Design

Our investigation involved three experiments
using four different models in each experiment.
These included a regression model, a nonlinear
regression model, a neural network model
generated by Brainmaker, and a neural network

Copyright © 1995 Software Engineering Press

model generated by the original code. All of the
neural network models were composed of
multilayer perceptrons which were trained
using the backpropagation algorithm. The data
were divided into three subsets: A, B, and C.
These subsets were obtained by partitioning the
data alphabetically. Seven of the 1430
observations were deleted due to missing data.
This left 1423 usable observations.

Figure 1 illustrates the experimental
procedure. In experiment 1, we trained the
models on subset A and tested them on subset B.
After we had determined the best model from
several iterations of training and testing, we
validated the model on subset C. In the case of
the regression models, we determined the
equation of the fitted line from the training
subset. We then predicted the dependent
variables in the test set using this equation. In
experiment 2, we reversed the order of training
and testing. In this case, we trained on subset B
and tested on subset A. Again, we validated the
model on subset C. In experiment 3, we
combined subset A with subset B. We then chose
the best parameter settings and training
procedures from the previous two experiments.
We trained the data using these settings and
procedures. After training, we tested on subset C.
With these restrictions, we were able to validate
the model with the test set.

4.0 Regression Analysis

4.1 Linear Regression Models

Before we developed the regression models for
the individual training subsets, we generated the
regression analysis for our reduced model
(Hanley's model less the ex post variables) using
both SPSS and Microsoft Excel over the full data
set. The data in Tables 2 and 3 and Figures 2
and 3 were generated from these packages. To
begin, the overall fit of the first regression model
looks good. As can be seen from Table 2, the F­
test for overall fit and the t-test for the individual
variables are statistically significant at a= 0.05.

This model also has reasonably low
multicolinearity and little autocorrelation. As was

225

226

A
Training

~)
8

Testing

..,!~

C
Validation

Experiment 1

8
Training

()
A

Testing

"'< ~
C

Validation

Experiment 2

A+B
Training

C
Testing and
Validation

Experiment 3

Figure 1. Visualization of Experimental Design

Regression Statistics for Dependent Variable, Initial Returns

Multiple R 0.4190 Durbin-Watson
R Square 0.1756 Mean VIF
ADJ. R Square 0.1732
Standard Error 0.1578
Observations 1423

ANOVA

1.9495
1.2043

df ss MS F - statistic
Regression 4 7.5200 1.8800 75.4958
Residual 1418 35.3110 0.0249
Total 1422 42.8310

Coefficients Standard Error t - statistic P-value
Intercept 0.1206 0.0060 20.2669 0.0000
Percent Change 0.3853 0.0304 12.6669 0.0000
Offer Amount -0.0007 0.0002 -3.0148 0.0026
NASDAQ 0.3772 0.0653 5.7720 0.0000
Average Market -0.3525 0.1059 -3.3288 0.0009
Key to Abbreviations

Initial Returns: Percent increase in the selling price of an IPO at the end of the first
trading day over its offer price

Percent Change: Percent change in the actual offer price from the expected offer price
quoted in the preliminary prospectus

Offer Amount: Offer amount

NASDAQ: Percent change in the NASDAQ index from file date to offer date

Average Market: Average market share of the lead underwriters

Table 2. Simple Linear Regression over the Full Data Set

Copyright @ 1995 Software Engineering Press

>.
0

400

C 300
Q)
:::J
CY
Q) ...

LL
200

100

Figure 2. Histogram of Standardized Residuals from the Simple Linear Regression Model

expected, we found that the removal of the ex
post variables from the full model, described by
Hanley, slightly reduced the adjusted R2 value. In
the first of our regression models, we found that the
amount of unexplained variation is quite high. This
fact alone makes the use of regression for prediction
of the dependent variable problematic.

The simple linear regression model also appears to
violate the normality assumption. Figure 2 clearly
indicates that the residuals are not normally
distributed. In support of this graphical evidence, we
determined that there are a total of 30 outlying
residuals (2.1 % beyond ±3cr). Nineteen of these are
beyond ±4cr from the mean. We could not justify the
removal of any of these outliers. If the residuals
were normally distributed, the expected percentage
of outliers would be less than 0.26%.

4.2 Nonlinear Regression Models

After studying the partial residual plots of the
individual variables, we concluded that performing
nonlinear transforms on the dependent variable­
initial returns-and on the independent variable­
offer amount-were appropriate. Using the Box­
Cox procedure (for details, see Johnson and
Wichern [3], pp. 164-166), we determined that the
natural log transformation was appropriate for
both. In the case of initial returns, we added 1
to each value to ensure that all of the values were
positive before taking the iog. We then regressed

Copyright@ 1995 Software Engineering Press

over the new set of variables. While the R2 value
improved, we discovered that the variable-average
market--did not pass the t-test. We attempted a
transformation on this variable using the Box-Cox
procedure, but the t-statistic did not improve to the
extent that we could _include average market in the
model. Hence, we limited the final regression model
to three independent variables.

The resulting model was the best that we tested.
The F-statistic improved by 38.8%. little
multicolinearity remained in the model, and the
adjusted R2 value improved to over 20.5%. The
regression results for this model are given in Table
3. Although the resulting model has improved, the
histogram of standardized residuals (Figure 3)
indicates that this model still probably violates the
normality assumption. Based on this analysis and
the low R 2 value, we hope that the neural network
models will outperform regression.

4.3 Regression over the Training Subsets

In Table 4, we present a summary of the
regression models over the training subsets.
While not shown, the F-tests and t-tests in these
models were consistent with the full data set
models. Overall, these models are similar to the
full data set models. In particular, we see that the
adjusted R2 value improves in each model that
uses nonlinear transforms. There is, however,
one significant difference between these models

227

228

Re_aression Statistics for Dependent Variable, T-lnitial Returns
Multiple R 0.4549 Durbin-Watson 1.9495
R Square 0.2069 Mean VIF 1.0791
Adjusted R Square 0.2052
Standard Error 0.1235
Observations 1423

ANOVA
df ss MS F-statistic

Regression 3.0000 5.6503 1.8834 123.3890
Residual 1419.0000 21.6599 0.0153
Total 1422.0000 27.3103

Coefficients Standard Error t -statistic P-va/ue
Intercept 0.1453 0.0089 16.2566 0.0000
Percent Change 0.3421 0.0234 14.6494 0.0000
T-Offer Amount -0.0275 0.0035 -7.7990 0.0000
NASDAQ 0.3410 0.0511 6.6672 0.0000

Kev to Abbreviations

T-lnitial Returns: Percent increase in the selling price of an IPO at the end of the first
trading day over its offer price; transformed with the function In(Initial Returns+ 1)

Percent Change: Percent change in the actual offer price from the expected offer price
quoted in the preliminary prospectus

T-Offer Amount: Natural log of the offer amount

NASDAQ: Percent change in the NASDAQ index from file date to offer date

Table 3. Regression over the Full Data Set using Nonlinear Transforms

400

>-
g 300
Q)
:J
0-
~ 200
LL

1 00

Figure 3. Histogram of Standardized Residuals from the Regression Model with Nonlinear Transforms

Copyright@ 1995 Software Engineering Press

Subset A
Regression Without

Transforms
Multiple R
R Square
ADJ. R Square
Standard Error
Observations ===~

Subset B
Regression Without

Transforms
0.4007 Multiple R
O. 1606 R Square
0.1534 ADJ. R Square
0.1540 Standard Error

474 Observations

Subset A+ B
Regression Without

Transforms
0.4478 Multiple R
0.2005 R Square
0.1937 ADJ. R Square
0.1559 Standard Error

473 Observations

Regression With Regression With

0.4234
0.1793
0.1758
0.1547

947

Nonlinear Transforms Nonlinear Transforms Nonlinear Transforms
Multiple R 0.4337 Multiple R 0.4934 Multiple R 0.4626
RSquare 0.1881 RSquare 0.2434 RSquare 0.2140
Adjusted R Square 0.1829 Adjusted R Square 0.2386 Adjusted R Square 0.2115
Standard Error 0.1243 Standard Error 0.1185 Standard Error 0.1213
Observations 474 Observations 473 Observations 947

Table 4. Summary of Regression Models over each of the Training Subsets

5.0 Neural Network Models and the full data set models: the adjusted R2

value for subset B is much higher than the
adjusted R2 value for the full data set model.
Later, we will see that the underlying cause of
this departure will have a detrimental effect on
the predictive power of neural network models
trained on this data.

Table 5 lists the features and training
procedures of the neural network models. We
found that the models generated by Brainmaker
required more fine-tuning than the original code
during training to generate acceptable results.

Brainmaker Models

Architecture: 4 input nodes; 3 hidden nodes; 1 output node
Sigmoid slope*: 0.7 begin; 0.4 end
Learning rate: 0.5 begin; 0.1 end
Momentum: 0.5 begin; 0.1 end
Error thresholdt: 0.125 (scaled)begin; 0 end
Stopping criteria: 1500 iterations
Procedure: Reduce the parameters incrementally in a stepwise fashion when either

of the following criteria are met: 1) 200 additional iterations have elapsed;
2) trainina MAE is not improvina

Original Code Models

Architecture: 4 input nodes; 3 hidden nodes; 1 output node
Sigmoid slope*: 0.3 node 1, 0.4 node 2, 0.5 node 3 begin; increment by 0.2 after 100 iterations
Learning rate: 0.2
Momentum: 0.4
Error thresholdt: 0
Stopping criteria: 200 iterations
Procedure: Increase siamoid slope after 100 iterations as indicated above
* Sigmoid slope (p) : Xi = tanh(ui / p)
t Error threshold: Only backpropagates error, if absolute error> threshold

Table 5. Architecture and Training Procedures for the Neural Network Models

Copyright © 1995 Software Engineering Press 229

This was accomplished by changing several
parameters during training to avoid early
convergence. In addition, Brainmaker performed
better when the models were trained slowly. We
accomplished this by slowly reducing the error
threshold. In this respect, the original code was
superior to Brainmaker, since we could conduct
more experiments with the original code in the
same amount of computer time.

6.0 Results

Table 6 presents the results of the model testing
and validation for each experiment. In each case,
the neural network models outperformed both
simple linear regression and nonlinear regression.
In addition, with the exception of the third
experiment, the original code outperformed
Brainmaker. Overall, models trained on subset B
(experiment 2) did not have the predictive power
of the others. As we observed in the discussion of
the regression analysis of subset B, the data in
this subset had significantly less unexplained
variation than the full data set. Based on this
observation, we believe that subset B is less
representative of the full data set than subset A.

7.0 Conclusions

Average positive initial returns on IPOs is a

real-world phenomenon which has puzzled
financial experts for a long time. Although some
progress has been achieved in understanding the
factors which affect this phenomenon, serious
effort has not been devoted to building models to
predict the initial returns. Prediction of this sort,
we believe, should be of importance to large
institutions which regularly participate in the IPO
market. It can be used, for example, as a guide
when deciding the number of IPO shares to be
purchased. This paper has taken a positive step
in this direction. Using an original code and
Brainmaker, we have built models which predict
the initial returns on IPOs with a fair degree of
accuracy.

As a result of our experiments, we have found
that the neural network models consistently
outperform the regression models over similar
data sets. In addition, the neural network
performance is satisfactory in an absolute sense:
Our best model had a validated MAE of 0.0940.
With this information, we could state that an IPO
whose predicted initial return was over 9.40%
would probably have a positive initial return.
While this will not be true in every case,
investors who use this information should be able
to reduce their overall risk when using these
models as a guide.

Re ression NL Re ression Brain maker Ori inal Code
Testing Testing Testing Testing

Ex. Subset MAE Subset MAE Subset MAE Subset MAE
1 B 0.0981 B 0.0940 B 0.0900 B 0.0889

C 0.1030 C 0.1007 C 0.0968 C 0.0940

Table 6. Comparison of the Predictive Power of the Tested Models

230 Copyright© 1995 Software Engineering Press

Acknowledgment

We would like to thank Kathleen Weiss
Hanley for her input and assistance.

References

[l] Benveniste, Lawrence M. and Paul A.
Spindt, 1989, "How investment bankers
detennine the offer price and allocation of
new issues", Journal of Financial
Economics. 24, 343-361.

Copyright@ 1995 Software Engineering Press

[2] Hanley, Kathleen Weiss, 1993, "The
underpricing of initial public offerings and
the partial adjustment phenomenon", Journal
of Financial Economics. 34, 231-250.

[3] Johnson, Richard A. and Dean W. Wichern,
1992, Applied Multivariate Statistical
Analysis. New York: Prentice Hall.

231

Bank Failure and Categorization - A Neural Network Approach

Prof. Walter Miller
Quinnipiac College
Mt. Carmel Avenue
Hamden, CT 06518

INTRODUCTION

Prof. David T.Cadden
Quinnipiac College
Mt. Carmel Avenue
Hamden, CT 06518

Contemporary bankruptcy research
examines accounting data for matched-pairs, failed
and non-failed, of firms. It employs statistical tests to
detect the accounting data that bests discriminates
between failed and non-failed firms. Recently, neural
networks have been added to the statistical
techniques in bankruptcy studies. Bank failure
studies, generally, follow a similar research design;
however, a bank's health can be categorized in more
than two groups. Federal Depositors Insurance
Corporation's examiners can place a bank in one of
seven groups. This is done on the basis of hard
accounting data and evaluator judgment. In addition,
local economic conditions and other exogenous
factors place a much more important role in bank­
failure than corporate bankruptcy studies.

This research examines data on
approximately 225 banks, including 46 failed banks,
for the period 1987-1992. Two back propagation
neural network models will be initially developed.
The first model seeks to simply distinguish between
failed and non-failed firms, and the second model
seeks to match the 225 banks with their FDIC
examiners' classification. The results of both models
are compared with the results of quadratic
discrimination models. Almost all bank-failure and
corporate bankruptcy studies that employ neural.
networks have used back propagation. It is powerful
and well understood; however, in bank studies we
often wish to consider data which is evaluative, non­
exact, that is, fuzzy data. This is particularly true in
bank studies when dealing with exogenous data,
such as multiple indicators of local economic
conditions. A third neural network model is
examined in this study - one based on Fuzzy ART
architecture. This model will be used to classify
banks into multiple groups.

MODELS OF BANK FAILURE

Although there was a large pre-World War
II literature focusing on bank closings, few studies
were able to distinguish operating from closed banks
(Meyer and Pifer, 1970). Secrist (1938) argued that

232

Prof. Vincent Driscoll
Quinnipiac College
Mt. Carmel Avenue
Hamden, CT 06518

single measures - be they ratios or annual changes -
could not discriminate between failed and non-failed
banks; however, he believed discrimination could be
achieved by means of multivariate statistical
methods. In a very real sense, most contemporary
bank failure studies can be seen as a subset of the
classic statistical approaches to bankruptcy
prediction. The premiere multivariate study of
bankruptcy was Altman 1968 paper. It has become
the benchmark against which most other bankruptcy
studies are measured. Altman utilized the statistical
technique of multiple discriminant analysis and
found that bankruptcy could be explained quite
completely by using a combination of five (selected
from an original list of twenty-two) financial ratios.
Linear Discriminant Analysis (LOA) is a statistical
technique, developed by Fisher (1936), which is
used to classify an observation into one of several a
priori groupings dependent on the observation's
individual characteristics. It is used primarily to
classify and make predictions in problems where the
dependent on the observation's individual
characteristics. It is used primarily to classify and/or
make predictions in problems where the dependent
variable appears in qualitative form, e.g. male or
female, bankrupt or non-bankrupt. After group
classifications have been established, LOA attempts
to derive a linear combination of these
characteristics which "best" discriminates between
the groups. Linear Discriminant Analysis requires
certain assumptions about the data: (1) each group
follows a multivariate normal distribution; (2) the
variance-covariance matrices of the groups are
equal; and (3) the prior probabilities are known.

Altman (1977) applied quadratic
discriminant analysis to predicting performance in
the Savings and Loan industry. This study differed
from the classic corporate failure studies in two
important points (1) it utilized three classification
groups - banks with serious problems, temporary
problems, and no problems; and (2) the use of trends
of accounting ratios.

Pettway and Sinkey (1980) proposed using
both accounting data and market information as a
means of an early warning system for problem
banks.

Copyright© 1995 Software Engineering Press

There have been several attempts to apply
expert systems methodologies to the bankruptcy
problem and the allied problem of creditor
evaluation. Elmer and Borowski (1988) developed an
expert system to evaluate the financial health of
Savings and Loan (S & L) institutions and predict
their failure. Their expert system took publicly
available information and produced a single index to
measure an institution's health. The rules were
derived from the Federal Home Loan Bank Board
(FHLBB) Examination Objectives and Procedures
Manual and individuals' expertise. This system
worked with five ratios drawn from CAMEL
framework - CAMEL being an acronym for
(C)apital, (A)ssets, (M)anagement, (E)arnings, and
(L)iquidity. It, however, excluded the (M)anagement
component since that was a subjective, quality
measure. The S & L industry is seen as not being
homogeneous; this system had the ability to identify
thrifts with unusual characteristics and thus improve
its own reliability.

The system's single index is a weighted
average of scores for the four characteristics -
(C)apital, (A)ssets,, (E)arnings, and (L)iquidity
measures. The relative importance (the weights) for
the four were derived from a poll of S & L
presidents. Ten ratios are used to generate the scores
for the four characteristics. The production rules
treat these ratios either in the context of peer group
comparison or with respect to fixed cutoff values.
These rules provide sufficient flexibility to allow for
changes in the industry.

The author tested this expert system's
predictive capability against a logit analysis based on
an Altman (1977) study ofS & Ls and another study.
Their test used 60 matched pairs of failed and non­
failed S & Ls form 1986. On that data the two
statistical approaches outperformed the expert
system by a very slight margin. A second test was
conducted. Here the models were used to predict
failure 1-6, 7-12, and 13-18 months prior to failure
for data for the first half of 1987. In the earliest time
period prior to failure the expert system was as good
a classifier as the Altman model and better than the
second statistical model. As one moved further away
from the failure date, the correct classification rates
for the three models declined; however, the expert
system's declined at a more modest rate. For the
period 13-18 months prior to failure, the expert
system correctly classified nearly 62% of the sample
while Altman' s model's value was approximately
48% and the second statistical model's value was
33%. The authors conclude that the expert system
approach appears to be robust and that "correlational

Copyright© 1995 Software Engineering Press

studies have difficulty adapting to new circumstances
and are subject to error due to samples from which
they are derived".

A study that compared the performance of a
neural network model with a logit regression was
Salchenberger, Cinar and Lash's (1993) study of
S&L Thrift failures. As with the case of corporate
failure, there have been numerous studies of thrift
institutions. These studies have used linear
discriminant analysis, quadratic discriminant
analysis, logit, and probit. Salchenberger et. al. drew
upon these prior studies to select an initial list of 29
financial variables. These were reduced down to five
by means of stepwise regression. The training data
consisted of 100 failed S and Ls, and 100 non-failed
S and Ls. These were matched by both asset size and
geographical region. They used, in effect, four
holdout sample which consisted of matched pairs of
thrifts. The first three sample consisted of failed and
non-failed institutions 6, 12, and 18 months prior to
failure. The total sample sizes were 116, 94, and 48,
respectively. The fourth sample consisted of75
failures matched with 329 non-failures. This fourth
holdout sample was designed to more accurately
represent the proportions of failed to non-failed
institutions. They used a back propagation neural
network with one hidden layer which had three
nodes. In addition, a logit model was run on the
initial training set. For both the logit and neural
network models, two cutoff points (.5 and .2) were
used. As previously mentioned, the lower cutoff
point reduces the chance of a Type I error. For the
training set and the 18 month holdout sample, the
neural network statistically outperformed the logit
model in forecasting failures. For the training set, he
neural network model was also more robust when it
came to lowering the cutoff point to .2;
misclassifying fewer number of non-failures. For the
fourth holdout sample, the neural network, again,
was statistically superior in classifying failed
institutions and non-failed institutions when the
cutoff point is equal to .2. The authors conclude that
the neural network model yield more useful results
than the logit model, particularly when the data is
reflective of the total population of thrift institutions.

Tam and Kiang (1992) have published two
studies in which they applied neural networks to the
study of commercial bank failure. The latter is
perhaps the most comprehensive study in comparing
neural network methodology to alternative
approaches. In it 'they compare a neural network
model's performance with a linear discriminant
model, a logistic model, the ID3 algorithm, and the k
Nearest Neighbor (kNN) approach. This last

233

approach is a non-parametric classification
technique. It does not have any requirement for
functional form nor does it assume normality in the
distributions. The data was collected for the period
1985-87 and consisted of 59 failed and 59 non­
failed banks. They were matched not only on the
basis of assets but also on charter type and number of
branches. Nineteen ratios, drawn from prior studies,
were selected for use in this research. Although 15 of
the 19 ratios were not normal in their distribution,
they were used "as is" since attempts at
transformation did not produce normal distributions.
Tam and Kiang used two back propagation
architectures - one with no hidden layer and another
with one hidden layer which contained 10 nodes.
They modified the learning function to consider both
the differing probabilities for failure and non-failure
and the differing costs of misclassification. The
study considered two probabilities for failure and
eight misclassification costs. The models were tested
on data one and two years prior to failure.

For the training set, one year prior to failure
the neural network with the hidden layer
outperformed all other approaches; however, two
years prior to failure discriminant analysis had the
lowest total misclassification rate followed by the
hidden layer neural network. Both neural networks
had lower substitution risks (expected cost of
misclassification) than the discriminant analysis
across all combinations. The neural network with the
hidden layer tended to outperform the two layer
neural network.

The models were tested on a holdout sample
of 44 paired failed and non-failed banks. The neural
net with the hidden layer the best overall classifier
one year prior to failure while the logit model scored
best two years prior to failure with the hidden layer
neural network coming in second. Since the results
for the models for the training and holdout sets were
inconsistent with regard to relative accuracy for the
two time periods, Tam and Kiang used a jackknife
method of estimation. Utilizing this method, the
hidden layer neural network produced smaller total
misclassification rates, for both time periods, than
the other models. The neural network with no
hidden layers tended to perform at a rate comparable
to the discriminant function model.

These last studies clearly indicate the
potential benefit to be derived from using neural
networks in the study of bank failure.

234

DATA AND RESEARCH DESIGN

The first phase of this study will be data
collection. Presently, the authors are planning a full
study of all banks in the New England region; this
paper will discuss the results obtained for a subset,
namely, banks in the state of Massachusetts. Data
was obtained from several sources - state published
data bases; Sheshunofjs; The Bank Quarterly:
Ratings and Analysis; interviews with bank
executives and FDIC examiners, and a Freedom of
Information request of the FDIC. Financial data was
collected for each failed instituion for the three years
prior to its failure. Failed banks were matched to
non-failed banks, initially, on the basis of asset size
and bank type - state, federal or national. In addition
to controlling the selection of banks by size, we
stratified by SMSA location. For each of the banks a
set of financial ratios will be computed. Based upon
prior studies, the research will compute twenty-six
financial ratios. We also computed for the twenty­
six ratios their annual rates of change. These
variables were examined to determine the degree of
correlation amongst themselves and T-tests and
factor analysis were conducted to examine which
variables were most significant, in terms of
differentiating between failed and non-failed banks.
This was done to reduce the data set.

In addition to these ratios, exogenous
economic data for each SMSA location was
gathered. This exogenous data and elements of the
evaluations of the FDIC examiners can, at times, be
imprecise. As an example, the designation of the
local economy or the bank's management may be
classified as god, fair, or poor. Such concepts need
to be processed into its fuzzy logic equivalent. Fuzzy
ART neural network, which will be reported in a
subsequent paper, will allow for a quantification of
such imprecise notions.

The authors employed four neural network
back-propagation architectures designed to predict
failed from non-failed banks. The architcture of the
first model (NNl) consisted often nodes in one
hidden layer; the second model (NN2) had twenty
nodes in one hidden layer; the third model (NN3)
had five nodes in the first hidden layer and five
nodes in a second hidden layer; and the fourth model
(NN4) had ten nodes in the first hidden layer and ten
nodes in a second hidden layer. Based on the
aforementioned statistical analysis, the data set was
reduced to eleven financial ratios, six rates of change
variables and the type of institution. The forty-six
failed banks were segmented into two groups -
thirty-one were used in a training sample and the

Copyright© 1995 Software Engineering Press

remaining fifteen were assigned to the test sample.
Care was taken to assign failed banks to either
training or testing sample based upon the year of
failure. The training consisted of thirty one nonfailed
banks while the testing sample consisted of 210
non-failed banks. This last sample represents nearly
all the non-failed banks in the state. In addition to
the neural network model, the data was tested using
upon quadratic discriminant analysis (QDF). This
classification scheme was used because of evidence

of its superiority to linear discriminant analysis in
bankruptcy studies (Mahmood and Lawrence, 1987).
However, the authors plan to test the data for
deviations from multivariate normality to which
QFD analysis is sensitive. We also plan to Probit
and Logit analyses to evaluate the data. The results
of the QFD and back-propagation neural network are
presented in Table 1. The authors plan to extend this
analysis for the Massachusett's data by employing a
Lachenbruch validation test design.

TABLE 1.
• • · • • · • : · :_· _.. ·. ·_.-·- · _. ·-: · • .-_.. · • • • • _- • • ir..~,iJ.t.ing Se.:t • _. : • • • • • ·-· • • · • · . _· • •• • • • • ·, • :_. · ::··· • • ·-·· • • ·-· . ·1.~i-!~itl • ·-' ·-· • • • :_ ': · • • • ·-: ·, · • ·-: • • ·-· ·_·,·:· ·,:,··:-:-:

. Failed N:1i-1t.-lf.t1it'f/d F-a.'il.:eil • • • N.,m.4fn.ihtil • • _. -_ •
lf.ml:.>l A£-W:.1.t Hietlfo.tiid A actui:I Pfe1.lit!tdd Ai'tcttttl Pf:&11.ded Aem:at Pr.,.ididdd •

The results indicate that the neural network
with twenty nodes in two hidden layers outperforms
all competing formulations.

Currently, the authors are examining how
well neural networks can match the five category
classification scheme used by FDIC examiners. This
stage of the research will require a close linkage with
such examiners in order to determine what specific
variables they utilize.

Following that work, the next set of neural
network models will incorporate fuzzy data that will
consist of examinors evaluation of bank management
and economic conditions.

A complete bibliography is available from the
authors upon request.

Copyright© 1995 Software Engineering Press 235

Paper Session: Derivatives

Chair: Michel Benaroch, Syracuse University

A Genetic-based Approach to the Analysis of Derivative Securities

Sergio SCANDIZZO

Laboratorio di Urbanistica e Pianificazione Territoriale Universita Federico II di Napoli
Via Toledo 402, 80134 Napoli, Italy

Phone:+ 39-81-5521011 Fax:+ 39-81-5513495 Email: scandizz@vm.cised.unina.it

Key Words: derivative product, genetic algorithm, hedging, replicating portfolio, design of securities

Abstract

In this paper the task of developing a genetic­
based system for the building of optimal hedging
strategies by means of derivative securities is
addressed. The analytical potential of a genetic
model as well as the representation issues connected
with this approach are discussed. An attempt has
been made to integrate the genetic maximization
procedure with information available on the
underlying price distribution, using a probabilistic
.fitness function. Finally some implementation
details are considered. A genetic based model is
likely to be both a flexible and an efficient tool of
analysis, when problems are characterized by
uncertain knowledge and complexly structured
solution spaces.

1. Introduction

We call derivative product a security whose value
depends on one or more other variables which are
called the bases of the product (Ingersoll, [7]).
During the last two decades, the development of such
financial instruments has been enormous driven by
the search for arbitrage opportunities as well as by
the need for more efficient hedging strategies, arisen
with the increased volatility of interest rates,
exchange rates, and commodity prices.

As a consequence, derivatives are also object of a
huge number of studies, addressing first of all the
problem of valuing and pricing securities under the
most various market circumstances. The task of
building derivatives with desired characteristics is
treated in the wider framework of financial
innovation and design of securities. A key feature
both in building and in valuing derivative products
consists in the identification of a financial structure
that mimics the characteristics of the desired product
starting from the basis and the risk-free asset.

Both pricing and optimal hedging problems have
been addressed in rigorous mathematical contexts.
Modem derivative pricing theory relies on the
seminal paper by Fisher Black and Myron Scholes

238

[2]. The design of optimal hedging instruments under
given exposure conditions has been studied by Allen
and Gale [1] in a firms' value-maximizing context
and by Duffie and Jackson [5], who studied the
pareto-optimal allocation of resources connected with
equilibrium conditions in futures markets.

At the same time, a considerable research effort
has been undertaken to develop tools of analysis of
economic systems, which were capable to treat
dynamic, highly non linear, complex phenomena
without relying on unrealistic, oversimplifying
assumptions. Among these tools, some models
borrowed from mathematics, physics, biology, and
computer science are currently at the core of modern,
non-traditional financial analysis. Chaos theory,
fuzzy logic, artificial neural networks, and genetic
algorithms are receiving increasing interests from
students and are often synthetically referred to as the
field of soft computing.

Being concerned mainly \vith non stable and far
from equilibrium systems, soft computing tools are
naturally well suited to address the topics of hedging
strategies and risk management.

A similar approach was undertaken by Chorafas
[3], who discussed the application of a genetic
algorithm to the problem of managing off-balance
sheet operations, representing combinations of
financial instruments by means of chromosomes built
up by a random-based process.

In this paper we will follow a building block
approach (Smithson, [11]) to the construction of such
'teplicating portfolios': and we will discuss how to
use the framework provided by so-called genetic
algorithms (see Goldberg, [6]) to address the task of
building derivative securities.

2. The Problem

The four fundamentals off-balance-sheet
instruments issued to manage financial risk are:
forward contract, future contract, swap contract and
option contract. In fact, one of these instruments may
be issued to hedge a firm's risk profile, more than
one of these may be combined to suit with a

particular exposure or one or more may be issued
together with a debt instrument to build up a so­
called hybrid security. These four building blocks
can thus be assembled to give customized solutions to
hedging problems, that is to optimization problems
(minimizing the expected cost of funds/maximizing
the expected rate of return), given the probability
distribution of the underlying price.

In tum, each of the four blocks is made up of the
same fundamental components: the exercise price (the
price at which the basic asset will be traded); the time
to maturity; the payoff per period; the payoff at
maturity; the cost of the contract. Managing these
five variables we can specify each of our building
blocks as well as a debt instrument and, thus, by
assembling several packages of these five
fundamental variables we can build virtually every
kind of hybrid instrument.

Let Pt be the underlying price in period t, P* be the
strike price, T the number of (elementary) periods to
maturity, IT the payoff per period before maturity,
IT* the payoff at maturity and C the cost of the
contract. Given the risk exposure of a firm to a
particular price P, in the form of a functional
relationship U = f'{P*, Pt), we wish to find, if
possible, a string of the following form

which gives us the best available hedge without
giving up all potential gains or, alternatively, gives
the same payoff profile of an existing product at a
lower cost (or a higher expected payoff at the same
cost).

The second possibility is ruled out in absence of
arbitrage opportunities, but even the first goal has no
non-trivial solution if nothing can be said about the
probability distribution of the underlying price.

3. The Genetic Approach

Genetic algorithms are computational devices
designed to explore the solution space of an
optimization problem by generating successive
'\)opulations" of solutions according to the laws of
genetics and natural selection. By processing string
structures through three fundamentals operators -
Reproduction, Crossover, Mutation - and following
probabilistic transition rules, genetic algorithms find
the maximum of a function codified in the strings and
representing the fitness, as a biologist would say, or
the payoff, as an economist would say, of each string.

The applications of genetic algorithms are not
confined to the area of optimization. The simulation

of systems characterized by life-like behavior, often
called artificial evolution, was addressed by Collins
[4] and by Scandizzo [9], in the framework of
evolutionary economic models.

It is interesting to note that the theoretical
foundations of genetic algorithms rely on a 'building
block argument" which in some way recalls the
building block approach discussed in the previous
section. The main theorem about genetic algorithms
is the schema theorem [6], which states that, in
subsequent generations of a genetic algorithm, short,
low order, above average schemata receive
exponentially increasing trials. A schema is a string
where, in one or more position, the original symbol
was substituted with a wildcard mark (*) and
represents all the strings that match it in all positions
other than the wildcard. For example, the following
schema

l***l**

represents all the strings with a 1 in the first and in
the fifth positions, no matter what symbols are
carried in the remaining positions.

A consequence of the schema theorem is the so­
called building block hypothesis, that can be stated as
follows [8]: "A genetic algorithm seeks near-optimal
performance through the juxtaposition of short, low­
order, high-performance schemata, called the
building blocks."

Without taking the similarity too far, we can argue
that genetic algorithms are computational devices
particularly well suited to solve optimization
problems whose solution spaces exhibits

Suppose the value V of a firm is exposed to
changes in price P as in Figure 1.

/),_V

!),_ p

Figure 1

A perfect risk hedging is possible issuing a future
or a forward on P, but this would eliminate all

239

possible gains from a rising of P. For example, if the
probability distribution of P in the next period is such
that there is a high probability of a substantial
decrease in P, a small probability of a little increase,
and virtually no possibility of significant increases,
then we can combine a future contract with two
option contracts, a call and a put, with exercise
prices set such that selling the call yields more than
what must be paid to buy the put1

.

Figure 2 shows the resulting risk profile.

Figure 2

The solution may be represented in terms of our
five basic variables as follows:

Forward
P1=P1;P*=P'*;T=T';Il=0;Il*=P1-P'*;C=C'.

Sell a call
P1=P1;P*=P''*;T=T';Il=0;
Il*=-max{0;P"*-P1}; C=C".

Buy a put
P1=P1;P*=P'''*;T=T';Il=0;
Il*=max{P1-P"'*} ;C=-C"'.

where C ">C" '.
We have presented a relatively simple problem

and a possible solution, given a synthetic description
of our expectations about the underlying price, but
neither we followed a rigorous maximization
procedure nor we fully explored the solutions space,
so we cannot be sure there isn't a different
combination of our basic building blocks yielding a
higher net payoff.

We suggest that a way to explore systematically
this kind of solutions to hedging problems may be

1 For a wider discussion of this example see Smithson
[5]. 240

found by customizing genetic algorithms to process
strings representing combinations of the basic
financial instruments, and to consider a fitness
function whose value depends on the payoff of the
derivative product represented in the string.

An initial population may be built up by creating
a set of basic instruments - each one defined by five
values for variables P*, T, n, IT*, C, and by
randomly generating - a large number of strings
combining these basic blocks.

The resulting population will be characterized by
an average fitness and by a certain level of genetic
variance. The fitness function should be based on the
expected net payoff of the solution represented by
each string, on the inherent exposure as well as on
information about future values of the underlying
price. If a sufficient level of initial variance is
available, the application of genetic operators -
reproduction, crossover, and mutation - will lead the
population to converge on a string with the maximum
attainable value of the fitness function.

The strings on which the algorithm will converge
will be the best performing solution to the problem
represented by the price exposure together with the
price distribution.

4. Implementation Notes

To describe our genetic algorithm we must specify
the nature of populations processed, the selection
mechanism, the operators used to generate new
populations, the fitness function, how it is coded in
strings, and how can it be calculated.

Population
The population consists of strings of the form •

whose positions are interpreted as the variables
discussed in blocks of five from left to right.

Selection mechanism
The classical roulette wheel selection mechanism

(Goldberg [2]) chooses at random individuals for
reproduction with a probability which is larger the
larger the fitness of the individual. Because we may
wish to explore more than one solution, other
selection strategies may also be used that allows the
algorithm to converge to more than a single genotype
at the same time. It has been shown (Collins [1]) that,
in spatially structured populations, selection models
linking the probability of mating to distance among

Copyright© 1995 Software Engineering Press

individuals (non-panmictic strategies) 1s likely to
exhibit superior performance.

Operators and the fitness function
In the implementation of the familiar operators of

reproduction, crossover, and mutation, we must take
into account that non every combination of values in
the basic blocks will result in a legal solution to our
problem. Thus the operations of crossover and
mutation are likely to be executed in a positional
manner, that is cutting a string for crossover only
between a block and another as the following string
shows.

IP* IT I TI I TI* I Cl P* IT I TI I TI* IC I
i i

not legal legal

The evaluation of the fitness function which
drives the selection mechanism, depend; on a
variable, the underlying price P, whose values are
unknown.

We will use a fitness function of the form

n T IT
I, I, jt t -c.
j=l t=l (l+r) 1

where n is the number of simple derivatives (building
blocks) simultaneously represented in the string, r is
an appropriate discount rate, and the Tijt=fj(P/, P1)
are calculated generating at each step a random value
for Pt, sampled from a distribution that synthesizes
our knowledge about the future trend of the
underlying price.

5. Conclusions

I have presented the general structure of a system
conceived to treat risk management problems by
building proper combinations of the basic derivative
securities. The main characteristics of such a system
are flexibility, the possibility of including available
information on the underlying price, and the
possibility of systematically exploring and comparing
different complex solutions.

The general structure of the system proposed is
summarized in Figure 3.

Copyright@ 1995 Software Engineering Press

Inherent
exposure Population

Derivative
products

Figure 3

Distribution of P

Such a system may be used both for optimization
purposes and to perform simulation experiments
under different conditions.

This paper is just a first attempt to explore the
potential of genetic-based systems to handle risk
management problems systematically, and a great
number of possible applications is probably still to be
discovered.

Two topics, however, are of immediate interest:
to show whether the schema theorem still holds for a
stochastic fitness function as the one suggested, and
to test the system on different computing platform to
assess its computational complexity as well as its
effective power.

REFERENCES

[l] Allen F. and Gale D., ''.Arbitrage, Short Sales and
Financial Innovation': Econometrica 59, 1041-68,
1991.

[2] Black F. and Scholes M., .'The Pricing of Options
and Corporate Liabilities",

[3] Chorafas D.N, "Chaos Theory in the Financial
Market", Probus, Chicago, 1994.

[4] Collins R.J., "Studies in Artificial Evolution" Ph
D. Dissertation, University of California, 'Lo~
Angeles, 1992.

[5] Duffie D and Jackson M.O., 'Optimal Innovation
of Future Contracts': Review of Financial Studies
2, 275-96, 1989.

[6] Goldberg D.E., "Genetic Algorithms in Search,
Optimization and Machine Learning", Addison
Wesley, Reading, Mass., 1989.

[7] Ingersoll J., 'Theory of Financial Decision
Making': Rowman & Littlefield, Totowa, NJ.,
1987.

[8] Michalewicz Z., 'Genetic Algorithms + Data
Structures = Evolution Programs': Springer
Verlag, 1992.

[9] Scandizzo S., 'Using Genetic Algorithms and
Artificial Neural Networks in Evolutionary
Economic Models': Proceedings of the 3rd
International Conference on Fuzzy Logic, Neu1fil

Nets and Soft Computing, Iizuka, Japan, August
1-7, 1994.

[10] Smith C.W.Jr. and Smithson C.W., "On the
determinants of Corporate Hedging", Journal of
Finance, vol.448 N.2, March 1993.

[11] Smithson C.W., ''.A LEGO Approach to
Financial Engineering: An Introduction to
Forwards, Futures, Options and Swaps': Midland
Corporate Financial Journal 4, Winter 1987.

242
Copyright© 1995 Software Engineering Press

Forecasting Currency Futures Using Recurrent Neural Networks

Dr. Paolo Tenti
A & A Financial Management

Via Peri, 21
6900 Lugano - Switzerland

Tel.+41-91-229005 Fax+41-91-229077

Abstract

This paper proposes the use of recurrent
neural networks in order to forecast currency
futures. Recurrent networks, in which activity
patterns pass through the network more than
once before they generate an output pattern,
can learn extremely complex temporal
sequences. Selected recurrent architectures
are compared in terms of prediction accuracy.
A trading strategy is then devised and
optimized The profitability of the trading
strategy, taking into account transaction costs,
is shown for the different architectures. The _
methods described here, which have obtained
promising results in real-time trading, are
applicable to other markets.

1. Introduction

For years opposing views existed between the
trading and academic communities about the
statistical properties of foreign exchange rates.
Traders considered exchange rates to have
persistent trends which permitted mechanical
trading systems (systematic methods for
repeatedly buying and selling based on past
prices and technical indicators) to consistently
generate profits with relatively low risk.
Researchers, on the other hand, presented
evidence supporting the random walk
hypothesis in the behavior of exchange rates.
When prices follow a random walk the only
relevant information in the historical series of
prices, for traders, is the most recent price. The
presence of a random walk in a currency
market is a sufficient, but not necessary,

Copyright© 1995 Software Engineering Press

condition to the existence of a weak form of
the efficient market hypothesis, i.e. that past
movements in exchange rates could not be used
to foretell future movements.

While there is no final word on the diatribe
between practitioners and academics about the
efficiency of currency markets, the prevalent
view in economic literature that exchange rates
follow a random walk has been dismissed by
recent empirical work. There is now strong
evidence that exchange rates returns are not
independent of past changes. Before the advent
of nonlinear dynamics, statistical tests for the
random walk were usually conducted by
verifying that there was no linear dependence,
or that autocorrelation coefficients were not
statistically different from zero. However, the
lack of linear dependence did not rule out
nonlinear dependence, the presence of which
would negate the random walk hypothesis.
Therefore, many tests were often inappropriate
and some conclusions were questionable.
Recent evidence has clearly shown that while
there is little linear dependence, the null
hypothesis of independence can be strongly
rejected, demonstrating the existence of
nonlinearities in exchange rates. [3, 5, 17]

The problem of predicting exchange rates,
characterized by nonlinearities and high noise,
seems to defy complex methods. Currency
markets are to some extent still an enigma for
economic theory. Sophisticated empirical
econometric models using fundamental data to
predict low-frequency (monthly or lower)
exchange rates changes are characterized by
parameter instability and poor forecast
performance. Even recent nonlinear extensions
of existing models do not provide any

243

improvements in the ability to forecast
currency movements. [13]

With respect to the issue of the weak form of
efficiency of the exchange rates markets it
would seem very difficult to obtain positive
results using only high-frequency (weekly, daily
or even intra-day) past prices. Available
evidence suggests that even nonlinear non
parametric statistical methods have yet to show
positive results in out-of-sample prediction. 1

Also, although the evidence of nonlinearities in
exchange rates is compatible with the existence
of low-dimensional chaos, only mixed results
of chaotic behavior (and therefore short term
predictability) have been obtained.2

Surprisingly, though, there are anomalies in
the behavior of the foreign exchange markets
that cannot be explained under the existing
paradigm of market efficiency. New evidence
has emerged, which reinforces previous tests,
on the profitability and statistical significance
of mechanical trading systems in currency
markets, and negates the weak form of
efficiency. [2, 10, 11] It seems that technical
trading rules are able to pick up some of the
hidden patterns in the inherently nonlinear price
series. Mechanical trading systems appear to be
the only approach that has demonstrated some
validity. It should be used as a base on which
to build on.

2. ANN as a Forecasting Tool

The potential advantages and limitations of an
Artificial Neural Network (ANN), and in

1 For example, Diebold et al. [6] used locally-weighted
regression on weekly series of IO OECD spot exchange rates,
without being able to improve upon a simple random walk in
out-of-sample prediction. The random walk had the lowest
Mean Squared Error in at least 5 out of IO cases for all the
models they considered.
2 De Grauwe et al. [5] applied some of the available
techniques (rescaled range analysis and time delay method)
to daily exchange rates and found only weak support for the
occurrence of chaotic structure for the $/JY and BP/$. They
found no evidence of chaotic behavior for the $/DM, in the
period 1971-1990. In other tests, [6] found no evidence in
favor oflow-dimensional "regular" chaotic dynamics.

244

particular of a multilayer feedforward neural
network, over other statistical methods or
expert systems are well known. ANN s are
universal function approximators, and being
inherently nonlinear are notoriously good at
detecting nonlinearities, but suffer from long
training time and a very high number of
alternatives as far as architectures and
parameters go; they are also prone to
overfitting data. Another common critique that
is made about ANNs is that they are "black
boxes", more difficult to decipher than
traditional time series econometric models or
expert systems. Critics go on to say that
knowledge of the value of the weights and •
biases in the network gives, at best, only a
rough idea of the functional relationships.
Thus, even if ANN s are based on causally
related data, the resulting model may not give a
great amount of insight into the strength and
nature of the relationships within it. This
elusiveness of ANNs is the price to be paid in
return for their being model-free estimators.

However, even when using econometric
models it is an accepted fact that one cannot be
sure about the direction of causal effects
among different variables. As Fischer Black
says [1]: "The trouble with econometric models
is that, while they purport to tell us something
about causal relations between variables, they
almost invariably rely on correlations to imply
causation. While correlations can tell us
something about how variables are statistically
related, they tell us little about how they are
causally related." Furthermore: "Understanding
a model helps only in that it may give us
confidence that the coefficients will be stable
through time. 11 Thus, econometric models share
the same ambiguity in respect to their
interpretation as do ANNs.

Recurrent neural networks (RNNs), in which
the input layer's activity patterns pass through
the network more than once before generating
a new output pattern, can learn extremely
complex temporal patterns. Several researchers

Copyright© 1995 Software Engineering Press

have confirmed the superiority of RNNs over
feedforward networks when performing
nonlinear time series prediction. [4, 12]
Recurrent architecture proves to be superior to
the windowing technique of overlapping
snapshots of data which is used with standard
backpropagation. In fact, by introducing time­
lagged model components, RNNs may respond
to the same input pattern in a different way at
different times, depending on the sequence of
inputs. The appropriate response at a particular
point in time could depend not only on the
current input, but potentially on all previous
inputs. The main disadvantage of RNN s is that
they require substantially more connections,
and more memory in simulation, than standard
backpropagation networks. RNNs can yield
good results because of the rough repetition of
similar patterns present in exchange rate time
series. These regular but subtle sequences can
provide beneficial forecastability.

3. Empirical Design

The experiments, in order to be useful and
applicable to real-time trading, must create
conditions which are as close as possible to
reality. Therefore, one must take into account,
when using spot exchange rates, the interest
rate differential among the currencies in
question. Unfortunately, this crucial criteria is
often overlooked. There will always be a
difference between "paper" profits and real
profits: the objective is to minimize it. By using
forward rates or currency futures it is possible
to overcome this problem because they already
include a premium or a discount due to the
differences in interest rates. Any trading system
based solely on spot exchange rates is just an
approximation, because it comes short of
dealing with the problem of interest rate
differentials. 3 The set of data used in the

3It would be possible to use spot exchange rates by trucing
into account overnight interest rates on spot interbank
deposits for returns calculations, but at the price of more

Copyright© 1995 Software Engineering Press

experiments consisted of Th1M currency future
(DM, SF, BP and JY) Opening and Closing
prices from J an-1990 to Dec-1994.

3. I .Adjusted Price Series Choosing the
appropriate price series for currency futures is
hardly a trivial matter and is the first step in
building a trading system. Using individual
contracts complicates the task of training and
testing the system. The training and testing
usually require a price data history that is much
longer than the typical liquid trading period for
an individual contract. Furthermore, the
simultaneous use of individual contracts is
difficult because it is necessary to combine a
large number of individual results for each
contract as well as dealing with possible
divergences of trading signals when switching
from the expiring contract to the next one. The
commonly proposed solution is to create a
single continuous price series by using the
nearest futures prices, with a jump to the prices
of the successive contract made at the
beginning of the month or at a specified
number of trading days before expiration. The
fatal distortion of this system is that there could
be significant price gaps created in the series at
the roll-over dates, between the expiring and
the subsequent contracts. The nearest futures
series will create illusory price moves at the
transition points, distorting both training and
testing activities. In addition, the nearest
futures series does not allow direct calculation
of the profitability of a trading system. The
solution adopted here is to use spread-adjusted
continuous price series, by which, except for
the most recent contract in the series, prices
are adjusted by a constant that compensates for
price differences which exist at roll-over dates.
(16] This method alters the prices of the future
contracts prior to the most recent one, but
maintains identical price relationships, thereby
avoiding the distortions mentioned above.

approximations. In addition, the spread between bids and
offers will tend to be greater for forward than for spot rates,
increasing as the maturities grow longer.

245

The transition between contracts was
performed seven days before expiration.
Several sets of data were prepared: each one
contained a training set of 424 consecutive
trading days, a test set of 100 consecutive
trading days (which begins the day after the
training set ends), and a validation set of 100
consecutive trading days (which begins the day
after the test set ends).

3.2.Generalization RNNs are predisposed, as
are standard backpropagation networks, to
overfit training data. Rather than learning the
fundamental structure of the training set, which
would enable them to generalize adequately,
they learn insignificant details of individual
cases. This problem is generated by two
conflicting purposes of ANNs: they have to be
as general as possible so that they learn a broad
range of problems and yet they need to perform
well in out-of-sample tests, on examples not
previously seen. There are two approaches to
the overfitting problem. The first one is to train
the model on the training set and to evaluate
the model's performance on the test set. The
second approach is to use one of the many
network pruning algorithms [19] to reduce the
network size, thereby limiting the number of
hidden neurodes and hence the number of
parameters to be estimated. The solution I
adopted is based on a parsimonious choice of
the number of hidden neurodes as suggested by
the generalization capability of the network on
the test set. In this procedure I trained the
network until convergence, observed the point
at which the test set error began to rise, and
then restored the network weights at the
iteration cycle where the test set error was
minimum. How well the network generalized
was deduced by analyzing its performance on
the validation set, and not on the test set as this
was used to decide when to stop training, and
therefore introduced a dangerous bias in the
evaluation.

3 .3 .Prediction accuracy and profitability The
ultimate goal of the experiments is to create a

246

trading system, a set of interrelated rules to
enter and exit the market, that produces
profits. While accuracy is related to
profitability, the trading system should not be
evaluated using only standard statistical error
measures (Mean Square Error and the like). As
an example, a trading system might consistently
miss a large number of small moves but
correctly forecast a small number of large
moves. Therefore, the researcher must take
into account the out-of-sample profitability of
the system, as well as its forecasting accuracy,
when choosing the neural architecture,
activation functions, data sets, and forecast
horizon. To reiterate the concept, prediction
accuracy is not the goal in itself, and it should
not be used as the guiding selection criteria in
the tests. While this simple concept is part of
the wealth of knowledge of mechanical traders
[16], it is rarely considered in tests undertaken
by academics.

3. 4. Outputs and Inputs Choosing the kind of
outputs to be forecasted is an important
decision. The most common options are:

- actual price values,
- first differences of prices,
- returns,
- binary signals, such as -1 short, 1 long.

As currency futures are non stationary, it is
better to analyze price changes in terms of
compound return: rct = log(fi)- log(.fi- 1).
Experiments, conducted with compound
returns, have shown that the forecasting
horizon must remain very short to obtain good
results. One of the problems in forecasting
actual prices is that activation functions tend to
emphasize the importance of intermediate
output values, so that the range of predicted
values is compressed with respect to target
values. Solutions range from using special
forms of normalization to linear activation
functions.

Another critical point is to identify the
appropriate set of inputs relevant for the RNN
architecture and for the chosen output. In

Copyright© 1995 Software Engineering Press

particular, the inputs should be adapted to the
"needs" of RNNs: they should have a temporal
structure and should not be too numerous. 4 An
analysis of alternative sets of inputs based on
transformations of the set of data, drawing
from the vast base of technical indicators was
performed. This selection was based on
previous work performed on the optimal
choice of parameters of different technical
indicators and on their combined use in trading
systems.[18] Inputs were normalized to zero
mean and two standard deviations for all three
data sets. The output was normalized at zero
mean and three standard deviations.

4. Learning

Prediction usmg a RNN involves the
construction of two separate components: one
or more recurrent layers which provide the
temporal context, usually referred to as short­
term memory, and a predictor, usually the
feedforward part of the network. The short
term memory retains features of the input
series relevant to the prediction task, and
captures the network's prior activation history.
The tests were performed with three variations
of RNNs. They belong to the RNN family
known as local feedback networks, where only
local connections are activated. The rationale is
that instead of learning with complex, fully
connected recurrent architectures, redundant
connections should be eliminated in order to
significantly increase the network's
generalization capability. The first architecture
used is similar to that developed by Jordan [8],
known as sequential network. The network has
one hidden and one recurrent layer. The output
layer is fed back into the hidden layer, by
means of the recurrent layer, showing resulting
outputs of previous patterns (Figure 1)5. The

4This implies that comparisons among standard back
propagation and RNN should not be based on the same set of
inputs, but on comparing "best practice" with "best practice".
5Self-loops ofrecurrent neurodes are not shown in this and
the following figures.

Copyright© 1995 Software Engineering Press

recurrent neurode allows the network's hidden
neurodes to see their own previous output, so
that their subsequent behavior can be shaped
by previous responses. The recurrent layer is
what gives the network its memory. Following
the taxonomy proposed by Mozer [14], which
distinguishes between the short term memory's
content and form. The version I used was
characterized by output-exponential memory.

Figure 1. Recurrent Backpropagation with Output
Layer Feedback Link
(memory: output-exponential)

/ --
,..✓--- Hidden ,

~:~~ ~-o---~l!Y_!l!: ___________ :

Recurrent
Layer

With respect to the form of the memory, the
use of an exponential trace memory acts on the
series of inputs x(l), ... , x(t) creating a state

- - -
representation [x1(t),x2(t), ... ,x1(t)], where
each X; (t) is related to the input sequence by
the function e; :

I

~;(t) = Le;(t- r)x(r)
~]

where e;(t) = (1- A)µ~ with O < A < 1.
An important property of exponential trace
memories is that X; (t) can be calculated
incrementally:

These memories can then be seen as
exponentially weighted moving averages of
past inputs. The exponential memory, used also
for the other two versions, makes the strength

247

of more distant inputs decay exponentially. The
rate of decay is governed by A .

In the second version (Figure 2), similar to
Frasconi et al. [9], the hidden layer is fed back
into itself through an extra layer of recurrent
neurodes. Both the input layer and recurrent
layer feed forward to activate the hidden layer,
which then feeds forward to activate the output
layer. Therefore, the features detected in all
previous patterns are fed back into the network
with each new pattern. These recurrent
neurodes remember the previous internal state.

Figure 2. Recurrent Backpropagation with Hidden
Layer Feedback Link
(memory: transformed input-exponential)

I

: Hidden
: Layer

Input :__o ____ J :
Layer : :

~-o-------J
Recurrent Layer

In the third version (Figure 3), patterns are
processed from the input layer through a
recurrent layer of neurodes which holds the
input layer's contents as they existed when
previous patterns were trained, and then are
fed back into the input layer.

Figure 3. Recurrent Backpropagation with Input Layer
Feedback Link
(memory: input-exponential)

Input Layer

248

I
I
I
I
I
t­
i
I
I

I

L
I

: \ o' I I \ I
I \ I : A I

i Y, I
L _ - - - - - _',; __ ',;_ _ :,,/

Recurrent
Layer

Output
Layer

The memory1s content is the dimension which
differentiates the three versions of RRN. It
refers to the fact that although it must hold
information about the input sequence, it does
not have to be a memory of the raw input
series. In the three versions used here there
were one-for-one linear connections between
each recurrent neurode and, respectively, each
output, hidden or input neurode.

Issues such as learning parameters, number
of hidden neurodes and activation functions are
also important in determining the chances of
success of different configurations of RNNs.
Several alternatives regarding the parameters
were tested. The best results were provided,
contrary to the tests performed in [15] with
standard backpropagation, by the symmetric
sigmoid logistic activation function:

ex - e-x

f (x) = X -X

e +e •
where f(x) has the same shape as the

standard sigmoid function, except that its range
is [-1, 1] rather than [0, 1]. The learning rate
was initially set at 0.05 and decreased gradually
to 0.0005 during the first 500 passes, while the
momentum term was fixed at 0. 1. The rate of
decay A was set at 0.6. Choosing the
appropriate number of hidden neurodes was
extremely important. The configuration that
obtained the best results m terms of
generalization had 3 8 inputs, 5 hidden
neurodes and 1 output.

5. Trading Strategy

The importance of the trading strategy (entry
orders, exit orders, number of contracts per
trade, etc.) can hardly be underestimated.
Research shows that identifying the appropriate
trading strategy for each forecasting problem is
vital to each system's trading performance. The
forecast formulated by the three versions of
RNN s is just the initial part of a trading
strategy. The transformation from predictions
into market actions is obtained by specifying a

Copyright© 1995 Software Engineering Press

set of rules to buy and sell currency futures. In
particular, according to the uses of IMM, two
types of orders were used:
• Market Opening Only Order, where the

order is filled only during the opening range
at the first available offer (sell order) or bid
(buy order);

• Market on Close Order, where the order is
filled at any time during the closing range.

Each trade had transaction costs consisting of
commission and slippage, the difference
between the theoretical execution price and the
actual fill price. It was assumed to trade one
contract at a time and to have transaction costs
equal to $80 per trade ($25 for commission
and $55 for slippage). Transactions costs are
very important in short term trading systems
because they can have a dramatic impact on
performance. The network's objective was to
forecast the compound return of the following
day's Open and Close. Using prices up to the
Open at time t (Ot) the forecast was made two
steps ahead for the Open at time t+2 (Ot+2).
Similarly, using prices up to Ct+ 1 the forecast
was made for Ct+ 3. For the sake of generating
trading signals, it is possible to build a
continuous price series Ft,---,Ft+n by alternating
Ot and Ct prices.

Trading Strategy 1 (TrStl):

Entry rule at time t:
1. If f(Ft+2) > x then
2. If f(Ft+2) < -x then
3. If -x < f(Ft+2) < x then

Exit rule at time t+ 1:

LongFt+l
ShortFt+l
Flat

1. If f(Ft+3) > x then stay Long (if 1 at t),
stop and reverse to Long (if 2), go Long (if 3)

2. If f(Ft+3) < -x then stay Short (if2 at t),
stop and reverse to Short (if 1), go Short (if3)

3. If -x < f(Ft+3) < x then cover Short (if2), cover
Long (if 1), stay Flat (if 3)

where f() stands for the network's compound
return forecast, r() is the compound return,
and x is a numerical filter.

Copyright© 1995 Software Engineering Press

Trading Strategy 2 (TrSt2):

Entry rule at time t+ J:
1. If f(Ft+2) > [r(Ft+ 1) + x] then Long Ft+ 1
2. If f(Ft+2)<[r(Ft+1)-x] then ShortFt+l
3. If [r(Ft+ 1)-x] < f(Ft+2) < [r(Ft+1)+x] then Flat

Exit rule at time t+ 2:
1. If f(Ft+3) > [r(Ft+2) + x] then stay Long (if 1
at t+l), stop and reverse to Long (if2), go Long (if3)

2. If f(Ft+3) < [r(Ft+2) - x] then stay Short (if2
at t+ 1), stop and reverse to Short (if 1), go Short (if 3)

3. If [r(Ft+2)-x] < f(Ft+3) < [r(Ft+2)+x]then cover
short (if 2 at t+ 1), cover long (if 1), stay flat (if 3)

TrSt 1 is more realistic than TrSt2 because it
forecasts and decides at time t to go Long,
Short, or Flat. The purchase or sale of the
future is then done at the next time step t+ 1.
TrSt2, on the other hand, forecasts at time t,
but waits until time t+ 1 to compare the
subsequent market open or close with the
forecast and then decides whether to buy, sell
or do nothing. For this second strategy the
slippage is likely to be significantly larger than
for TrStl, because the fill is not made at the
Open but immediately after, and a decision
must be reached within a few seconds of the
Close.

Any sensible trading strategy should
somehow restrict the number of trading signals
because of the incidence of transaction costs.
The filter x was used to provide a way to avoid
as much as possible false signals. Its size was
optimized using genetic algorithms based on
the average profitability of the trading strategy
across different RNN versions and periods.

6. Evaluation

The different versions of RNN were compared
by focusing on the accuracy and reliability of
the forecasts on training, test, and validation
data. Differences in the architecture yield
significantly different results. A standard error
measure to evaluate the quality of predictions
is the normalized mean squared error:

249

~ (observationt - predictiont)2

NMSE = ~ter . 2

~ (observat10nt - meant)
L...JtEr

where t = 1, ... ,N enumerates the patterns in
each data set (-r) used. The above is the ratio
between the mean squared errors of both the
prediction method and the method which
forecasts by using the mean at every step. A
value of NMSE = 1 thus corresponds to the
value obtained by simply predicting the
average. Yet, prediction accuracy statistics
such as NMSE by themselves are of little use.
The purpose is rather to build trading systems
that would provide a consistent profitability on
a risk-adjusted basis, with a high degree of
confidence.

The results in terms of profitability of the
trading strategy, net of trading commissions
and slippage, are shown for the different
versions. Margin requirements are usually
satisfied by posting Treasury Bills. The interest
income earned is not accounted in the
following performances. Therefore, reported
net profits are based on trading profits only,
and represent the return earned in excess of the
T-Bill rate. In itself, mere profitability is not
enough to evaluate the relative value of a
trading system. Profit has to be computed
across several different periods, as it could be
an expression of one isolated period of
extraordinary performance. In addition, other
measures of relative performance are needed,
such as:

(Net Profit)(days /255)
1 ROE= l+------ -

Max ValueFuture

Return on Equity measures the relative
unlevered profitability, being the annualized
ratio between the net profit and the maximum
value of the DM future contract in the period
analyzed.

250

(Net Profit)(days/255) 1 ROC= l+------ -
2(MaxDr + InMar)

Return on Capital expresses the dollar net
profit relative to the funds required for trading
by an individual trader who is subject to double
margins. It is the annualized ratio of the net
profit over twice the sum of the maximum
drawdown on which the particular trading
system would incur plus the initial margin
required. It is measure of the efficiency in the
use of capital of a trading system. Table 1, 2
and 3 show the net profit, the percentage of
correct trading signals, ROE, ROC, and NMSE
for each strategy. The figures shown are for the
last of the 5 different time periods used (ending
in December 1994) of the best network
configurations. Each RRN version and trading
strategy has its own filter, optimized using
genetic algorithms.

Table 1. Performance measures for RNN I

Training Test Validation
424 100 100

TrStl (0.13) $37,488 $2,925 $2,750
TrSt2 (0.17) $20,275 $1,950 $2,800
%TrSig 1 69.1% 69.4% 55.6%
%TrSig 2 45.2% 46.9% 45.7%
ROE TrStl 24.9% 9.1% 8.6%
ROE TrSt2 13.9% 6.0% 8.7%
ROC TrStl 375.7% 124.3% 241.1%
ROC TrSt2 203.2% 58.2% 234.3%
NMSE 0.8949 0.9622 0.9699

Combining the use of the validation set (in
addition to the test set), with the use of
different periods, adds greater reliability to the
trading systems. Results here are reported only
for the DM, though similar performances were
obtained on the other currencies. Although it is
probably unrealistic to expect any single system
to work in all markets, a good system should
demonstrate profitability at least in related
markets such as is the case of currency

'
futures. In addition, if a trading strat_egy is

Copyright© 1995 Software Engineering Press

devised on currency futures very similar results
can be expected by using forwards.

Table 2. Performance measures for RNN 2

Training Test Validation
424 100 100

TrStl (0.13) $40,675 $3,925 $8,437
TrSt2 (0.17) $35,713 $3,788 $8,262
¾TrSig 1 64.4% 63.3% 63.5%
¾TrSig 2 54.4% 52.1% 51.0%
ROE TrStl 26.9% 12.4% 27.7%
ROE TrSt2 23.8% 11.9% 27.1%
ROC TrStl 217.8% 256.9% 353.7%
ROC TrSt2 191.2% 247.9% 383.5%
NMSE 0.9519 0.9683 0.9795

Table 3. Performance measures for RNN 3

Training Test Validation
424 100 100

TrStl (0.05) $28,413 $200 $1,250
TrSt2 (0.04) $36,063 $1,625 -$625
¾TrSig 1 48.9% 46.0% 48.50%
¾TrSig 2 43.8% 44.1% 43.00%
ROE TrStl 24.0% 0.6% 3.9%
ROE TrSt2 28.8% 5.0% -1.9%
ROC TrStl 185.1% 3.2% 8.7%
ROC TrSt2 232.4% 15.3% -9.3%
NMSE 0.9654 0.9984 1.018

RNN2 provides the best overall profitability. It
is the best of the three versions even if it is
judged in terms of smaller decay of
performance going from the training set to the
test set, and then from the test set to the
validation set. RNNl 's results were not quite as
good as those of RNN2, while RNN3 did not
show a good generalization capability.
However, these results should not be taken as
the final verdict on the relative merits of the
three versions of RNN. As far as trading
strategies are concerned, TrSt2 had greater
accuracy in forecasting large price movements
than TrStl, even though the percentage of
corr~ct trading signals was significantly
smaller. This resulted in absolute and relative

Copyright @ 1995 Software Engineering Press

profitability that were slightly less than those
obtained by TrStl.

Comparisons with standard backpropagation
methods have shown that RNNl and RNN2
have better profitability and generalization
capacities. However, as there are an almost
infinite number of configurations and
parameters in standard backpropagation, I
cannot say that it would be impossible to find
one which could yield better results than RNNl
and RNN2. Yet I can say for sure that in the
many tests I performed between the two
methods, RNNl and 2 always had better
results.

7. Conclusions

RNN s, often avoided because of fears of time
consuming training sessions, are particularly
useful for financial forecasting applications.
The methods described here are equally
applicable to other markets. Tests have been
carried out on equity indices, bond futures, and
commodities with encouraging results. Yet
they are particularly well-suited to forecasting
foreign exchange markets due to the network's
adherence to nonlinearities as well as the subtle
regularities found in these markets.
The above findings can be considered
preliminary as I am in the process of expanding
my research to the following areas:

• comparisons of ANN s with standard
statistical techniques;

• comparisons of ANN s with mechanical
trading systems;

• application of Modem Portfolio Theory
framework to ANN financial forecasting;

• diversification of trading systems through
the use of regime-switching models;

• development of criteria to be used in the
evaluation phase.

The evaluation of test results is a very complex
task because so many factors are involved.
Certainly it cannot be based on isolated
parameters but must. incorporate situations

251

which are true to life. Real-time trading, the
ultimate test, shows that ANN s are not a
"passing fad" as critics would have us believe.

8. References

[l] Black, Fischer, "The Trouble with Econometric Models,"
Financial Analyst Journal, March 1982 -
[2] Bilson, John F.O., "Technical Currency Trading," The
Chicago Corporation, internal document, 1990
[3] Brock, William A, D.A. Hsieh and B. LeBaron,
Nonlinear Dynamics, Chaos, and Instability, MIT Press,
1991
[4] Connor, Jerome and L. Atlas, "Recurrent Neural
Networks and Time Series Prediction," Proceedings IJCNN,
1991
[5] De Grauwe, Paul, H. Dewachter and M. Embrechts,
Exchange Rate Theory. Chaotic Models of Foreign Exchange
Markets, Blackwell, 1993
[6] Diebold, Francis X. and I.A Nason, "Non Parametric
Exchange Rate Prediction?," Journal of International
Economics, 28, 1990
[7] Elman, Jeffrey L., "Finding Structure in Time," Cognitive
Science, 14, 1990
[8] Jordan, M.I., "Serial Order: A Parallel Distibuted
Processing Approach", University of California-San Diego,
Institute of Cognitive Science, working paper, 1986
[9] Frasconi, Paolo, M. Gori and G. Soda, "Local Feedback
Multilayered Networks," Neural Computation, 4, 1992
[10] LeBaron, Blake, "Practical Comparisons of Foreign
Exchange Forecasts", Neural Network World, November
1993
[11] Levich, Richard M. and Thomas L.R., "The Significance
of Technical Trading-Rule Profits in the Foreign Exchange
Market: A Bootstrap Approach," New York University, Stern
School ofBusiness, working paper, 1991
[12] Logar Antonette M., E.M. Corwin and W.J.B. Oldham,
"A Comparison of Recurrent Neural Network Learning
Algorithms," Proceedings IJCNN, 1993
[13] Meese, Richard A and AK. Rose, "An Empirical
Assessment of Non-Linearities in Models of Exchange Rate
Determination," The Review of Economic Studies, 58, 1991
[14] Mozer, Michael C., "Neural Net Architectures for
Temporal Sequence Processing," in Weigend, AS. and N.A
Gershenfeld (eds.), Time Series Prediction: Forecasting the
Future and Understanding the Past, Addison-Wesley, 1993
[15] Refenes, AN., M. Azema-Barac, L. Chen and S.A.
Karoussos, "Currency Exchange Rate Prediction and Neural
Network Design Strategies," Neural Computing and
Applications, 1, 1993
[16] Schwager, Jack D., A Complete Guide to the Futures
Markets, Wiley, 1984
[17] Taylor, Stephen, Modelling Financial Time Series,
Wiley, 1986
[18] Tenti, Paolo, "Optimal Selection of Parameters in
Technical Trading Systems," Boston University-Rome,
working paper, 1991

252

[19] Weigend, Andreas S., B.A Huberman and D.E.
Rumelhart, "Predicting Sunspots and Exchange Rates with
Connectionist Networks," in Casdagli, Martin and S. Eubank
(eds.), Nonlinear Modeling and Forecasting, Addison­
Wesley, 1992

Copyright© 1995 Software Engineering Press

-~----~-- --------------------~------------------------------

Designing Financial Swaps with CLP(R)

Evan Tick
Dept. of Computer Science

University of Oregon
Eugene OR 97403, USA

Tel: 503-346-4436 tick@cs. uoregon. edu

Key-words:
Financial swaps, constraints, logic programming.

Abstract
This pape:c describes how to design and evalu­
ate custom financial swaps using CLP(R), a con­
straint logic programming language over the real
numbers. A prototype analysis tool, Paws, was
implemented and its analysis of a large real-life
example is given to illustrate the techniques.1 The
analyzer is useful to swap practitioners by allow­
ing quicker and more flexible experimentation over
the design space than is currently possible with
spread sheets.

1 Introduction

Swaps are financial instruments that allow two
parties to exchange interest payments in perhaps
different currencies. A swap is a powerful build­
ing block from which exchange networks can be
built, resulting in redistribution of economic sur­
pluses and risks. Usually an intermediary designs
and implements the swap network for a fee. A
key criterion for a swap network to be viable is
that no party must bear risk beyond its risk pref­
erence. For the intermediary, this often means no
risk, i.e., all stochastic factors must "cancel out."

This paper describes how to design and eval­
uate financial swaps with a constraint logic pro­
gramming language. We chose CLP(R), over the

1 Paws is available by anonymous ftp
from ftp. cs. uoregon.edu:pub/tick/paws. tar .gz. En­
quiries for obtaining CLP(!R) should be sent to
joxan@watson.ibm.com.

Copyright © 1995 Software Engineering Press

real numbers [1, 5], for its robustness and avail­
ability. A prototype system was built, called
Paws, which includes a sophisticated user inter­
face for entering and displaying design solutions.
Paws is of interest to swap practitioners by allow­
ing quicker and more flexible experimentation over
the design space than can be accomplished with
current methods, e.g., spread sheets. For example,
exploiting the ability of constraint languages to
solve linear equations for any combination of un­
known variables, a swap network can be partially
constructed without binding all the input param­
eters. The system will then return the relation­
ship among the unknowns, e.g., give the relation
between two interest rates or long-term exchange
rates to guarantee a profit within a certain range
for a given entity. Using such a tool encourages
flexible experimentation and optimization that is
not possible with spread sheets, where the equa­
tions can be "solved" in only a rigid fashion.

This paper is organized as follows. A brief
overview of swaps is given in Section 2. Section 3
reviews CLP(R). Section 4 discusses how the swap
analyzer is designed and implemented in CLP(R).
A large example, the Kodak swap, is explained in
Section 5. The literature is reviewed in Section 6.
Conclusions and future work are summarized in
Section 7.

2 Review of Swaps

Hull [3], Macfarlane et al. [6], Shapiro [8], Smith
and Smithson [9], and Wall [11], are just a few of
the general expositions about swaps. The subtle
assumptions involved in the zero-sum attributes

253

~ LIBOR

Figure 1: Interest Rate Swap (Building Block)

of the swaps are clarified by Turnbull [10]: our
analyzer deals only with the simple model of no
default risk and no hidden transactions costs (see
Smith and Smithson for issues [9]). The knowl­
edgeable reader may wish to skip to Section 3.

2.1 Interest Rate Swaps

Figure 1 illustrates the simplest interest rate swap
wherein the two parties A and B have loans of the
same principle amount, P. The type of loan we
consider extends over some number of periods ti

for 1 ~ i ~ n. Payments are made (according
to the interest rate) each period ti followed by a
lump-sum payment of the entire principle at the
last period tn.

The swap consists of A making fixed interest
payments of 11.35% to Bin exchange for receiving
floating LIBOR payments from B. For example, a
scenario in which this makes sense is when A has
a floating-rate loan pegged to LIBOR and B has
a fixed-rate loan. We do not show these lenders
in the swap network shown in Figure 1. For rea­
sons of risk preference, A wants a fixed rate and
B wants a floating rate, and so they swap interest
payments.

A swap is effectively a simultaneous exchange
of bonds. Using net present valuation, we can
compute any of these bond values:

B
p

where Si is the loan interest rate for period i and
r is a fixed market rate. Here we assume that the
bonds are risk-free and have the same principle P
and length of term n. If we relax our restriction
of a fixed market rate, we get:

254

I I 11.35% 11.25%

A 'LIBOR

0

1 B I, LIBOJ C I
Figure 2: "Plain Vanilla" Interest Rate Swap

where rk is the market rate·for period k (see Sec­
tion 2.3). Although the latter formula is imple­
mented in our swap analysis tool, for simplicity
we explain swaps using the former equation. Thus
for instance we see:

P-~ 0.ll35(P) _ P
~ (l+r)t; (l+r)tn

P- t LIBORi(P) _ P
i=l (1 + r)t; (1 + r)tn

B1 -B2

B2 -B1

Another simplification is to remove the depen­
dence on LIBORi for all periods i. Hull [3] briefly
discusses how to do this. Effectively, B 2 is the
same for any value of n ~ l. Thus pick n = l
to get the simplest relation, based only upon
LIBOR1. Assuming that all parties are risk-free
banks, this can be justified by having the ini­
tial bondholder pass the bond through to another
party after one period. Thus all subsequent cash
flows cancel, leaving only the cash flows at the end
of the initial period. Effectively the rate floats to
ensure that this simplification holds!

From this simple building block we can build
more sophisticated networks. Figure 2 shows
dual offsetting swaps through an intermediary B.
Clearly A effectively transforms a floating to a
fixed loan, and C transforms a fixed to a float­
ing loan. B cancels its risk by passing the floating
payments through from C to A. If we assume nei­
ther A nor C defaults, then B has no risk. In
addition, B takes a profit of 0.1 % for its service.
Valuation gives the additional equations:

p _ t 0.1125(P) _ P
i=l (1 + r)t; (1 + r)tn

7rA B1 - B2

Copyright© 1995 Software Engineering Press

Bank of Japan Bank of America

I A 1- 11% ($) ·1 B

12% (Y)

Figure 3: Currency Swap (Building Block)

For this simple example, the profit to B can be
computed more directly; however, in complex net­
works, the general formula is needed. To simplify
things, we may elect to assume that the market
rate is fixed over the length of the loan. In any
case, it is critical for evaluating this formula in
CLP(~) that the market rate(s) be known a pri­
ori, otherwise nonlinear equations arise.

In addition to previous bond-like loans, amor­
tized loans, wherein the principle is incrementally
repaid, are easily modeled. Our system supports
a library of various types of loans.

2.2 Currency Swaps

Figure 3 shows a simple currency swap building
block. Here parties A and B lend each other prin­
ciples in yen and dollars, respectively, of approxi­
mately the same value. They then pay each other
interest based on those principles, until the end
of the loan, when the principles are repaid. To
alleviate foreign exchange risk at period tn when
the principles are repaid, a forward exchange rate,
F$/Y may be agreed upon in the swap agreement.
For example, suppose the original principles are
P$ and Py, where P$ = S$/Y Py at t0 given the
spot exchange rate S$/Y· Then at tn, parties A
and B might replace principles P$ and Py respec­
tively, where P$ = F$/Y Py.

The previous bond valuation formulae still
hold, where the dollar bond value is B1 and the
yen bond value is B2 :

1rA B1 - B2 = Sy;$B1 - B2

1rB B2 - B1 = S$/YB2 - B1

In the above we compute the current value of the
swap to parties A and Bin today's yen and dollars
respectively.

From this simple building block we can build
more sophisticated networks. Figure 4 shows dual

Copyright @ 1995 Software Engineering Press

I A 1- 11% ($) [~.10-5% ($)' C

12% (Y) 11.8% (Y) .__I____,
Figure 4: "Plain Deal" Interest Rate Swap

offsetting swaps through an intermediary B. Val­
uation of the swap follows from the previous dis­
cussion. A circus swap2 is a combination of plain
vanilla interest rate swap and plain deal currency
swap [3], i.e., basically the swap of Figure 4 with
either currency's loans on a floating rate. We will
see an example of this in the larger example dis­
cussed in Section 5.

2.3 Discussion

As shown, the building blocks for composing swap
networks use elementary cash flow mathematics,
which facilitate their expression in CLP(~). The
key underlying stochastic variables - floating in­
terest rates, market investment rates, and cur­
rency exchange rates - are however problematic.
There are several ways of viewing this problem.

First, it is clear that the cash flows constituting
any link in a swap network can be priced as accu­
rately as can a bond or future [9]. Hull [3] reviews
bond valuation methods such as Monte Carlo sim­
ulation and lattice evaluation. For example, us­
ing a lattice method, we evaluate all states of the
world with respect to interest rates, e.g., using Ho
and Lee [2] or advanced models, and value the
bond over each scenario.

The problem of pricing all components of a
complex swap network is more difficult. There
appear to be two ways to structure the computa­
tion: evaluate the network "inside" the lattice (or
simulation), or estimate the term structure first
and apply it to the network. We chose the latter
technique for three reasons: 1) modularity: we can
utilize available, sophisticated interest rate predic­
tion tools; 2) speed: we can run "what if" experi­
ments quickly; and 3) flexibility: future extensions
of our tool will hopefully exploit CLP(~) to solve
for traditionally stochastic variables (see Section
7).

2 Picadilly or Ringling Brothers?

255

flat(Start, End,_,_,_, 0) :- Start>= End.
flat(Start, End, Principle, Rate, MR, Value)

Start< End,
Value= Principle - Payments
loan(End-Start, Principle, Rate/100,

MR/100, Payments).

loan(Time, In, Rate, MR, Value) :­
Time> O, Time<= 1,
Out= In/ (1 +MR* Time),
Value= Out* (1 +Rate* Time).

loan(Time, In, Rate, MR, Value) :­
Time > 1,
Out= In/ (1 +MR),
Value= Next_Value + (Out* Rate),
loan(Time-1, Out, Rate, MR, Next_Value).

Figure 5: Loan Valuation in CLP(?R)

3 Review of CLP(~)

CLP(?R) is constraint logic programming language
over the domain of real arithmetic. Programs ap­
pear in syntax to be Prolog programs, i.e., data
and control structures are the same. The seman­
tics of unification, however, are vastly different.
We illustrate the language with a simplified ver­
sion of a loan of the type previously discussed,
shown in Figure 5. This procedure computes the
net present value of fixed interest loans with fixed
market rates only. Procedure flat/6 has the fol­
lowing parameters: the Start and End periods of
the loan, the Principle, the fixed loan Rate, MR
(a fixed market rate), and Value (the net present
value of the loan).

If the length of the loan is not positive, the loan
value is zero (flat/6 clause 1). Otherwise, the
loan value is the principle minus the payments,
computed by loan/5, starting at the next period.
Procedure loan/5 computes the payment value
in what can be considered an iterative (or recur­
sive) manner; however,. the language lends itself
to a more elegant declarative semantics. In effect,
loan/5 (and any procedure invocation in general)
is true if the equations it engenders are consis­
tent over the domain of the reals. Furthermore,
these equations are not necessarily evaluated in
any strict order: CLP(?R) has an internal equation
solver that is transparent to the programmer.

The spawned equations form a recurrence.

256

Each successive value is equal to the next value
plus the discounted principle multiplied by the in­
terest rate (loan/5 clause 2). The final value (at
the final period) also includes payback of the en­
tire principle (loan/5 clause 1). The final period
can be fractional, requiring us to scale the loan
and market rates by the remaining time.

Examples of queries to this program are
instructive. The value of a three year
$100 loan at 10% assuming a 5% market
rate is: flat(1,4,100,10,5,V) returns V =
-13.6162. Alternatively we can solve for
loan rate: flat(1,4,100,R,5,-14) returns R =
10. 14. However, we cannot solve for the mar­
ket rate because the function is nonlinear in this
variable. More strangely, we cannot solve for the
time. For example, trying to solve for the ending
period with the query flat(1,E,100,10,5,-14)
returns:

E <= 2
1 < E
114 = _t13 * (0.1*E + 0.9)
100 = (0.05*E + 0.95) * _t13

*** (Maybe) Retry?

The "maybe" caveat in the result indicates that
the non-linearity could not be removed and that
the solution may be inconsistent. We can avoid
CLP(?R) confusion by simplifying clause 1 of
loan/5 as:

loan(Time, In, Rate, MR, Value) :­
Time> O, Time<= 1,
Value* (1 + MR*Time) =In* (1 + Rate*Time).

There is an art to making such transforma­
tions! With this change, the system automatically
solves: flat(1,E,100,10,5,-14) as E = 4.55.

It is important to note that to solve for time,
the final fractional scaling of the loan rate is re­
quired. Without this, loan/5 would not be able
to ground the recurrence when solving for time
(E), i.e., it loops forever. Although the analyzer
we built uses loan procedures that are more so­
phisticated that this, the foundation is the same.
Additional complexity arises from (optional) vari­
able loan and market rates and amortization.

Copyright © 1995 Software Engineering Press

E

EA=

F

FB =

net2([P,R_mkt,T], Info, Libor, [Pi_A,Pi_B,Pi_C])
Info = [AC, CA, CB, BC, AG, BH, FB, EA],
Pi_A = AC_CF + AG_CF - CA_CF - EA_CF,
Pi_B = BH_CF + BC_CF - FB_CF - CB_CF,
Pi_C = CA_CF + CB_CF - AC_CF - BC_CF,

13.25% LIBOR -1 o. 75 loan(P, EA, R_mkt, T, EA_CF),

AC= CB=
11.35% 11.25%

A C B
CA= BC=

LIBOR LIBOR

AG= BR=
LIBOR + 0.5 11.0%

G H

net1(Info, [Pi_A, Pi_B, Pi_C]) :-
Info= [AC, CA, CB, BC, AG, BH, FB, EA],
Pi_A = GA - AC - AG+ EA,
Pi_B = FB - BH - BC+ CB,
Pi_C =AC+ BC - CA - CB.

Figure 6: Plain Vanilla Interest Rate Swap in
CLP(R)

4 Swap Analysis in CLP(?R)

This section describes the design construction of
the swap analyzer, as a series of increasingly so­
phisticated models. The analyzer is meant for fast
prototyping of custom swaps rather than the de­
velopment of generic products. Figure 6 shows an
interest rate swap and its straightforward transla­
tion into CLP(R) program, where the loan struc­
tures are identical except for the rates. Essentially
each node in the network corresponds to an equa­
tion balancing the interest rates entering/ exiting
that node. This simple "rate" methodology for
evaluating the swap is possible because the loan
principles and terms are identical. This model also
assumes a fixed market rate. A typical query to
this program is:

?- net1([11.35, LIBDR, 11.25, LIB0R, LIB0R+0.5,
11.0, LIB0R+0.75, 13.25], Pi).

Pi= [1.4, 1, 0.1]

When the swap calls for differing principles or
terms, then individual cash flows must be com­
puting using the bond valuation formula. This
model'is considered in Figure 7, which shows the

Copyright© 1995 Software Engineering Press

loan(P, AC, R_mkt, T, AC_CF),
loan(P, CB, R_mkt, T, CB_CF),
loan(P, BH, R_mkt, T, BH_CF),
floan(P, CA, Libor, R_mkt, T, CA_CF),
floan(P, AG, Libor, R_mkt, T, AG_CF),
floan(P, BC, Libor, R_mkt, T, BC_CF),
floan(P, FB, Libor, R_mkt, T, FB_CF).

Figure 7: Cash-Flow Model in CLP(R) for Previ­
ous Network

CLP(R) implementation of a cash-flow model of
the previous network. We invoke the loan/5 and
floan/6 procedures for a fixed principle of $100M
and 5 period loan length. The net present values
are computed from the cash flows rather than the
interest rates as in Figure 6. Clearly we could
give each loan independent principles and lengths
if we desired. Interestingly, we need never de­
fine Libor: it will be instantiated as necessary
and shared among the four floating loans. All un­
known LIBOR terms will cancel from the solved
equations! For example, typical queries to the pro­
gram include:

?- net2([100,10,5], [11.35, 0, 11.25, 0, 0.5,
11.0, 0.75, 13.25], _,Pi).

Pi= [5.3071, 3.79079, 0.379079]

?- net2([100,10,5], [X, 0, 11.25, 0, 0.5,
11.0, Y, 13.25], _,Pi).

Pi= [-4.19247*X + 53.454, 4.19247*Y + 1.04812,
4.19247*X - 47.1653]

These solutions are in dollars and are consistent
with the previous (rate model) solution in terms
of interest rates.

Figure 8 shows an extended implementation of
the network with full input parameters allowing
each node to have a different principle and loan
length. For example, given this procedure, we can
query:

?- net3([(90,6,11.35), (100,4,0), (100,5,11.25),
(100,5,0), (100,5,0.5), (100,5,11.0),
(100,5,0.75), (100,5,13.25)],

[L1,L2,L3,L4,L5,L6,L7,L8], Pi).

257

net3(Info, 1ibor, [Pi_A, Pi_B, Pi_C]
R_mkt = 10,
Info= [(Pac, Tac, AC),

(Pea, Tea, CA),
(Pcb, Tcb, CB),
(Pbc, Tbc, BC),
(Pag, Tag, AG),
(Pbh, Tbh, BH),
(Pfb, Tfb, FB),
(Pea, Tea, EA)],

Pi_A = AC_CF + AG_CF - CA_CF - EA_CF,
Pi_B = BH_CF + BC_CF - FB_CF - CB_CF,
Pi_C = CA_CF + CB_CF - AC_CF - BC_CF,
loan(Pea, EA, R_mkt, Tea, EA_CF),
loan(Pac, AC, R_mkt, Tac, AC_CF),
loan(Pcb, CB, R_mkt, Tcb, CB_CF),
loan(Pbh, BH, R_mkt, Tbh, BH_CF),
floan(Pea, CA, 1ibor, R_mkt, Tea, CA_CF),
floan(Pag, AG, 1ibor, R_mkt, Tag, AG_CF),
floan(Pbc, BC, 1ibor, R_mkt, Tbc, BC_CF),
floan(Pfb, FB, 1ibor, R_mkt, Tfb, FB_CF).

Figure 8: Cash-Flow Model in CLP(~) with Ex­
tended Parameters

Pi= [-62.0921•15 + 11.3422, 3.79079,
62.0921•15 - 5.65605]

which gives the profits when the fixed loan to A
(from C) is extended to 6 periods on a reduced
principle of 90 and the floating loan to C (from
A) is reduced to 4 periods. Note that the profit to
B has not changed. The change in the profits to
A and C are a function of the parameter 15 which
is the last period LIBOR rate. The previous four
LIBOR rates still cancel by the swap. As the loan
lengths become more disparate, we expect to see
more LIBOR rate terms in the solutions.

This final model is similar to our prototype.
Additional facilities include fixed amortized loans,
principles in alternative currencies, and forward
exchanges. The market rate is implemented in a
manner similar to LIBOR. A fundamental differ­
ence is that in the analyzer we built, programs
such as net3 are generated automatically from
net specifications with are in turn generated from
graphical input supplied by the user. Thus one
crucial design philosophy we adopted was to shel­
ter the user from CLP(~). This impacted the flex­
ibility with which the system can be used, as is
discussed below.

Figure 9 shows the system overview of our cur­
rent prototype analyzer. The user interface [7],

258

user

l
graphics interface

X
Motif

gnuplot

net descri ption

n loa
struct ures

network
creation

loan library

vari able bindings

cash flows

' ' ' --J
Figure 9: Overview of the Paws System

written in C, accepts graphical entry of the net­
work and translates it into a net description ac­
cepted by the analyzer, written in CLP(~). For a
complete user's guide to the analysis tool, called
Paws, see Scott [7].

The net description can have symbolic names
for parameters, which if bound are returned as
solutions. In addition, a profit is computed and
returned for each node in the graph, which is the
sum of its cash flows. Internal to the analyzer
itself, the net description is used to invoke loan
library routines that define various types of pay­
ments, such as simple or amortized. These in­
vocations return the cash flow values needed to
compute the net present value profits.

Examples of the user interface are illustrated in
Scott [7]. The interface allows the user to graph­
ically specify the swap network, entering parame­
ters for each entity (node) and loan (edge). Either
real values or symbolic names can be assigned to
parameters. A sketch of the information is dis­
played on the illustrated graph, with detailed in­
formation available by explicit querying the inter­
face (with a mouse). The user can also specify
constraints in terms of both symbolic input pa-

Copyright@ 1995 Software Engineering Press

rameters as well as profits. The use of this facility
is illustrated in Section 5.

The interface also translates variable bindings
into graphics in the limited cases when the bind­
ing is an equation in one or two independent vari­
ables. We generate a nonparameterized graph de­
scription for gnuplot. This is also illustrated in
Section 5.

4.1 Symbolic Output

Whenever expressing symbolic solutions in
CLP(~), the issue of which symbolic variables
in the formula are dependent and which are in­
dependent looms large. Flexibility in controlling
the relative independence of variables is achieve'd
with the dump/3 predicate [l]. dump/3 takes a list
of variables as input, where the variables earlier
in the list order are more independent than later
variables. dump/3 displays dependent variables in
terms of independent variables specified by this
list. If we purposely remove certain independent
variables from the list, we can receive symbolic
answers among the dependent variables.

Because of the great flexibility of output con­
trol, it becomes difficult for the analyzer to make
autonomous decisions concerning symbolic out­
put construction. Sometimes a user may wish to
see a certain relationship among variables that
would not abide by any default we could pro­
vide. Therefore, in the user interface we pro­
vide the ability for the user to specify the dump/3
control list explicitly. A default is presented:
[11,12, .. ,M1,M2, .. ,U1,U2, .. ,Pi1,Pi2, ..]
where 11 is the LIBOR rate in period 1, M1 is
the market rate in period 1, U1 is a user-defined
variable, and Pi1 is the profit of node #1, etc.
Any of these may be absent if inappropriate to
the problem at hand, e.g., the market rate may
be a given constant.

By rearranging this list (usually by variable
type), the user can produce any relationships
needed. For example, [U1,U2, ... ,Pi1,Pi2, ...]
would show the profits in terms of the user-defined
variables and not the LIBOR rates. Another ex­
ample is: [M ,Pi1 ,Pi2] might plot each of the
two profits as a function of a fixed market rate,
whereas [Pi1 ,Pi2 ,M] might plot the fixed market

Copyright© 1995 Software Engineering Press

rate as a function of the two profits. By affecting
the formulae produced by CLP(~), this control
list indirectly affects graphs produced by gnuplot
because independent variables are plotted along
the X and Y axes.

5 Kodak Example

The Kodak swap [8] illustrates the complexity of
swaps in practice, involving two currencies, three
banks, an intermediary (Meryll Lynch), and a firm
(Kodak). Without going into the detail of the
swap agreement, we illustrate the original terms
of the swap in Figure 10. Each :financial entity
is given its own node in the graph, labeled by a
node identifier. Edges are annotated with prin­
ciple amounts (in millions). This figure does not
show the implicit five year structure of all loans,
nor does it explicitly specify the periods when
the currency exchanges are made (when using our
swap analyzer, such information must be entered).
The swap analyzer can solve this version of the
problem, where the result is

11"1 -$9.49

11"2 $26.8

11"4 -11"3 - $17.2

11"5 -$1.09

11"6 $0.963

for U.S. dollar amounts in millions, assuming a
spot exchange rate of $1/0.75A. If we wanted
the value of 11"3 (or 7r 4) in detail, we would use
an output control specification with LIBOR rates
as the most independent variables, giving 11"3 =
0.34110 + 0.3519 + · · · + 0.4611 - $32.9.

The previous network was slightly modified
with with two unknown parameters, Rate1 and
Rate2 substituted for 7.35% and 7.85%, respec­
tively. A typical use of the system would be to
view the profits as functions of these parameters.
The internal solution produced are:

11"1 -$9.49

11"2 $26.8

11"4 -11"3 + 3.99 * Rate2 - 32.9

11"5 -(6.24 * Rate1) + 21.8

11"6 6.24 * Rate1 - 3.99 * Rate2 - 6.29

259

Bank A1

27$ 38)
7CA

37$

106A 48$@ 7.85%

Kodak5 --20_0_A __ __, Meryll Lynch6

75$@ 7.35%
Bank C4

48$ @ LIBO R ~-------'

200A 106A 130A 68A 48$ @ LIBOR-0.4

Eurobond
holders2 Bank B3

Figure 10: Original Kodak Swap (Principles in Millions)

$(M)

20

15

10

l"-----/-----/.. i>-\· 2

pi(6)

1 0

Ratel

/r-- / ·7-----;--·-7-----,.____ . . . /

Figure 11: 3-D gnuplot of Profits 7!"5 and 71"6

Any solution (left-hand side variable) that is
a function of one or two independent (right­
hand side) variables is displayed to the user via
gnuplot. For example, profits 7!"5 and 71"6 are
shown in Figure 11. Making the plots is more
difficult than it may look and further research is
needed.3

3 The actual plots are in color! The intersection of the
planes is a parametric equation, and thus the planes must
all be parametric for gnuplot to display them together.
This was done in Figure 11 "by hand." Our current sys-

260

A further user facility is the incorporation of
constraints in these and other (profit) parame­
ters. Suppose the user specifies that the profits
of Meryll Lynch and Kodak are to be equal, by
entering the constraint 7!"5 = 7r6 • The system can
then simplify the solution:

-$9.49

$26.8

-7!"3 + 3.99 * Rate2 - 32.9

71"6 = -2.0 * Rate2 + 7.77

0.32 * Rate2 + 2.25

which is displayed as in Figure 12. Note that 71"4

is a function of 7!"3 because both are dependent on
LIBOR rates (which Meryll Lynch passes through,
so 71"6 has no such dependency). The relationship
between Rate1 and Rate2 to guarantee equal prof­
its is shown above.

If we add the constraint 7!"3 = 71"4 , CLP(R) gives
us the solution:

7!"1 -$9.49

tern produces only nonparametric equations, so we cannot
compute and display plane intersections (yet). Finding a
good vantage point and proper scaling of axes also remain
unsolved problems. Currently we rely on gnuplot defaults.

Copyright© 1995 Software Engineering Press

$(M)

10 - pi5=pi6

-15

-20

-25

-30

-35

-40

-45
0

Rate2

Figure 12: 2-D gnuplot of Profits 1r5 and 1r6

pi4 = pi3

Figure 13: 2-D gnuplot of 1r3, 1r4, 1r5 and 7r6

1r2 $26.8

2.0 * Rate2 - 16.4

-2.0 * Rate2 + 7.77

plotted in Figure 13. Note that because 1!"3 and 1r4

depend on floating rates in different ways (Bank
B receives LIBOR whereas Bank C pays LIBOR),
the only way to ensure that the profits are equal
is to set Rate2 as a function of LIBOR itself. The
above equations disguise this as 1r3 as a function of
Rate2. However, if we modify the output control
specification as: [L1, ... ,L10 ,Ratel ,Rate2] we
get a direct relationship: Rate2 = 0.17L10+ • • • +
0.23L1 - $8.24.

From Figure 13 we see that a value for Rate2
exists allowing the four profits to be equal. We
could solve for this value directly by adding the

Copyright © 1995 Software Engineering Press

constraint 1r3 = 1r5 to the system, getting:

1!"1

1l"z

1!"3

Ratel

Rate2

-$9.49

$26.8

1!"4 = 1!"5 = 1l"6 = -$4.34

4.20

6.66

meaning that they all lose money. The subtle dan­
ger with this solution is that it implies a constraint
on LIBOR that may be unrealistic. A mecha­
nism for testing such an over-constrained floating
rate is to set the output control specification to:
[L1,L2, ... ,L9,L10]. If any constraints result
then the system is over constrained. An empty
output indicates a solution with no constraints
and so everything is ok. A similar method can be
used for testing market rates. We do not yet auto­
matically perform these checks within our system,
but it is straightforward to do so.

6 Related Work

A related work in the field of financial engineer­
ing is OTAS (Options Trading Analysis System)
designed by C. Lassez et al. [4] at IBM Yorktown
Heights. This system, also based on CLP(?R),
evaluates the Black-Scholes solution to the partial
differential equation describing an option's fair
price. The arithmetic involved is more compu­
tationally intensive than that of swaps. Because
the essential formula is non-linear in the volatility
parameter, they explicitly linearize it.

Smith and Smithson [9] use time-line notation
for the cash flows in a swap. This graphical
technique does not gracefully extend to complex
swap networks. Furthermore, they suggest pricing
methods based on futures and bonds, again, which
don't gracefully extend to complex networks (see
Section 2.3).

7 Conclusions

A financial swap analysis tool, Paws, was de­
scribed that can accept a high-level description
of a swap network and produce functional rela­
tionships between unknown parameters, includ­
ing the net present value profits of each entity

261

in the system. The engine of the tool was built
in CLP(R), exploiting its ability to perform sym­
bolic arithmetic over the reals, and the user inter­
face was built in C/Motif. The advantage of such
a tool is the ability to quickly and flexibly design
and evaluate custom swaps under incomplete in­
formation. Profits and parameters can be symbol­
ically constrained to reduce the search space and
symbolic solutions can be graphically displayed to
help users gain intuition about parametric rela­
tionships. These attributes make the tool supe­
rior to current analysis methods, specifically those
based on spread sheets.

There are two main directions in which we wish
to extend our analyzer, both of which rely on sep­
arating market rate prediction from network valu­
ation. First, we might avoid rate prediction in cer­
tain cases, by making simplying assumptions that
allow linearization of the valuation equation with
respect to market rate, thus enabling CLP(R) to
solve for it. More generally, we might open up the
architecture of the analyzer. In such a "glass box"
approach, the user will be permitted to write pro­
cedures describing custom payoffs (e.g., a "floating
floor-ceiling swap" [9]) or constrain term struc­
tures to be simple functions of time. Again, the
motivation is to offer flexibility and speed of pro­
totyping, if accurate, estimates or simple models
of stochastic variables are available.

Acknowledgements

This research was supported by an NSF Presi­
dential Young Investigator award, with matching
funds from Sequent Computer Systems Inc., and a
grant from the Institute for New Generation Com­
puter Technology (ICOT). Raul Clouse helped
build the first prototype analyzer and David Scott
built the user interface. I thank Bart Massey
for many helpful discussions. Peter Stuckey and
Roland Yap patiently explained the subtleties of
CLP(~) to me.

References

[1] N. C. Heintz, J. Jaffar, S. Michaylov, P. J.
Stuckey, and R.H. C. Yap. The CLP(R) Pro-

262

grammer's Manual Version 1.2, 1992.

[2] T. S. Y. Ho and S.-B. Lee. Term Struc­
ture Movements and Pricing Interest Rate
Contingent Claims. The Journal of Finance,
41:1011-1029, 1986.

[3] J. Hull. Options, Futures and Other Deriva­
tive Securities. Prentice Hall, 1989.

[4] T. Huynh and C. Lassez. An Expert
Decision-Support System for Option-Based
Investment Strategies. Computers Mathe­
matical Applications, 20(9/10):1-14, 1990.

[5] J. Jaffar and J.-L. Lassez. Constraint Logic
Programming. In SIGPLAN Symposium on
Principles of Programming Languages, Mu­
nich, 1987. ACM Press.

[6] J. Macfarlane, D. R. Ross, and J. Showers.
The Interest Rate Swap Market: Yield Math­
ematics, Terminology and Conventions. Sa­
lomon Brothers Inc., June 1985.

[7] D. H. Scott. A Tool for Designing Financial
Swaps. Bachelor's thesis, The University of
Oregon, December 1994.

[8] A. Shapiro. Multinational Financial Manage­
ment. Allyn and Bacon, 4th edition, 1992.

[9] C. W. Smith Jr. and C. W. Smithson, edi­
tors. The Handbook of Financial Engineer­
ing. Harper Business, New York, 1990.

[10] S. M. Turnbull. Swaps: A Zero Sum Game?
Financial Management, 16(1):15-21, 1987.

[11] L. D. Wall and J. J. Pringle. Interest
Rate Swaps: A Review of the Issues. In
C. W. Smith Jr. and C. W. Smithson, edi­
tors, The Handbook of Financial Engineering,
pages 230-254. Harper Business, New York,
1990.

Copyright© 1995 Software Engineering Press

Fast Cost-Effective Computations of Derivatives

Roy S. Freedman
Inductive Solutions, Inc.

380 Rector Place
New York, NY 10280

Inductive_Solutions@MCIMail.com

Abstract
The essential idea of this paper is that one should not
separate the method of computing the expected present
value of a derivative from its ultimate computing
topology. In the following sections, we discuss the cost­
benefit issues involved with implementing several
methods for computing derivative statistics on alternate
computing topologies. We show how the choice of
topology impacts the computing time for a particular
example of a time consuming derivative valuation. We
conclude by showing how all these factors can be
represented as a case-based expert system, which can be
used to help an organization assess its computing
alternatives.

1. Background: Algorithm Tradeoffs in
Computing Derivatives

We are concerned with the computational problem of
deriving the expected value and other statistics of a
derivative security f at time TO. When the underlying
security S and derivative security f are modeled as
stochastic processes, the problem can be solved by
reformulating it as a boundary-value problem: if it is
known that the derivative pays out fT at time T, we just
compute its value backwards from the risk adjusted
random price movements of the underlying from t=T to
t= T0. The present value of f is just its expected

discounted value in a risk-neutral world

Expected Present Value= E[e•r(T-To)fT] (1)

Here, r is the average instantaneous risk-free interest rate
between t=TO and t=T. When the underlying S follows

an Ito process, and if the derivative is a differentiable
function of S and t, f=f(S,t), then by Ito's Lelillila, f also
follows an Ito process:

dS = µ(t,S) dt + cr(t,S) dz (2S)

Copyright© 1995 Software Engineering Press

Rinaldo DiGiorgio
Sun Microsystems, Inc.

I New York Plaza - 35th Floor
New York, NY I 0004

Rinaldo.Digiorgio@East.Sun.com

df = (af1as)dS + [af/at + (l/2)ef(t,S)(a2f/as 2)J dt
= [µ(t,s) (af/as) + af/at + (l/2)ef(t,S)(a2f/as 2)Jdt
+ cr(t,S)(af/aS) dz (2f)

and f satisfies the Fokker-Plank forward diffusion
equation:

af/at = (112)(a21as2)[cr2(t,S) tJ - (a1as)[µ(t,S) tJ
given initial condition S(T 0) = s O (2FP)

Here S(t) is the probability distribution of the price of the
underlying at time t, µ(t,S) and cr(t,S) are the
instantaneous drift and standard deviation rates, and dz is a
Wiener Process that corresponds to Brownian motion.
Note that if we know the probability distributions for
S(t), and if we are given boundary conditions for f (which
define the derivative), then we can solve (2FP) and derive
the probability distribution for f, so that the expected
present value off can be computed from Equation (1).

The above equations are valid for all derivative securities
with S as the underlying stochastic variable [4]. A vector
form of Equation (2S) and (2f) is valid if S depends on
other Ito processes (for example, if µ or cr are Ito
processes). Here, the correlations of the underlying
processes are additional factors in the dt term in Equation
(2t).

Simplifications can be made: if the interest rate r is
known to be constant, then it can be shown that the Ito
process for [S(af/aS)-t] does not depend on dz - this
"continuous" hedge is "riskless." Hence, in this case, f
satisfies the Black-Scholes partial differential equation

af/at = rf - (l/2)S2cr2(t,S)(a2f/aS 2
) - rS(af/aS) (2BS)

Equation (2BS) can be solved if S(t) is known and the
boundary conditions that define the derivative f are
provided. For example, a boundary condition for a

263

European call option is

At t = T, f(T) = fT = max(ST - X, 0) (2CO)

In practice, in all but tbe simplest cases, tbe price
movements of S and f follow stochastic processes that
involve substantial amounts of computation. There are
three general methods that have different computational
consequences for computing European-style derivatives
(tbe bolder bas no decisions to make during its life) and
American-style derivatives (tbe bolder bas decisions to
make during its life):

Method 1. Analytic Approximation for
Constant Parameters. If tbe derivative is a
European-style derivative, and tbe Ito process in
Equations (2S), (2f), and (2BS) bas constant µ(t,S) = µ,
constant a(t,S) = a, and constant interest rate, then
computationally nice expressions exist for tbe derivative
security - tbe famous formulas derived by Black and
Scholes. Analytic expressions also exist for
approximating tbe values of American-style derivatives.
In Method 1, tbe time required to compute tbe expected
value of f is proportional to a constant factor G - the
time required to evaluate tbe formula. In general, G
depends on tbe efficiency of computation of special
functions (like the normal distribution).

Method 2. Recombining Lattice-Type
Computations. If the Ito process in Equations (2S),
(2f), and (2BS) bas constant µ(t,S) = µ, constant a(t,S)
= <J, and constant interest rate, then the valuation of a
European- or American-style derivative is usually
computed by simulating tbe up-down price movements in
a recombining binomial lattice. (Tbe lattice is a discrete
form of Equation (2S-2f), and is also related to a discrete
form of (2FP) and (2BS)). In this method, tbe time
required to compute tbe value of a derivative depends on
the number of time units N, wbereN = (T-To)/Lit, and~t

is tbe smallest unit of time considered in tbe
computation. In this method, a sequence of up
movements followed by down movements are valued the
same as the down movements followed by tbe up
movements. At any given point in time To+ IBt, the

price of tbe underlying may increase or decrease by an
amount u and d witb probability p and (1-p) respectively.
Hence, at time T0+ i~t, tbe price of tbe underlying may

be any of a set of i+ 1 values:

S u i d ,-J where i=0, .. N; j = 0, .. ,i.

264

A recombining binomial lattice must compute and store a
total of (N+ l)(N+2)/2 prices for the underlying and
derivative. For N=500, this requires approximately 105

computations, and represents mucb greater computational
overhead than Method 1. This method may require
several orders of magnitude of computation tban Method
1.

Method 3. Non-Recombining Simulation. Iff
is a European-style derivative, and tbe Ito process in
Equations (2S), (2f), and (2FP) bas non-constant µ(t,S),
non-constant a(t,S), and possibly non-constant interest
rate, tben Method 2 may not work because tbe up values
and down values of a price movement may not combine:
a sequence of up movements followed by down
movements are not valued tbe same as tbe down
movements followed by tbe up movements.
Consequently, in evaluating tbe possible price of S, after
N time increments there are 2N+i possible prices (none are
recombined as in Method 2; if recombining is allowed,
there are only (N+ l)(N+2)/2 prices). In Method 3, where
recombining is not possible, all 2N+i possible prices
must be generated to get tbe "complete" distribution for
the expected value in Equation (1). Pragmatically, this is
impossible, since for n=500, this is approximately 10150

prices. Tbe alternative here is to create a representative
random "Monte Carlo sample" of f so that the
expectation in Equation (1) can be computed directly from
the random sample of prices, and not from the complete
set of prices. In Method 3, tbe time required to compute
the value of a derivative depends on tbe number of
discrete time units N and tbe number of Monte Carlo
samples M generated for f. Accuracy in tbe evaluation of
f is a statistical problem relating to tbe standard error of
tbe estimate of tbe sample mean. Since it is known that
tbe standard error in computing an expectation is
proportional to M112

, reduction of tbe error by a factor of
2 necessitates increasing M by a factor of 4.
Consequently, different "variance reduction" techniques
could be employed [2]. Note that in using Method 3, a
model for S can depend on other Ito processes: for k
processes, a complete set of N time samples would
require 2k<N+l) computations. Method 2 may require
several orders of magnitude of computation more than
Method 2.

Methods (1), (2), (3) can also be combined. For
example, one can value an American-style derivative with
stochastic average interest rate and stochastic average
volatility by generating Monte Carlo samples for rand a
as input to a recombining binomial lattice for f.

Copyright© 1995 Software Engineering Press

Computational infrastructure is stretched when these three
methods are used to value a portfolio of P derivatives.
Consequently, the total amount of computation required
for a portfolio is proportional to:

P*G, for Method l
N*P, for Method 2
N*M*P, for Method 3

and, in general, the computation time for each method
corresponds to

Methodl « Method 2 « Method 3.

2. Incorporating More Computing
Power

There are tradeoffs in model accuracy and computing time
in the three above Methods. These model tradeoffs are
further compounded by the computational tradeoffs in
alternative computing infrastructure. There are several
ways of incorporating additional computing power to
speed up the computation of derivatives, and the
"obvious" answer of "getting a faster computer" may not
be obvious, or may even be "obviously wrong." For
example:

"We have alot of programmers who write C
applications. We have alot of Unix workstations,
but most are efficiently used all day and all night.
Our derivative evaluation application is based on
Monte Carlo methods, and we need to improve
the accuracy without sacrificing time."

"We need to evaluate our very large portfolio in
almost real time. We already have a
supercomputer but we could use 2 more. Should
we buy another million-dollar parallel processor?
We have alot of idle workstations."

"We run a lattice-type American-style valuation
application each day on my entire inventory. We
can do one evaluation each day. We keep getting
more clients. Should I go back to a Black­
Scholes formula? My application runs on a PC
and I do not understand parallel computation. We
have no programmers on staff."

The alternative computing topologies considered here are
(listed in order of increasing cost):

Copyright © 1995 Software Engineering Press

1. Workstations
2. Faster Workstations
3. Networked ("Clustered") Systems, that could

contain workstations, supercomputers, or both.
4. Supercomputers

Their general characteristics are summarized in Figure 1

Number of Speed in Memory in Cost
Processors MFLOPS MBvtes $K

Workstation 1 1-25 32 <10
Faster Workstation 1-4 >25 64 >10

Cluste >1 >2000 >128 40 -4000
Supercomputer >1 2000 >128 1 000-20000

Figure 1. Alternate Computing Topologies

The problem that we address in this paper is concerned
with the cost effective computation of the expected value
in Equation (1), with respect to the tradeoffs between
Methods 1-3 and the above computing topologies. Note
that these alternatives are not mutually exclusive, their
boundaries are "fuzzy" and they may be combined.

The essential idea of this paper is that one should not
separate the method of computing the expected value in
Equation (1) from its ultimate computing topology.
Different topologies may be more cost-effective than
other topologies. This is a point also made in [l], even
though their evaluation was basically concerned with
showing the computing potential of the cluster topology,
not its cost-benefit tradeoffs with respect to an
organization's requirements.

In the following sections, we discuss the cost-benefit
issues involved with implementing the above methods
for computing Equation (1) on alternate computing
topologies. We show how the choice of topology
impacts the computing time for a particular example of a
time consuming derivative valuation. We conclude by
showing how all these factors can be represented as a
case-based expert system, which can be used to help an
organization assess its computing alternatives.

3. Risk Tradeoffs of Alternative
Computing Topologies

The problem is: Given the algorithmic alternatives and
parameters G, N, M, P as defined in Section 1, find a
computing topology that minimizes the time and cost
required for a valid computation. It is convenientto group

265

the costs into the categories of Opportunity Costs,
Infrastructure Costs, and Algorithmic Costs. The first
two costs are general and may be applied to any kind of
alternative topology problem; Algorithmic Costs are
specific to derivative computations. From another
perspective, these costs can be used to describe
potentially new benefits of changing to an alternative
topology: if the business benefit does not outweigh the
other costs, then there may be no cost-effective reason to
change.

Opportunity Costs. These costs reflect the risks
associated with the nature of the routine function of the
business. Assessed here are the costs of a late answer,
cost of a wrong answer, cost of no answer, and cost of
infrastructure breakdown. For example, a fixed income
group may require real time evaluation of their entire
derivative position 30 minutes before the monthly speech
of the Federal Reserve Chairman. If this cannot be done,
then there is an opportunity cost.

Infrastructure Cost. These costs reflect the risks
associated with maintaining the existing computing
infrastructure as well as the additional risks of modifying
the infrastructure to a new topology. Assessed here are
Client-Server Costs (costs of additional workstations arxl
servers, together with software); Network Costs (costs of
network hardware and software); Infrastructure
Modification Costs, Runtime Costs; and System
Administration Cost.

The cost and benefit tradeoffs can indicate whether
"getting a faster computer" presents a good alternative:
the network performance impact is almost as great as the
computing processing. For example, purchasing a
supercomputer may result in slower performance if the
network the supercomputer is on is slow or is saturated
with traffic. Figure 2 further illustrates the impact of
network performance on computation. This table shows,
for example, that during the time that one computer is
sending another computer 1 Megabyte of data, the other
computer could have done over 100 million floating
point divides. This latency only gets worse for memory­
intensive computation. The derivative evaluation
problem is more compute-intensive than memory
intensive. On the other hand, some implementations of
Method 2 may send large lattices around a network : for
N=500, this would amount to about 1 Megabyte.

266

Ethernet (Network\
Regular Ethernet
Fast Ethernet
OC-3
OC-24
SP2

To send 1MB No. of float divides
reauires (secl... on 200MHz chio ...

0.56 112,000,000
0.056 11,200,000

0.051612903 10,322,581
0.006451613 1,290,323
0.033333333 6 666 667

Tiahtlv Coupled /Parallel Processor Backplane)
100MB/sec bp 0.01
320 MB/sec 0.003125
640 MB/sec 0.0015625
1200 MB/sec 0.00078125

2,000,000
625,000
312,500
156 250

Figure 2. Network Speed vs. Computation

Algorithmic Costs. These costs reflect the risks
associated with maintaining the existing computing
algorithm as well as the additional risks of modifying and
porting the algorithms so they work on the new
topology. Assessed here are the costs of optimizing an
algorithm. While many compilers offer one such level of
optimization, two other levels of analysis should also be
performed. On a macro level, there is a cost-benefit
analysis involved in determining the best combination of
Methods 1-3. This is essentially the job of the model
builder. From a micro perspective, there is a degree of
algorithm optimization that is orthogonal to that
produced by compiler optimizations. One such
optimization is concerned with building a parallel version
of the algorithm. The idea here is to implement the
algorithm in such a way so that n-processors can solve
the problem in (1/nth) the time as one processor.
Moreover, new processors actually require
"supercomputer style" optimizations (such as loop
unrolling, blocking, and memory access patterns) to keep
data paths efficient.

At this point the tradeoffs between a weakly-coupled
parallelism versus a fine-grained parallelism should be
addressed.

Method 3 is a problem that can be solved with weakly­
coupled parallelism: for example, Monte Carlo samples
can be generated on two different processors, f can be
evaluated, and the discounted expected value computed on
a third processor. The first two processors are totally
independent of each other (assuming they both do not
generate the same set of "random" samples).
Consequently, one can optimally expect a 2: 1 speed-up
(minus the communication overhead discussed above).
Weakly-coupledapplications requirerelatively little effort

Copyright© 1995 Software Engineering Press

in creating a parallel speed-up.

Method 2 is a problem that can be solved with fine­
grained parallelism It can be shown that each
computation along the diagonal of the lattice can be done
in parallel. Consequently, an algorithm can be
configured (or "vectorized" by a skilled programmer) that,
at time k, computes the values of S and f in the k+ 1.
nodes on k+ 1 processors (see Figure 3).

Figure 3. Fine-Grained Parallelism of
Recombining Lattice Method

Consequently, if N processors are available, instead of
performing (N+ l)(N+2)/2 sequential computations, a
fine-grained parallel implementation requires only (N+ l)
sequential computations. Fine-grained parallelization
usually requires more effort in modifying the algorithm
than weakly-coupled parallelization.

Both weakly-coupled and fine-grained parallelization
techniques require a topology to support different
parallelization operators. Fine-grained topologies often
rely on semaphores, condition variables, and shared
memory areas. Some of the operators for the weakly­
coupled topologies include:

Broadcast. One processor node sends the same message
to other nodes. The simplest broadcast operation is to
start running all programs on all nodes.

Scatter. One processor node sends a different message
to each node. An example: in Method 3, we can use a
scatter operation start running all programs with a
different seed to the random number generator.

Gather. Every processor node sends a message to ~
single member. An example: we gather the Monte Carlo
sampled values f for averaging at processor node 0.

Copyright © 1995 Software Engineering Press

Barrier Synchronization. All processor node must
reach the same point before any can proceed. An
example: in the fine-grained parallelism of Method 2,
computation must synchronize for each diagonal to be
completed.

4. Evaluating Tradeoffs: An Example
The following problem, using the most compute­
intensive aspects of Method 2 and Method 3, was used as
a benchmark in evaluating topology tradeoffs. S follows
an Ito process with constant µ and cr, and f is an
American-style derivative. We use a recombining lattice
to find the expected value of f. Next, we vary the average
instantaneous interest rate r in by taking 1000 Monte
Carlo samples. Thus the value off is the sample average
of 1000 lattice evaluations. The algorithm was
implemented to support the weakly-coupled parallelism
of Method 3.

We compare the impact of several implementations in
Figure 4.

Time for 1 I Ime tor 1000 No.of
Samole 1sec) Samoles 1sec) Processors

Workstation 5 5000 1
Faster Workstation 1 1000 1

Cluster (PVM) 3 crashed 4
Cluster (PVM/custom) 3 4-103 1 000

Cluster-(PVM/SMP) 0.225 225 4
Supercomputer 0.03 30 40

Figure 4. Benchmark Performance of 6
Computing Topologies

The clusters were implemented under Parallel Virtual
Machine, a package that permits the utilization of a
heterogeneous network of parallel and serial computers as
a single computational resource [7].

The three cluster implementations of the benchmark
problem. In the first cluster inplementation, the
benchmark problem crashed the system. There were too
many Monte Carlo requests for the network task
scheduler to handle the barrieroperations. In the second
cluster inplementation, the problem was reconfigured to
allocate one Monte Carlo sample to each processor. The
time rquired to perform 1000 samples then dependedon
the latency of the network: it is variable because the
network is a shared resource. In the third cluster
inplementation, the network was a dedicated high-speed
backplane (see Figure 2). In this "Symmetric Multi­
Processing" implementation, only four processors were

267

allowed to be active at one time.

These results show that the underlying network topology,
is the crucial factor in designing cluster computing
solutions. Similar results on cluster computing
performance are discussed in [8].

5. An Expert System for Assessing
Computing Alternatives

We have collected several cases that can be used to assess
the transition between alternative computing technologies
for the optimal computation of Methods 1-3. There are
16 basic cases, corresponding to the pairwise transitions
between each of the 4 topologies, and the null transition
- the alternative of keeping the computing topology the
same. Our cases were derived by examining similar
transition problems for other compute-intensive
applications. Our case profiles include the attributes
discussed in Section 2, concerned with opportunity cost,
infrastructure cost, and algorithmic cost. As in other
case-based reasoning systems, our cases contain typical
examples and counter-examples (exceptions). We
summarize the conclusions of the typical cases:

Case I. Workstation to Workstation.
Alternatives provide marginal gain in performance.
Alternatives are too expensive. No skills to perform
algorithm modification. Algorithm is difficult to
parallelize.

Case 2. Workstation to Faster Workstation.
No algorithm modification required. Limited Budget.

Case 3. Workstation to Supercomputer.
Algorithm exploits utilization of vectors and vector
operations. Budget for the supercomputer is available.
Workstations all busy. Bad network infrastructure.
Require consistent performance. Skills available to
modify algorithm and optimize in FORTRAN. Low
modification costs.

Case 4. Workstation to Cluster .
Have many workstations and budget is available to buy
more workstations. Other departments will allow limited
use of their workstations. Problem cannot be solved
with supercomputers.

Case 5. Faster Workstation to Workstation.
Lose of Budget.

268

Case 6. Faster Workstation to Faster
Workstation. Alternatives provide marginal gain in
performance. Alternatives too expensive. No skills to
do the rehosting. Algorithm is difficult to parallelize.

Case 7.
computer.

Faster Workstation to Super­
Generally same as Case 3.

Case 8. Faster Workstation to Cluster.
Generally same as Case 4.

Case 9. Supercomputer to Workstation.
Lose of Budget. Performance not good enough to
continue justification of Supercomputer. Algorithm is
too memory-intensive and too large for the
Supercomputer. Staff unable to program in FORTRAN
to get maximum Supercomputer performance.

Case I 0. Super Computer to Faster
Workstation. Fast Workstations can provide 50% of
Supercomputer performance at 10% of the price.

Case 11. Super Computer to Cluster.
Lose of Budget. Performance not good enough to
continue justification of Supercomputer. There are
many workstations available. Algorithm is too memory­
intensive and too large for Supercomputer. Staff unable
to program in FORTRAN to get maximum
Supercomputer performance.

Case 12. Super Computer to Super
Computer.
Algorithm performance is satisfactory. New algorithm
developed for supercomputer will not work on anything
else: cost to reimplement is high. New model upgrade
costs are low.

Case 13. Cluster to Workstation.
Solution is having a negative impact on business,
primarily due to the saturation of the network.
Performance at desktop is being hurt. Everyone is
getting a workstation to exploit the computing
capability.

Case 14. Cluster to Faster Workstation.
Same as Case 13. Can afford more power per desktop.

Case JS. Cluster to Cluster.
Future model of computing topology. Algorithm
performance is satisfactory. New model upgrade costs are
low. New faster network topologies becoming available.

Copyright© 1995 Software Engineering Press

Case 16. Cluster to Supercomputer.
Solution is having a negative impact on business,
primarily due to the saturation of the network.
Performance at desktop is being hurt. Everyone is
getting a workstation to exploit the computing
capability. Algorithm exploits utilization of vectors ard
vector operations. Budget available. Workstations all
busy. Bad network infrastructure. Require consistent
performance. Skills available to modify algorithm ard
optimize in FORTRAN. Low modification costs.

In operation, a problem profile representing attributes
relating to the opportunity costs, infrastructure costs, ard
algorithmic costs are entered in case fields. The expert
system then compares each case to the problem profile,
and then ranks all cases by similarity.

It seems that as workstation costs decline, the cluster
topology becomes more cost effective. However, as seen
in the above cases, this alternative is not without
problems. A better statement is that as workstation costs
and networks improve, the cluster topology will become
more cost effective. An important trend that can further
improve cost-effective computation is the development of
intelligent resource (process and processor) allocation ard
network load schedulers built into all operating systems
([3], [5],[6]).

6. References
[1] Cagan, L., Carriero, N., and Zenios, S., "A
Computer Network Approach to Pricing Mortgage­
Backed Securities," Financial Analysts Journal,
March-April 1993.

[2] Clewlow, L., and Carverhill, A., "Quicker on the
Curves." Risk, 7(5), May 1994.

[3] Huang, C., and McKinley, P., "Communication
Issues in Parallel Computing Across A TM Networks,"
IEEE Parallel & Distributed Technology,
Winter 1994.

[4] Ingersoll, J., Theory of Financial Decision
Making, Rowman & Littlefield, 1987.

Copyright© 1995 Software Engineering Press

[5] Kaplan, J., and Nelson, M., "A Comparison of
Queuing, Cluster, and Distributed Computing Systems,"
NASA Technical Report TM-109025 (Revision 1), June
1994.

[6] Lirov, Y., et al, "Intelligent Infrastructure for the
Distributed Front Office," in Artificial Intelligence
in the Capital Markets, ed. by R.S. Freedman, R.
Klein. & J. Ledennan, Probus, 1995.

[7] Beguelin, A., et al, A Users' Guide to PYM
Parallel Virtual Machine, Oak Ridge National
Laboratory, U.S. Department of Energy Contract, DE­
AC-05-84OR21400.

[8] Anderson, T., et al, "A Case for NOW (Networks of
Workstations)," Report for Advanced Research Projects
Agency, Contract N00600-93C-2481.

269

Paper Session: Trading Floor Support

Chair: Yuval Lirov, Lehman Brothers

272

Intelligent Help for Wall Street
Dimitri Rotov
BFR Systems
31 Clyde Rd.

Somerset, NJ 08873

An extended abstract

1. Introduction

On-line Help facilities provide users with a
fast alternative to searching through manuals
or calling support lines. This relative
quickness, this immediacy, this promise of a
quick-fix to an interrupted process, is
probably what sells Help systems to budget­
conscious software development teams. I
like to amuse such teams by telling members
that any Help system I design will eliminate
the need for telephone support or hardcopy
manuals. This is droll only because in our
everyday experiences with Help we see that
manuals retain the advantage of depth of
information and telephone support systems
retain the advantage of customizing
responses for the user's precise
circumstances. And yet, there are no
technology limitations enforcing this state of
affairs. The better on-line Help is, the fewer
the technical support staffing costs and
manual development and production costs.

There is a lot of consumer software on the
market today that doesn't need Help, or that
has Help as a nice-to-have extra. This is
software with relatively few features, or
simple features, or an obviousness or
familiarity that makes Help redundant.
Financial software, on the other hand, tends
to be feature-rich. Financial calculations
need to be subject to "proof' and
"examination" (no black boxes, please);
scenario manipulations can transform the
functionality of a window; outside "feeds" or
even products fold into each other; some
functions lead to subordinate activities that
must be completed before certain tools can

be used; etc. Such richness makes Help
essential, not peripheral, to financial
software. If the software is used under
intense time/transaction pressure, with huge
amounts of money at stake, the need for
first-rate Help is intensified.

2. Roadblocks to "good" Help

Good Help is not easy to find. There are
three general conditions limiting Help and
keeping it on the margins of its own
potential.

(1) Documentation development methods.
The generally accepted procedures for
document development inhibit the creation
of complex Help. There are two pervasive
scenarios. Under the first, a project sets up a
separate documentation budget, then hires or
assigns staff to write manuals and/or Help;
writer access to developers' time decreases
with the approach of the
deliverable deadline. A variant scenario
involves developers or programmers writing
their own manuals and/or ;Help at the tail end
of a project, using time available (instead of
time needed) while improvising a look, feel,
consistency, and depth for this
documentation. An ambitious Help
development methodology would make Help
a thoroughly conceived, • parallel
development effort rather than an ad hoc,
adjunct activity. And it would customize
Help features rather than rely on existing off­
the-shelf packages and standards (see
below).

(2) Emerging Help writing tools. These
reinforce existing project methodologies

Copyright© 1995 Software Engineering Press

(above) by facilitating Help creation as an
adjunct effort. For instance, some Help
development software allows conversion of
book files (as if an on-line manual equals an
on-line Help facility!); some allows codeless
Help window creation by any technical
writer; some packages, marketed directly to
programmers, promise speed, ease and
comfort of use -- in other words, a quick end
to a dirty little job. The whole range of Help
development tools appeal to the developer's
ease of use rather than the user's satisfaction:
they are "writerly" rather than "readerly" and
fall into that bane of good service, the
"Easier for Them" syndrome [2], "them"
being the providers rather than users.

One sees this most sharply in the limited
number of Help features designable with off­
the-shelf software and in the tendency to
follow the standard of Help seen in
Microsoft products. MS Windows Help
features and functions are at least one
generation removed from state-of-the-art but
remain a standard because people encounter
them constantly. I am sorry to say they are
inadequate for the needs of deep, complex
financial software. Sorry, because so many
of you must design software to operate on a
Windows platform and you do not have a
choice in the matter.

(3) Help is passive (dumb). To provide some
of the value we get from live, technical
support lines, Help needs artificial
intelligence.

3. Functions of today's passive Help
systems

While financial software gets smarter, Help
systems remain simple and passive.

Help systems currently can offer access to
manuals (that is, function as on-line
viewers); they can offer general (non­
specific) information; they can offer lists,
tables or other arranged data; and they can
offer Help in the context of an activity or

Copyright © 1995 Software Engineering Press

process. In the Microsoft paradigm, Help
consists of topics accessed through menu
selections, or searched for after data entry, or
viewed via pop-up displays invoked by
selecting "live" window objects. It also
includes, if we broaden the meaning of Help,
tutorials, demonstrations and "Wizards,"
which are "interactive assistants" that step
users through some part of a process. [2] All
of these are somewhat useful, but the
(potentially) most useful Help information is
about the user's current context. This
context-sensitive Help has three aspects:
what is it?; how does it work?; how does it
relate to my task or objective? [3]. Since this
context-based Help is harder to create than
the lists, tables, search facilities, etc., it
tends, in my buying experience, to get the
shortest shrift in commercially available
software.

I once had the pleasure of working on a
system which offered much context
sensitivity. First, the developers ensured
every object in the window was "live" and
"wired." I then ensured that every field,
every label, the title bar of every window,
every box line that grouped functions, every
spot of real estate in a window, had an ID
and a unique bit of Help text. To get Help, a
user moved the mouse pointer over any
object and clicked the right mouse button.
Up would come a window that described the
object, told how to use it, and offered
jumping-off points to more information.
These were not static application windows,
either. Some had hundreds of objects, some
had multiple "parents" and "children," some
had alternate data import sources, and
because they involved complex financial
scenario analytics, many allowed the user to
rearrange column and row headings, to select
among alternate calculations or denom­
inations, to activate or decommission
functions and then to take the output to
another window just as plastic and complex
for further work. As massive and powerful as
that Help system was, it could only provide
limited context-type Help. For instance, on

273

the window level, it could tell you the
purpose of the window; how to use it; what
its objects do; where the output goes; what
happens if you violate the sequence. Or, on
the field level, it could tell you what the field
represents; if the field is in a spreadsheet,
what its position signifies; what input is
allowed and what not; how the data will be
used; what step should follow data entry;
whether data is optional; etc. This is vastly
more context Help than one gets from most
programs, and yet, if we honestly consider
the needs of the user, it is still not enough.

4. Intelligent Help

Context-sensitive Help can be dramatically
helped by AL Since I am not an AI developer
or programmer, my notion of the some of the
children of an AI/Help marriage may seem
fantastic. I offer them as reasonable from the
perspective of a Help developer concerned
with the usability of extremely complex
software. Consider these possibilities for
Help (and consider it help in the broadest
possible sense):

Process analysis is something that already
exists, on a simple level, in some strategic
game software. The user elects to be tutored
while doing and is rewarded with a stream of
advice about the implications of inputs. In
other words, there is an expert system effect.
This seems easy and reasonable to require in
applications that require large amounts of
precise numerical data entered in exact
order. Some of the content of this kind of
Help can include information about input
deviations, data completeness, sequence
issues, fulfillment of preconditions, data
format requirements, and possible next steps.
It can prompt next steps, flag active rows and
columns, flag active input fields, determine
(by activity measurement) whether a task has
been interrupted and provide summaries
describing work done so far.

Process mapping would provide a
thumbnail sketch of where, in a complex

274

process, the user is. For instance, one
hypertext software authoring product called
Storyscape shows readers (users)
diagramatically which piece of text, in a web
of textual cross references, they are
viewing. The diagram shows where the user
came from and what next steps are available.
The more variables involved, the more
intelligence would be required. This
information need not be diagramatic.

Usability analysis would provide quality-of­
data information. Developers sometimes
provide this in the form of an error message
about an outcome: for example, a total must
be an integer, or a number cannot be outside
a range. A more sophisticated analysis
would make a general statement about the
usability of an output (what this number will
be good for and what not). An even more
sophisticated analysis would make general
statements about the quality of a number:
"This is the highest price allowed by law;"
"The size of this spread fails to meet the
transaction requirement minimum," etc.

Efficiency measures are unlikely to be
popular and are not necessarily intelligent. I
note that for every document created in
Microsoft Word, there is a statistical
summary that includes time spent working
on it. This can be useful.

Query interventions (smart queries) recall
the HAL computer in 2001: A Space
Odyssey. At the high end of sophistication,
they would combine process and usability
analysis to stop error conditions early on,
e:g., "You have not finished entering data
and your total already exceeds that allowed."
Or they might flag mode issues: "You've
entered a prepayment speed appropriate to
the PSA model, not the SMM model. Should
I change your model selection?" They
should not be limited to error detection,
however, or they become no more than
warning messages. They can initiate Help
queries by noticing slow input, frequency of

Copyright© 1995 Software Engineering Press

errors, "erase and redo" activity and other
signs of difficulty.

Dynamic formula displays have a number
of possible uses. There is tremendous utility
in seeing the formula at work that represents
the calculations underlying a GUI display.
Financial workers who have to justify the
numbers they generate have the least
incentive to change software, unless they can
look "under the hood" of an interface and
satisfy themselves. Formula frames might
inset themselves into any window displaying
a GUI calculator; or they might run in
separate windows (like Help text windows);
or they might "crawl" across the bottom of
the screen like tickertape. Formula displays
might populate as data is entered; they might
display the subcalculations in a way to allow
step-by-step cross-checking; they might lead
to Help text with descriptions of formula
elements; they might even allow
modification of the formulas themselves by
the user. After the recent news about the
Pentium, checking and verification systems
might sell well.

Error Help would use expert system
approaches to analyze and recommend
corrections to software error conditions.
Perhaps time, memory, and storage are
issues. And yet it is not unusual to see up to
50 percent of an avionics system dedicated to
duplication, self-testing, and error handling.

Some advanced Help features would not
need AI:

State information is always useful, and the
more dynamic it is, the better. This is
sometimes seen as a strip of text at the
bottom of a window. Unfortunately, it's often
used merely to tell what the software is
doing while the user is locked out of the
system. State information is always available
to X-Windows users, who can open an
underlying UNIX system window that will
act as a real-time log.(All the X-Windows
users l know habitually do this, which

Copyright@ 1995 Software Engineering Press

testifies to the appeal of this feature.) Some
MS-Windows products satisfy this need by
providing system information -- Central
Point Software's Crash Guard, for example.

Label modification should allow users to
relabel objects and for the relabeling to not
only stick, but to migrate into the Help and
error systems. This accomodates Wall
Street's habit of calling the same things by
several names.

File naming conventions must somehow
transcend the limitations of DOS for those
working in DOS or Windows. Perhaps an
alias system can be devised that will save
analysts from having to use numbers or
cryptic abbreviations for all the scenario files
they constantly must generate and retrieve.

Stick-on commentary, in the form of virtual
post-it notes, is already available as a feature
for document viewers and groupware. It
needs to be more widely available.

5. Conclusions

The commitment to user Help should
increase in proportion to the complexity of a
software product. The commitment to
helping the user -- in a general sense -- may
require junking the old developer­
documentor division of labor in favor of a
codevelopment partnership. It definitely
requires ridding ourselves of bad project
habits and the straitjacket of bad paradigms
and off-the-shelf Help development
software.

6. References

[l] Landow, George P., Hypertext Theory,
Baltimore and London, Johns Hopkins, 1994

[2] See any work by Paul Fussell for a description
of Easier For Them systems.

[3] Fowler, Susan L. and Stanwick, Victor R.,
The GUI Style Guide, Cambridge, MA: Academic
Press, 1995

275

CALYPSO Goes to Wall Street:
A Case Study *

Arash Baratloo t Partha Dasgupta + Zvi M. Kedem § Dmitri Krakovsky 1
New York University&

Lehman Brothers
New York University Arizona State University New York University

Abstract
Many computationally intensive problems are paral­
lel in nature. This means that at least theoretically,
parallel solutions can be developed for these problems.
A wide range of problems from the fields of scientific
computation, databases and financial analysis fall into
this category. So why is parallelism so rarely used? It
is not the case that parallel processing platforms are
economically infeasible: the economic advantages of
adapting a network of workstations as a parallel plat­
form are well established. It is the extra cost of devel­
oping parallel programs that has made this infeasible.

CALYPSO is a software system for writing parallel
programs, and software support for distributed execu­
tion in a network of workstations. Recognizing that the
amount of money saved by utilizing free CPU cycles
in a network must out-weigh the extra developmental
cost, it provides a simple interface for expressing par­
allelism. It shields the programmer from the nuances
of remote execution, data partitioning and synchro­
nization, load balancing, and the dynamic behavior of
multiple machines scattered all over the network.

In this document we briefly introduce CALYPSO and
describe a case study. We start from a sequential pro­
gram for the calculation of Option-Adjusted-Spread of
the corporate bond index, and analyze (a) the effort re­
quired to parallelize the program, (b) the performance
gained, and (c) the behavior of the system in a network

*This research was partially supported by National Sci­
ence Foundation under grant numbers CCR-94-11590, and
CCR-95-05519.

tDepartment of Computer Science, Courant Institute
of Mathematical Sciences, New York University, 251 Mer­
cer St., New York, NY 10012-1185, (212) 998-3350,
baratloo@cs.nyu.edu.

tDepartment of Computer Science, Arizona State
University, Tempe, AZ 85287-5406, (602) 965-5583,
partha@cs. asu. ed u.

§Department of Computer Science, Courant Institute
of Mathematical Sciences, New York University, 251 Mer­
cer St., New York, NY 10012-1185, (212) 998-3101,
kedem@cs.nyu.edu.

11Lehman Brothers Inc., 3 World Financial Cen­
ter, New York, NY 10285-1100, (212) 526-6731,
dkrakovs@cs.nyu.edu.

276

where workstations can arbitrarily slowdown or crash
at any time. The measured overhead of a CALYPSO
program running on six workstations in presence of
slowdowns and failures ranged from 7.9% to 16.3%.
We finally conclude that parallel applications can be a
cost effective solution to coarse-grain computationally
intensive problems that exist in many financial appli­
cations.

1 Introduction
In the recent past, networks of low cost workstations
and personal computers have become the norm in
many academic and corporate institutions, and their
number is growing rapidly. Even from their early days,
researchers saw a tremendous hidden potential.

1. Networks of workstations are a common com­
modity: they already exists, have been paid for,
and are operational in many institutions.

2. Their aggregate computational power rivals
many supercomputers. Furthermore, their
cost/performance ratio makes them an attrac­
tive alternative to relatively expensive hard­
ware.

3. As many studies have shown [5,6], on average
workstations are utilized 15% of the time. Thus,
the hidden unutilized computing power that has
already been paid for is phenomenal.

Given the previous reasons, then why is it that par­
allel programs that utilize networks of workstations
have not proliferated? A major reason is that the cost
to harness this power is too high. That is, although
networks of workstations are a good value in terms of
raw computing power (meaning hardware), the cost
to harness this power (meaning software development)
still remains high and unattractive.

Although there have been many years of work in
providing software toolkits for parallel and distributed
programming, it is generally believed that Writing a
parallel program is still a hard task. This complexity
arises because of many reasons:

• The standard programming languages are se­
quential. Many parallel programming envi­
ronments require the programmer to learn a

Copyright© 1995 Software Engineering Press

new programming language and a very different
computational and execution paradigm. This
can be an expensive and a time consuming tran­
sition for many corporate organizations.

• For multiple programs (executing at different
sites on a network) to work toward a common
goal, they must exchange data. Different tech­
niques for data-sharing have large consequences
on (a) the performance, (b) the ease of program­
ming and debugging, and (c) the maintenance
and portability of the program. It is generally
accepted that message passing systems provide
the best performance at the expense of pro­
grammability: they frequently require exten­
sive changes to a sequential program, and they
are also hard to debug. In spite of such draw­
backs, PVM [7], for instance, is one of the most
popular parallel programming· systems for dis­
tributed hardware. This demonstrates the acute
need for providing such facilities.

• Load balancing is a critical issue in the perfor­
mance of any parallel application. This becomes
even more acute when we consider running a
program on multiple workstations with differ­
ent speeds. In general, a substantial amount
of the time and effort of development goes into
proper load balancing issues - none of which is
required for sequential programs.

• When writing a sequential program, tolerating
hardware (the machine itself) or software (the
operating system) failures is usually not a con­
sideration. However, in order to allow long­
running programs to execute on multiple work­
stations, some of which we have no control over
(e.g. they are located in another office), dealing
with failures becomes an important issue. And
again, this is an added complexity.

R~cognizing that for a parallel programming system
to gam acceptance in the "real world", (i.e. outside the
research community) we address ease of programma­
bility as well as performance in the building of our
prototype.

CALYPSO is a software system that provides a paral­
lel processing platform on a network of workstations or
personal computers. Several similar systems already
e~ist. However? unlike those systems, CALYPSO pro­
vi1es '.'1-n except10nally easy programming interface by
shieldmg the programmer from the nuances mentioned
above:

• it extends the C++ programming language by
only four keywords to express parallelism,

• provides a virtual shared address space to free
the programmer from explicit data movement,

• transparently . balances t?e work among avail­
able workstat10ns, allowmg faster machines to
do more work,

Copyright@ 1995 Software Engineering Press

• is resilient to machine failures and slowdowns.

B:I'. pro:'iding these features our goal is to allow high
utihzat10n of network of workstations, while allowing
the effort to develop parallel programs to remain com­
parable with their sequential counterparts.

The commercial and the administrative realities
prohibit running "private" operating systems for the
vast majority of potential users. Thus, CALYPSO re­
~uires no modification to the kernel of the host operat­
ing system. The current prototype runs under Sun0S
but the system has been designed and implemented t~
be portable, and we expect ports to run on most Unix­
based operating systems as well as Windows NT.

We feel that many computationally intensive
coarse-grain problems can utilize CALYPSO to harnes~
the computational power hidden in many networks.
In the next section we give a brief overview of CA­
LYP~O. In. Section 3 we consider a specific problem:
0pt10n-AdJusted-Spread of a corporate bond index is
?' typi_cal example of a c?arse-grain computationally
mtensive problem. In sect10n 5 we report experimental
results by parallelizing and measuring the performance
of such application. We conclude by summarizing our
findings.

2 Overview of CALYPSO

Simplicity is fundamental to CALYPSO. This work has
its roots in several years of theoretical and systems re­
search. For the complete history see [4]. Here we
briefly describe the CALYPSO Source Language (CSL)
used to express parallelism, then proceed to discuss
its fea~ures which are transparent to the user, and in
many mstances to the programmer. CSL extends the
standard C++ with only four keywords. Once a pro­
gram has been written, a translator reads in the ex­
tended C++ and outputs standard C++. This output
is then compiled with a standard compiler and linked
with the CALYPSO library to produce an' executable
p~ogram. Th'.'1-t is all: the fact that this program is run­
mng on multiple workstations with dynamic behavior
is hidden from the user. All the user experiences is
a spee~up whenever there are idle workstations any­
where m the network. For a complete description of
CALYPSO see [4,2,1].

2 .1 Language
CSL extends the standard C++ with the following key­
words: shared, parbegin, parend, and routine.

CALYPSO views the virtual address space of each
process as partitioned into two disjoint areas: shared
and private. Shared data is used to refer to the sec­
tion of the memory that is accessed by the concurrent
~hreads of the parallel program. The keyword shared
is_ used to declare this region, as shown at the top of
Figure 1. In that example, variables i, j , k, and
str are declared as shared variables. In general, any
variable can be declared to be shared.

In CSL, parallelism is expressed by one or more
routine Statements within a parbegin ... parend

277

shared {

};

int i, j, k;
char str[100];

parbegin
routine[S](int num, int id) { ... standard sequential code ... }
routine[x+2](int num, int id) { ... standard sequential code ... }

parend;

Figure 1: Expressing parallelism in CALYPSO.

structure. The body of a routine statement can be
any valid C++ code, accessin~ (reading or writing)
either (a) shared variables, (b) any locally declared
variables, or (c)the two parameters passed in as argu­
ments to the thread. Consider Figure 1 again. In that
example two routines are defined within the parallel
step. Five instances of the first routine are spawned
in parallel-notice that the number of instances, five,
corresponds to the number 5 within the brackets fol­
lowing the keyword routine. At runtime each in­
stance of the concurrent thread will get the number
of instances (5) and its own instance number (from 0
to 4), as input parameters.

A key point here is to realize that the number of
concurrent threads do not dependent on the number
of workstations involved in the computation: in the
case that there is only one machine working on the
problem, the concurrent threads are executed one at a
time, sequentially; and when multiple workstations are
involved in the computation, CALYPSO distributes the
load among all workers, giving faster machines more
of the load - transparent load balancing. For ·ex­
ample, if 100 computations can be done concurrently,
then the program can be written for 100 concurrent
computations, and not as a function of available work­
stations.

2.2 Transparent Features
CALYPSO runs parallel programs on a set of worksta­
tions connected by a standard network and running a
standard operating system. A CALYPSO computation
utilizes a c~ntral manager process and a dynamically
changing set of worker processes.

For such a system to be effective, the development
of parallel programs must be comparable with their
sequential counterparts. A simple programming in­
terface is important for this, but alone, it is not suf­
ficient. There are many programming difficulties that
arise in distributed environments that are not present
on a single machine. These include partitioning of
the workload, data sharing, load balancing and fault­
tolerance to name a few. In this section we briefly
cover other aspects of CALYPSO that are hidden from
the programmer for a good reason: they are consid­
ered nuances.

• Separation of Logical Parallelism from

278

Physical Parallelism: Programs are logical
entities. Thus, the parallelism expressed by a
programmer is independent of the parallelism
provided by the execution environment, which
is tied to the availability of workstations. This
mapping between the program parallelism and
the execution parallelism is transparent in CA­
LYPSO.

• Fault Tolerance: CALYPSO executions are re­
silient to failures. Worker processes can fail,
and possibly recover, at any point without af­
fecting the correctness of the computation. Un­
like other fault-tolerant systems, there is no
significant additional cost associated with this
feature-in the absence of failures, the perfor­
mance of CALYPSO is comparable to a non-fault­
tolerant system. The impact of fault tolerance
on performance is discussed in Section 5.

• Dynamic Load Balancing: CALYPSO .au­
tomatically distributes the work load depend­
ing on the dynamics of the participating ma­
chines. The result is that faster workers do more
work than slower workers. Not only there is no
cost associated with this feature, but it actu­
ally speeds up the computation, as fast workers
are never blocked waiting for slower workers to
finish their work assignments-they bypass the
slower ones.

• High Performance: While providing the fea­
tures listed above, our initial experiments in­
dicate that the overhead is surprisingly small
for coarse-grained computations. Later, we will
provide detailed performance examples using
a financial application problem. A sequential
C++ program executes in 1730 seconds. With
6 machines, a CSL program for the same prob­
lem takes 331.5 seconds. This yields a speedup
of 5.2. That is, the total runtime overhead of
CALYPSO which includes network communica­
tion, load balancing, fault tolerance, and other
housekeeping tasks is only 14.9%. (This follows
as, (6 • 331.5)/1730 - 1 = 0.14.9. We elabo­
rate on our performance metrics in Section 5.)
In our experiments, under varying conditions
of failures, slowdowns and changing number of

Copyright© 1995 Software Engineering Press

3

available machines, the total overhead varied
between 7.9% and 16.3%.

Application to Wall Street
Problems

Experimenting with CALYPSO we have come to the re­
alization that a number of the problems that require
a significant amount of the computational power lend
themselves easily to the CALYPSO paradigm and can
be solved efficiently and with the minimum program­
ming effort in the CALYPSO framework. The objective
of this work was to illustrate how CALYPSO can be
utilized for the problems in the realm of finance that
are currently considered to be too computationally in­
volved.

One of these problems is the real-time or at least
adequately fast computation of the characteristics of
the market-weighted averages of the collection of secu­
rities grouped by a certain criteria-indices. Given the
fact that indices can contain the large number of secu­
rities (e.g., there were 3,158 securities in the Lehman
Brothers Corporate Bond Index as of March 29, 1995)
it is impossible to calculate the statistics of the in­
dex sufficiently fast on the currently existing hard­
ware. Particularly complicated and computationally
involved are the computations related to the calcu­
lation of the Option-Adjusted-Spread (OAS) and the
embedded option value of a bond. 1 To illustrate how
the performance of these computations can be signif­
icantly improved we have implemented the OAS index
statistics calculations. We also demonstrate that a re­
markable performance improvement can be achieved
without incurring much of the additional hardware or
programming overhead.

To calculate the OAS we utilized a binomial tree
option pricing model as described by Black, Derman,
and Toy [3]. Despite the fact that some of the sim­
plifications have been made, we believe that the com­
putational complexity of the problem has not been
reduced significantly, especially from the viewpoint of
the model's application to the index calculations. The
experiments serve as a showcase of the magnitude of
the improvement that CALYPSO can provide for the fi­
nancial problems with substantial computational com­
plexity.

3.1 Overview of Corporate Bond In­
dex Statistics

The following is the data flow of the index statistics
calculation.

1. The snapshot of the observed market data is
input and analyzed. This data consists of the
yields of the risk-free benchmark securities, US
Treasury bonds with different maturities, which

1 In the rest of the paper when referring to computing
OAS we also refer to the embedded option calculations.

Copyright© 1995 Software Engineering Press

we call a yield curve. Yield curve, along with
the number for the percent volatility of the short
rate, serves as an input for the option-pricing
model.

2. The option pricing model calculates the value
of the OAS for each bond in the index.

3. And finally, the market-weighted average of the
resulting OAS and option values are computed.

The pseudocode for the index statistics program is
illustrated in Figure 2.

GetindexBonds () routine inputs the information
about all of the bonds belonging to the index. The
following inputs are collected:

• Coupon

• Observed price of the bond

• Time to maturity

• Coupon schedule

• Type of embedded option

• Redemption schedule

GetTermStructure() inputs the array of long
rates, that are the yields of the US treasury securi­
ties, as well as the volatility of the short rate.

CalculateShortRateTree() routine calculates the
short rate tree that corresponds to the term structure.
The tree has one-month steps and a 30-year horizon.

parbegin ... parend block calculates the OAS for
all of the bonds belonging to index in parallel. It
spawns as many threads as there are securities in
the index and runs Price-To-OAS analysis on them.
The PriceToOAS () routine, that is called for ev­
ery bond, takes as input the description of an in­
dex bond and the short-rate tree calculated by the
CalculateShortRateTree() procedure. As the out­
put it produces: option-adjusted-spread, which is a
measure of the incremental return provided by a non­
benchmark bond as compared to a risk-free treasury
benchmark bond and option price, which is the price
of the embedded option provisions.

CalculateMarketStatistics()
calculates market-weighted average of the OASes and
option values. It does so according to the following
formula:

A OAS
I:7-1 T; • (P; + A;) • OAS;

verage = "'n
L..,i=l T; • (P; + A;)

where

• T; is the total debt outstanding for the i-th bond
in the index

• P; is the price of the i-th bond in the index

• A; is the accrued interest for the i-th bond in
the index

• OAS; is the option-adjusted-spread of i-th bond.

279

IndexBonds = GetindexBonds(); /* get the bonds in the index

TermStructure = GetTermStructure(); I* input the treasury yield curve and volatility *I

/* calculate short rate tree
ShortRateTree = CalculateShortRateTree(TermStructure);

parbegin /* run price-to-OAS for all securities in the index *I
routine[number of bonds in index] {

Results[num] = PriceToOAS(ShortRateTree, IndexBonds);
}

parend;
I* calculate the statistics of the index OAS

CalculateMarketStatistics(Results, IndexBonds);

Figure 2: Pseudo-code for the index statistics program.

3.2 OAS Calculation Model
The option/ OAS calculation model implemented in
this experiment is a version of the Black-Derman-Toy
option pricing model, as described in [8], with minor
modifications. This paper assumes the basic familiar­
ity of.the reader with the model; here we shall only
briefly outline the algorithm of the computations per­
formed.

We implement the model in an imaginary world
where we adhere to the simplifying assumptions out­
lined in [8].

The algorithm for the OAS and option-value calcu­
lations is the following:

1. Given the risk-free term structure calculate the
short-rate binomial tree T. The length of the
tree should be sufficient to accommodate for the
length of a longest bond being evaluated, cur­
rently we produce a 30-year tree with monthly
steps.

2. Initialize OAS to 0.0, and c to 0.0001.

3. Calculate the price Pl of a security with em­
bedded option using the short-rate tree T.

4. Compare the Pl with the observed (market)
price of the security P and if I Pl - Pl ::; c go to
step 7.

5. Shift the rates in the short-rate interest tree T
by a spread (OAS).

6. Go to step 3.

7. Calculate the price of the BULLET (without op­
tion) bond P2 with the same characteristics as
B, and using the value for OAS as it was calcu­
lated in steps 3-6.

8. The difference between the Pl and P2 is the
price of the option P3.

280

3.3 Further Parallelism
Due to the nature of the index calculations, which are
characterized by a large number of relatively coarse­
grain computations, there was no need to to exploit
anything but the highest level of parallelization-one
thread was allocated to do all of the calculations for
one security. Considering, however, the fact that the
same price-to-OAS module could be used in the indi­
vidual security computations outside of the index con­
text we briefly outline the steps of the algorithm that
could have been run in parallel:

• One security's price-to-OAS could have been run
on a few workers simultaneously with different
OAS assumptions. This would assure faster con­
vergence of the calculated price to the observed
price value. This method would parallelize on
the iterations.

• Additional parallelization could be achieved by
discounting different parts of the tree by the dif­
ferent threads. This would be a parallelization
within the same step of the iteration.

4 Application to Finance
The described corporate bond index calculation prob­
lem is a real problem dealt with by any major financial
firm that calculates the averages of the large collection
of securities. The real-life bond OAS calculation prob­
lem would become even more time consuming if the
following changes were to be made:

• A finer grid tree (ideally with daily nodes) were
generated

• Multiple factors to describe the shifts m the
yield curve were considered

One could imagine numerous other applications
that would significantly benefit from the utilization

Copyright© 1995 Software Engineering Press

of CALYPSO. Given the fact that CALYPSO is mostly
geared towards coarse-grain computations, most of
these applications would probably be the ones, where
there are independent highly-intensive subproblems
that may use the same logically shared input data
and which outputs are to be combined after all these
subproblems have been completed. There are various
computationally involved problems that lend them­
selves easily to such a computational model. To name
just a few we would suggest the following:

• Mortgage-Backed-Securities (MBS) OAS calcula­
tions

• Collateralized Mortgage Obligation (sMO) OAS
calculations

• Total return/return attribution horizon analysis
under different yield curve scenarios

5 Performance Experiments

Measuring actual performance of CALYPSO is an on­
going activity. In this section we present performance
results obtained by running a parallel program to com­
pute OAS of the corporate bond index. In every ex­
ecution we bore the cost of fault tolerance and any
required load balancing.

Results are shown for the following cases, all for the
same CSL program:

1. The program ran on identically behaving free
workstations. Here we measured speedups when
there were no failures and no slowdowns.

2. The program ran on six free workstations for
the first 100 seconds at which time it utilized
100% of the CPU cycles. After which a subset
of machines slow down by 50% for the dura­
tion of 200 seconds, and then returned to their
original state. Here we measured the speedups
when transient slowdowns occured, which are
common in networks supporting multiple users.
It also measured the effectiveness of the load­
balancing schemes implemented in CALYPSO.

3. In this experiment we model transient machine
availability. The program initially started on
a subset of workstations. After 100 seconds,
other workstations joined-in the computation,
but for only a short period of time: 200 sec­
onds after joining the computation they were
crashed. This experiment demonstrates ability
to tolerate failures, as well as a measure of ef­
fective usage of transient idle workstations.

All times reported are "wall clock" or elapsed times,
not CPU or virtual times. As the initialization and
output of the results are an artifice, the times were
measured from the start of the OAS computation to
its completion.

In each experiment, we use up to 6 machines from
the 3 profiles described below. Whenever a machine

Copyright© 1995 Software Engineering Press

is "available" to us, we are charged for its use, regard­
less of whether we are in fact able to benefit from its
work or not. Hence, our results are based on quite
conservative assumptions.

For this experiment we define 3 machine profiles:
Machine A, Machine B and Machine C. Each machine
profile a-priori determines its behavior. Here are the
descriptions of each profile, see also Figure 3.

Machine A is available to us 100% for the duration of
the computation. It is a regular machine, that
does not fail or slow down during the execution.

Machine B is available to us 100% for the first 100
seconds, then 50% for the next 200 seconds, and
then 100% for the rest of the computation. This
models a transient network or machine slow­
down.

Machine C is available to us 0% for the first 100
seconds, then 100% for the next 200 seconds,
and then 0% for the rest of the computation.
This models a transient machine availability, as
well as faults.

5.1 Theoretical and Actual Speedup

We now describe our cost model. Each machine profile
P, is defined by the function availabilityp. Availabil­
ity is a function of time, and depicts the fraction of
the CPU resource available to us from that machine.
Thus, the availability of 1 denotes the machine is free
and completely available, and the availability of O de­
notes that the machine is unavailable. Then, if the
computation lasted for time T, the work that the ma-
chine gave us is ft:o availabilityp dt. This is the area
of the shaded region for the time interval [O, T] in the
graphs of Figure 3.

In general we will have several machines in the com­
putation, say n machines with profiles, P1, ... , Pn, re~
spectively. Then if a sequential program takes time S
to complete and a parallel computation lasts for time
T, then the theoretical speedup that we can achieve is
given by:

I:7=1 ft:o availabilityp, dt

s
Since machine availability is an external function,

we are accounting a "charge" whenever a machine is
available-whether we use it effectively or not. Also
given this charging method, it is obvious that we ac­
count for the all overhead that the system incui;s,
which includes the time taken to move data between
different machines, and any runtime overhead.

5.2 Performance Results
To obtain a fair comparison, we always compare the
speedup of a CALYPSO program to what could have
been achieved theoretically if every machine cycle were
utilized effectively. The sequential program executed

281

availability

M M M
lime time time - - _ ___. - _ ___. - - _ ___.

100 200 300

Machine A

100 200 300

Machine B

100 200 300

Machine C

Figure 3: Profiles of available machines.

in 1730 seconds, and we use this number to calculate
the theoretical speedup.

We conducted 3 families of experiments, utilizing
up to 6 workstations in each experiment, and we de­
scribe them in turn. For each experiment the re­
sults are graphed showing the total time, the actual
speedup and the theoretically best possible speedup.
It should be reiterated again that the same CALYPSO
program was tested in all experiments, without any
(compile- or runtime) alteration.

The labels on the x-axis of the graphs denote the
machines that were used in that experiment. For ex­
ample, 2A means two machines with profile A, and
4A+2B means four machines with profile A and two
machines with profile B were used. The left y-axis in­
dicates execution time, and the right y-axis denotes
speedup.

In the first experiment we examine how the per­
formance scales with the number of workstations. We
ran the same CALYPSO program on 1 to 6 workstations
with profile A, which devote all their resources to the
computation. Refer to Figure 4. The execution times
for 1, ~, 3, 4, 5 and 6 workstations were 1768, 922,
624.5, 476.5, 392.5, and 331.5 seconds respectively.

This family of experiments show that when there
are no failures or slowdowns CALYPSO bears little
overhead, even though it is "prepared" to handle such
adverse cases.

In the second family of experiments, we measure
the speedup when transient slowdowns occur. Here
we used 6 different combinations of profiles A and B.
See Figure 5. The CPU utilization remains constant
independent of the number of machines that slowdown
during a computation.

This demonstrates the ability for our runtime sys­
tem not to "charge" any extra penalty for dynamic
behavior. Dynamic behavior is very common in a
multi-user network of workstations. In many systems
the effort of load balancing is left to the programmer,
where as in CALYPSO it is provided transparently, and
it has shown to be efficient.

In the final family of experiments we measure the
utilization of idle workstations, even if they are idle
momentary. In addition, by using different numbers
of workstations with profile C we investigate the effect
of failure during a computation. See Figure 6. Here
the efficiency ranges from 7.7% to 14.2%.

282

These experiments demonstrate the ability of CA­
LYPSO to utilize resources as they are available, even
if availability changes over time.

6 Conclusions

We are working on further enhancements and exten­
sions to the system. We summarize and list some of
the important properties of the system, especially as it
is related to what has been discovered by us while ex­
perimenting with the corporate bond index statistics
calculations.

6.1 Performance

The measured overhead is low. This is of a special sig­
nificance, as CALYPSO is able to execute programs in
situations where other systems are inefficient or simply
fail to execute. These are not the isolated situations
either. We are targeting network of workstations with
fluctuating processor loads, network traffic, and even
crash-failed processes; if anything this is a conserva­
tive view of the real world.

The performance improvement is significant. Bond
index OAS calculations achieve near linear speedup,
which means that changing the number of workers
from m to n, where n 2:: m, increases the speed of
computations by the factor of n/m (assuming that all
of the workers have the same computational power).

6.2 Programmability

The programming interface is simple and easy to learn.
We converted a sequential program that consisted of
nearly 700 lines of C++ code into a parallel program
capable of running on a network of workstations by
simply modifying 26 lines of code.

• It took us approximately two hours to transform
a regular sequential code into a CALYPSO pro­
gram, which illustrates the ease of programming
in this framework. The ease of programming is

Copyright© 1995 Software Engineering Press

1800

1600
1400

1200
QI 1000
E

800 i=
600

400
200

---Time

- - - - - Theoretical
Speedup

·········ACtUal
Speedup

0 +-----+------+------+-----+-----+0

1A 2A SA Tests 4A SA 6A

Figure 4: Parallel computation on machines with profile A.

1800 -------- 6
1600 --------------- --- 5
1400 ,,.----- ···-························

---Time

- -· - - - ••• ■ - ••

1200 4 c.
QI

E
i=

1000 3~
~ QI

- - - - - Theoretical
Speedup

WO 2f
400 .,=---------------------1 ·········ACtUal

Speedup 200
0 +-----+------+--------+-----+----t- 0

1A+5B 2A+4B 3A+3B 4A+2B 5A+1B 6A

Tests

Figure 5: Parallel computation on machines with A & B profiles.

enhanced by the separation of logical and phys­
ical parallelism, shared memory model, trans­
parent data movement, and the simple style of
expressing the parallelism.

• Another factor is that an extension of the stan­
dard C/C++ is utilized. Therefore, program­
mers do not need to burden themselves by
studying a new language or a new environment
to improve the performance of their software.
What may be even more important, is that
a significant number of existing programs are
in C/C++ which can be easily converted to
take advantage of a substantial boost in per­
formance.

• Shared memory-based programming model and
"free" fault tolerance are of great importance.
There are various other approaches that try to
achieve the same objectives by utilizing Also,
heavy-weight processes, file-based interprocess
communication and some variation of a script-

Copyright © 1995 Software Engineering Press

ing languages to glue them together. How­
ever, we argue that (a) CALYPSO is much more
natural for a programmer to operate in terms
memory data structures; with the scripting/file­
based communication, a significant amount of
memory-to-file and file-to-memory data struc­
ture conversion has to be performed unless a
langua~e provides built-in persistence mecha­
nism, lb) there is no need to mix different lan­
guages (programming language and a scripting
language), and finally (c) a programmer using
the CALYPSO framework does not concern him­
self or herself with issues of fault-tolerance and
load-balancing.

6.3 Applicability

• Hardware required to solve complex problems
becomes much more affordable. Due to the re­
markable increase in speed many problems that
would otherwise require expensive hardware to

283

Cl)

E
i=

1800
1600
1400
1200
1000

800
600
400
200

---Time

- - - - - Theoretical
Speedup

0 +-----+-----+----~----+-----+0
---------Actual

Speedup
1A+5C 2A+4C 3A+3C 4A+2C 5A+1C 6A

Tests

Figure 6: Parallel computation on machines with A & C profiles.

be solved in an adequate amount of time can
be solved by a network of inexpensive worksta­
tions. Also, since the networking naturally fits
the CALYPSO model, even under-powered, low­
cost personal computers can contribute their
share to computations.

• The configurability of the system is very high.
This may mean that users can increase the
speed of the computations at the runtiIPe, by
adding additional workers. Therefore, users can
exercise some control over the speed of the com­
putations even after the computations started.

• Users are given the transparent access to the
distributed resources located on the network,
which insulates them from dealing with various
issues of the network programming.

• The system smoothly and efficiently adapts to
fluctuating abilities of workers.

7 Acknowledgments
The authors acknowledge the following for their con­
tributions to the CALYPSO project: Churngwei Chu
for recognizing the importance of dynamic termina­
tion conditions; Deepak Goyal for augmenting CA­
LYPSO with daemon processes; Mehmet Karaul for de­
veloping a graphical monitoring tool; Fabian Monrose
for implementing dynamic-memory allocation; Naftali
Schwartz for his persistent work on an intelligent pro­
gram translator; David Stark for advice on key im­
plementation issues; and Jun Xu for implementing a
portable G UL

References
[1] Arash Baratloo, Partha Dasgupta, Mehmet Ka­

raul, Zvi M. Kedem, and Fabian Monrose. CA-

284

LYPSO 0.9 Manual. New York University, August
1994.

[2] Arash Baratloo, Partha Dasgupta, and Zvi M. Ke­
dem. CALYPSO: A novel software system for fault­
tolerant parallel processing on distributed plat­
forms. Manuscript, February 1995.

[3] Fischer Black, Emmanuel Derman, and William
Toy. One-factor model of interest rates and its
application to treasury bond options. Financial
Analysts Journal, pages 33-39, January-February
1990.

[4] P. Dasgupta, Z. M. Kedem, and M. 0. Rabin. Par­
allel processing on networks of workstations: A
fault-tolerant, high performance approach. Pro­
ceedings of the 15th Intl. Conf on Distributed Com­
puting Systems, to appear, June 1995.

[5] David Gelernter and David Kaminsky. Supercom­
puting out of recycled garbage: Preliminary ex­
perience with Piranha. Sixth ACM International
Conference on Supercomputing, July 1991.

[6] D.A. Nichols. Using idle workstations in a shared
computing environment. ACM Operating Systems
Review, 21(5), 1987.

[7] V.S. Sunderam. PVM: A framework for paral­
lel distributed computing. Concurrency: Practice
and Experience, 2(4):315-339, 1990.

[8] Tom Windas. An Introduction to Option-
Adjusted-Spread Analysis. A Bloomberg Magazine
Publication, 1990.

Copyright © 1995 Software Engineering Press

Notification and Contact Management for Distributed Systems Support

Boris Grinfeld, Yuval Lirov, Andy Sherman, and Frank Wadelton
Fixed Income Research Infrastructure

Lehman Brothers, Inc.
New York, NY 10285

Abstract

In a large and complex distributed computing
environment, the failure of a single resource can
impair multiple systems and affect many users
dependent upon them. The combined automation
of fault detection and fault notification increases
the efficacy of the support function while
simultaneously reducing its cost. A critical issue
is the determination of whom to notify, based on
the nature, location, and severity of the failure.
BING, an intelligent and reliable contact and
notification system, manages rosters of contacts
and their relationships to various support entities,
and provides email and pager notification, as well
as acknowledgment and escalation facilities.

1 Introduction

The increasing complexity of distributed mission
critical applications requires a cost-effective
approach to systems management. In a distributed
environment, the failure of a single shared
resource may affect multiple applications and
their users. Wherever possible, automated probes
monitor the health of systems and the status of
processes running on them.

Various support groups, managers, developers,
and users require timely failure notification
dependingupon the nature of the failure, its
severity, and duration.

Traditional notification is simultaneously too slow
and too fast as it reaches the support person last
and the end user first. An outage is first noticed
by the application end-users, who notify the
application developers, who in turn notify the
systems or database administrators. We would
argue, however, that such an arrangement delays
unnecessarily the troubleshooting process. The
deployment of three automated systems, namely:
Gryphon, Proteus, and Bing, has helped reverse
the traditional notification chain. Gryphon
monitors for outages (and, as the knowledge base
grows, predicts them); Proteus [Desmond, 1994]
tracks problem resolution process; and Bing
notifies the appropriate parties (see Figure 1). The
new arrangement not only expedites problem
resolution, but also extends support scope: by the
time users are notified, problem resolution has
begun and there is a likely schedule for service
restoration.

Aute>ma.tie>n Support

~
Monitor Record

Figure 1: Support Information Flow

Copyright © 1995 Software Engineering Press 285

The main notification challenge is to correctly
notify the responsible people every time. By
increasing the set of notified parties, we can
guarantee access to the responsible people every
time, but we also increase the likelihood of
nuisance alerts.

Conversely, by decreasing the set of notified
parties, we minimize the likelihood of a mistaken
notification, but also reduce the chance to access
all needed people. For precise management of
contact requirements in every crisis scenario, we
need to strike a balance between these two
conflicting approaches.

Quick and precise management of vast amounts
of data is notoriously hard because of the
complexity of distributed systems [Lirov et al,
1993, 1995]. Worse, the peripatetic nature of
support personnel in a distributed computing
environment exacerbates the situation. At any
time administrators may be away from their desks
and fixing something in another part of the
building, logged in or not. A "system" now spans
thousands of hosts, and hundreds of servers,
applications, and support people. Additionally, a
lot of support is delivered by telecommuting from
home. As a result, all of our support personnel
carry alphanumeric pagers, and our notification
system is built around them. Finding the right
person in a crisis can be a logistical nightmare.

Earlier attempts to address this problem include
the system decribed in [Rice 1995]. It consists of
two subsystems: monitoring and notification. The
monitoring scheme is a proprietary finite state
machine, while the notification uses a simple, non­
queued method of dialing a static list of numeric
pagers. Our approach extends the notification
methodology in both the time and space
dimensions. First, because of the need to provide
coverage at all hours, our system provides for a
time dependent notification list. Second, because
of the size of our network and the extent of our
monitoring, our approach manages the
determination of the service group and the person
within the group to be notified for particular
classes of alarms.

286

Finally, we use alphanumeric paging to provide as
much information as possible in the initial
notification, and deliver the pages through a
queued mechanism that requires active
acknowledment and manages an escalation chain
for unacknowledged pages.

Notification knowledge representation maps our
understanding of production dependencies
between networks, servers, applications, and
users. Given outage symptoms, it enables
automated deduction of associated support
personnel and impaired applications. We
approach knowledge acquisition, the traditional
bottleneck of artificially intelligent systems, in
two phases: manual and automated. We acquire
manually the production dependency information
for all entities except the hosts. We acquire
automatically the host information and their
relations to the applications and servers. This
paper presents Bing, a system that manages both
the informational and operational aspects of
notification. First, it manages rosters of contacts
and their relationships to various supported
entities such as hosts, databases, and applications.
Second, it facilitates notification by pager and
email with acknowledgment and escalation
features. The paper proceeds in three major
sections. First, a case study will be presented
which highlights the need for such a system and
some of the complexities in the requirements.
Second, a theoretical discussion of the roster
management and notification problem is
presented. Finally, we discuss the architecture of
the Bing system implemented at Lehman Brothers.

2 Systems Administration 24 hours 7 days a
week

In the traditional support model, each subnetwork
or administrative domain has its own primary and
backup system administrators who receive all
support calls for that domain regardless of the
hour. This leads to a fragmentation of support and
difficulties in dealing with vacations, sick days,
and multiple concurrent problems. A support
model that requires an expert for every problem
does not deliver effectively on a bad day, and
certainly cannot scale up efficiently.

Copyright© 1995 Software Engineering Press

2.1 A New Paradigm - Team-based Systems
Administration

Using a single software template, and only three
possible disk configurations makes all of our Sun
desktops and servers identical. As hosts and
procedures become increasingly unifonn, any
member of the support team can handle a wide
variety of the support requests that come from
anywhere in our span of control, and are
encouraged to do so. We estimate that over 80%
of the routine support requests can be handled by
any administrator on the team. If the vast
majority of support problems can be handled by
any administrator, then there is no need to wake
up every administrator for night problems every
night. Instead, we instituted a rotation, so that one
administrator was on call each night.

DATABASE
HOST

All of our support staff can log into our systems
from home, and the administrator on call is issued
a portable telephone to answer pages while not at
home.

2.2 Roster Management and Notification
Requirements for Team-Based Support

With the introduction of an off-hour support
rotation, the problem of whom to notify of an
event on a given host became time dependent
We have become increasingly dependent upon
automated monitoring of our systems, and it is
essential that the monitors be able to initiate the
proper notification without human intervention.
Therefore, we required an additional layer of
intelligence above our nonnal email and
alphanumeric paging commands.

USERS

Figure 2: Directed Graph of Support Dependencies

Copyright© 1995 Software Engineering Press 287

This layer has 5 requirements: daytime
notification shall go to the primary SA for the
network or host; night time notification shall go to
the SA on call; unacknowledged notifications
shall be dispatched up an escalation chain,
including the backup SA and the SA manager; a
"panic button" facility shall notify the entire SA
group by day and the off-hour escalation chain by
night; the daytime notification shall skip the
primary SA the day after that SA was on call.

3 Notification Knowledge Representation

Notification knowledge base operates three basic
concept~: groups, entities, and domains. A
"group" is a set of login-ids representing an
administrative organization or a meaningful
collection of users (e.g. using a particular
application); sa, dba, and prod are administrative
groups. An "entity" is a unit of responsibility (a
host, subnet, dbserver, batchlonline application
e.t.c.). Groups are responsible for one or more
"domains" (i.e. sets of entities for which there are
separate duty schedules). The Bing Database
contains tables for: information about each
contact; primary.secondary admins, domain; work
shifts, rotation, etc.; log of pages and when/if
acknowledged; on-call admins by domain; entity
to entity dependency relations; and company
observed holidays. Figure 2 uses a directed graph
to illustrate the relationships and dependencies
between various entities.

For each responsibility domain there is a dayshift,
nightshift, and weekend/holiday shift.

The starting times of the three shifts are kept in
the database. Administrators are assigned to
entities. These assignments are what the system
uses during the dayshift. If there is no assignment,
the system looks for a day schedule. For
scheduled duty a rotation is kept in the database
which is used to generate an initial schedule for
the month. At the end of each month the
administrative group's manager runs a utility
which creates the schedule and outputs a flat file
$HOME/domain.Month containing a line for each
day of the month with primary and secondary on­
call assignments. A utility command allows single
entry updates to the database schedule directly.

288

But, if a significant number of changes are
anticipated to the generated schedule, the user can
vi the flat file and update from it.

Each of the supported entities (the rounded boxes
in figure 2) has its own primary support group.
The network domain and the various types of
hosts are the responsibility of the Systems
Administrators. The database backends are the
responsibility of the Database Administrators, the
batch cycles are the responsibility of the
Production Administrators, and the applications
are the responsibilities of their developers. The
notification chain for a condition affecting one of
the entities on this graph is derived from the
dependencies on that entity and the severity of the
condition. For example, a hardware failure on a
database host will certainly require notification of
the SA responsible for the host and the DBA
responsible for the database backend (at the time
of the error). Depending upon the severity of the
error and the length and timing of any downtime,
the batch production group, application support
group, and the user community may need to be
notified.

In general, a notification system provides five
basic services: maintain rosters and shift
schedules for multiple support and development
groups; maintain dependencies (or registration of
interest) on supported entities by multiple groups;
allow selective notification of a subset of all
groups interested in a given entity; distinguish
between action notifications (requiring
acknowledgment) and information notifications
(acknowledgment not required); and log all
notifications and acknowledgments.

4 Implementation

Bing, a knowledge-based roster management and
notification system is a set of utilities which are
wrappers around email and paging commands, or
provide for database query and update. Because
the system requires high availability, the
knowledge base is contained in a Sybase
relational database, which is duplicated on a hot
standby system and kept in synchronization using
periodic transaction log dumps.

Copyright© 1995 Software Engineering Press

In the remainder of this section we first describe
the set of knowledge management and
notification functions that are currently
implemented and then describe work in progress
to automate parts of the knowledge acquisition
process.

4.1 Knowledge Management

The database contains rosters for the various
support groups, including contact information and
shift schedule information. For each support
group an entity encodes that group's primary
responsibility. Characteristics of the entity include
identifying information, such as hostname,
network address or dataserver name, as well as
the primary and secondary daytime contacts.
Gronps may express interest in an entity that is
the primary responsibility of another group, for
example, the DBA group is interested in
notifications relating to the host for a database
backend.

We distinguish between maintenance and
notification commands. Maintenance commands
allow the support manager to adjust rosters,
schedules, and entity contacts, as well as allowing
any user to list contact information without
actually initiating a notification. The notification
commands allow action or information
notifications of either all interested groups or
some subset. The notification of each group is
controlled by that group's contact list and shift
schedule. For action notifications, an
acknowledgment must be issued by one of the
contacts or the notification will escalate through
the secondary contact or if necessary the group
manager.

The system logs all notifications and
acknowledgments. Utilities allow the support
manager to scan the log, which provides a
convenient summary of what happened, for
example, during a particular night shift

4.2 Automated Knowledge Acquisition

We are currently exploring three avenues for
acquiring additional knowledge through
automated means. In every case, we are looking
for ways to identify the users who are associated
with a given entity.

Copyright © 1995 Software Engineering Press

We have focussed on user identification because
that population is continually changing, and is
difficult to track manually.

An application usage accounting system that
tracks usage of various in-house applications
serves as a highly accurate knowledge base of
who needs to be notified for faults affecting a
particular application. Specifically, it contains
information ranging from all users who have ever
used application X to the set of users who
currently have session of application Y running
on their workstations.

Another way to associate users with applications
is to look at their database backends, which are
dedicated to each application. We can log
connections to the database by user or host As
with the usage database, this gives us a picture of
who is actively using the application at any given
time, and, in particular, who will be affected by
faults relating to the database backend.

Another important problem is that of defining the
community of interest for problems with NFS
servers. While everyone with a given server in
their automount maps is potentially an interested
party, we might really only be concerned with
people who actually access it. Using network
sniffing software, we can look at what users are
generating NFS traffic with a given server, and
from where.

4.3 Examples

The system uses two basic commands for
notification and acknowledgment: bing, and back.
For instance,

bing DEVIl..S

bing sunbond

application?

back1917

#server is downufider

#has the market crashed

or is it just my

#acknowledged msg from

Russia # Revolution

back user frankw boris#acknowledged all
messages

from Frank or Boris

289

HOST A

BATCH
CYCLE

SUBNET

HOSTB

USRGRP
1

USRGRP
1

USRGRP
2

USRGRP
3

Figure 3: Tree of Entity Dependencies

back admin wizkid #acknowledged all msgs

for whizkid

The bing command waits for acknowledgment
from an administrator. Calls are acknowledged by
running a command with the log number of the
message. The log# is obtained by a listing the
outstanding messages. A retry time is specified by
domain within the database.

The system first tries to contact the primary
administrator(s) for the appropriate shift and
responsibility entity. After the retry time has
expired, it tries the primary again. Then it goes to
the secondary administrator(s) on duty. It tries
him also a second time and then escalates to the
group manager. The system gives up when the
manager has been beeped twice and there is still
no acknowledgment. Email is sent to an
administrator when he is beeped.

Three command line options generalize the
functionality of the basic commands in three
ways: scope, action, and time.

290

Specifically, the scope option includes four
possibilities: 1 for primary group's administrators,
2 for secondary groups' administrators, 3 for
application developers, and 4 for user groups.
These values are not exclusive and multiple codes
may follow -s.

The action option allows to specify a subset of
possible actions (mail, tell, zephyr, etc.). For
instance, bing RISKPROD_A -sl -a13 -s234 -a2
asteroid falling on datacenter, means "notify
primary administrators via email and beeper, and
secondary administrators, developers, and
application users via Zephyr only." The action
option enables the Bing user to specify a subset of
the full scope of an entity which can also be
represented as a subtree of the entity dependency
tree rooted at the impaired entity.

Time dependence may be optionally specified.
The database contains the days and hours of the
week in which various user groups require
applications up. The time dependence is
represented as a bitmap.

:
0 ineering Press

The value of the bitmap for each node is
determined by OR-ing together the bitmaps of all
the children of the node. A -t option on the
command line indicates that the time dependence
bitmap should be utilized to filter the dependence
relation represented by the entity tree.

Although generally administrators are assigned to
entities by day and to a duty schedule by night,
the system allows day schedules and night
assignments. For some entities an override may
be specified for the entity which demands
selection of the assigned admin even though for
the given domain a duty schedule might normally
be consulted.

Suppose that usrgrpl requires application!
between 9:30AM and 4:30PM and usrgrps2 and 3
require applications2 and 3 respectively between
7:30AM and 5:30PM. host b crashes at 5:00PM.
Then, of course, the primary administrators of
host b (sa's) would be called regardless of time.
Usrgrpl does not need its application at 5PM but
usrgrps 2 and 3 do. So those groups and the
administrators of the entities above them
constitute the set of potential notification targets
in this case. The scope option in the Bing
command would indicate which of these to
include.

SSummary

Reliable notification of primary support personnel
and interested parties is an essential tool in the
management of large distributed computing
networks. Team-based support paradigms add
complexity to the notification problem because
the notification chain is time dependent. In
addition, because the work of various support
groups is interrelated, events for an entity
supported by one group may require notification
of the contact list of another.

A set of tools has been developed to manage
rosters, entities and relationships, and to perform
notification with acknowledgment and escalation.
These have been deployed as part of a large
distributed systems monitoring environment. Our
experience is that this has taken the guesswork
out of many notifications scenarios, and has
resulted in fewer missed pages and increased
reliability and accountability.

Copyright© 1995 Software Engineering Press

Acknowlegment

The authors thank Jeff Borror for driving
innovation in support of the business.

References

J. Desmond, "First Application Automates
Tracking of Thousands of Support Requests per
Month," Application Development Trends, pp. 68-
69, December 1994.

Y. Lirov, 0. Aloni, B. Grinfeld and A.
McMichael, "Embedded Artificial Intelligence for
Trading Floor Support", Second International
Conference on Artificial Intelligence Applications
on Wall Street, 123:130, April 19-22, 1993, New
York City.

Y. Lirov, A. Goldberg, and A. Tzvieli,
"Intelligent Infrastructure for the Distributed
Front Office," Artificial Intelligence in Capital
Markets, Chicago: Probus, 1995.

E. H. Rice, "Have Your System Page You
Automatically," Unix Review, March 1995.

291

Intelligent Batch Testing of Distributed Interactive Applications

Aaron Goldberg and Yuval Lirov
Fixed Income Research Infrastructure

Lehman Brothers, Inc.
New York, NY 10285

Abstract

The increasing frequency of new software
releases conflicts with the need for stable and
reliable systems. A Polymorphic Application
Specific Test Encoding Language (PASTEL)
captures application level primitives and exploits
artificial intelligence to facilitate and expedite
release testing. PASTEL descriptions are used to
set up tests which replicate full production
conditions, running applications across hundreds
of workstations and testing difficult to model
shared system resources before software reaches
the trading floor.

1 Introduction

Computerized trading and sales systems provide
investment banks with a critical competitive edge
in today's global markets. However, the
competitive nature of these dynamic markets sets

up a fundamental conflict for applications
developers. On the one hand, systems must be
absolutely reliable to insure there are no problems
during the business day. On the other, systems
must continuously change to incorporate new
financial instruments, currencies, and analytic
techniques. To balance change and reliability,
applications developers require advanced release
testing technologies that detect problems before
software reaches the trading floor. However, full
release testing is extremely difficult because of
the inherent complexity of distributed systems.
For example, the aggregate behavior of the
distributed system depends on the individual
actions of all its users.

Our goal is to create a system load (Figure 1) that
mimics the actions of potentially hundreds of
independent human users executing a complex

Measure production
a Iication usa e

Update PASTEL tape
and in uratio

292

roduction performance
signature ignature

No

xecute test in LoadRunne
on release software

Figure 1: Test Calibration Process

Copyright© 1995 Software Engineering Press

trading system. Ultimately, we use our knowledge
representation to map application usage scenarios
into computational load patterns, providing a
mechanism for validating system performance.
We currently have an operational prototype of a
batch load testing system that is regularly used in
the release cycle to reproduce the workload of
fifty distinct users executing different application
paths across fifty workstations.

The basic problem is to represent the system
under test. We distinguish two kinds of
knowledge: local application usage patterns and
global resource performance loads The local
patterns consist of sequences of elementary
application primitives such as trade entry and
trade edit. Our PASTEL testing paradigm
supports both classes of knowledge. Usage
patterns are represented as tapes that contain lists
of application primitives. Global resource loads
are represented as graphs of resource utilization
(performance signatures).

Knowledge acquisition consists of enumerating
application primitives, characterizing application
usage patterns, and collecting shared resource
performance signatures. While primitive
enumeration can be performed by human
developers and business analysts, the amount of
data • required both to characterize application
usage and to capture a performance signature is
too vast for humans to collect manually. Both
tasks are automated as described later in the paper.

Our prototype combines four concepts. First, we
exploit commercially available Graphical User
Interface (GUI) testing software to develop a
driver that allows us to execute interactive
applications in batch mode. Second, we create a
set of application specific test languages to
encode our tests. Third, we describe techniques to
characterize normal application behavior. And
finally, we show how to validate the test,
checking that it accurately replicates the real
world workload.

2 Remote Batch Test of Interactive Applica­
tions

Our implementation relies on the LoadRunner
GUI tester from Mercury Interactive. The test
designer invokes LoadRunner in learning mode
and executes the operator test sequence. In
learning mode, LoadRunner acts as a virtual
window display server, making note both of user
inputs such as mouse movements, button clicks,
and keystrokes and of high level application
responses like a new window being brought up.
LoadRunner automatically stores the sequence of
inputs and outputs in a file using a batch scripting
language with primitives like
click(MiddleButton)and
wait_window("File Menu"). Thus, with
the help of the LoadRunner GUI tester, the test
designer transforms a high level interactive
application test into a batch script. Invoking
LoadRunner in batch mode, the learned script can

Table 1: Developing PASTEL for Trading System

Application Primitive PASTEL Construct

Edit a trade Edit Trade <Offset>

Enter a trade RegularTrade <Bond Offset> <Price> <Quantity>

View current yield curve YieldCurveRefresh

Copyright@ 1995 Software Engineering Press 293

be played back, running the application and
entering user input at the appropriate points.
Further, LoadRunner is designed for remote batch
test and it allows the user to designate the set of
remote hosts where the test will be run.

3PASTEL

The key to empowering developers to create their
own application tests is developing an encoding
specific to the application. We ref er to this
knowledge representation approach as PASTEL,
or Polymorphic Application Specific Test
Encoding. The first portion of this section
introduces PASTEL via an example. The second
portion gives the flavor of the actual
implementation.

The Taxable Fixed Income Risk group needed to
develop a batch, performance test of their trade
entry and risk analysis system. Development
began with a 30 minute meeting to discuss the
basic primitives of their system. Attendees at the
meeting included both the application developers

function refresh_yield_curve() {
bring up yield curve

and the Business Analysts (BA's)who support the
application on the trading floor. The BA's
described their perception of how traders use the
system. The application developers helped to
collapse the set of primitives by noting user input
sequences that were functionally equivalent in the
code. This meeting was followed up with a half
hour session with one of the lead developers to
formalize the basic primitives into an application
specific test encoding language. A subset of the
primitives selected in the initial meeting and final
language developed in conjunction with the
developer are shown in Table 1. Because, the
developers and business analysts are intimately
familiar with their application domain, the
knowledge acquisition process is straightforward
and inexpensive.

The PASTEL interpreter is written in the Test
Scripting Language (TSL) provided with the
LoadRunner software. Figure 1 provides example
TSL implementations of a primitive and an
extract from the main interpreter loop. In addition
to the primitives, the prototype interpreter

select_display_menu(); move_locator_rel(0, 45, 1); click("Left");
if (!wait_window (60, "", "Yield Curve", -1,-1,-1,-1)) {

294

report_msg("Yield curve window did not come up; Exiting");
return;

}

press refresh button
move_locator_abs(675,610, 1); click("Left");
wait(lO);
dismiss yield curve
move_locator_abs(1041,610, 1); click("Left");

while (getline hostline < tapefile) {
fields = split(hostline, hostarr, " ");
if (hostarr[l] = "EditTrade") {

edit_trade(hostarr[2]);
} else if (hostarr[l] = "RegularTrade") {

regular_trade(hostarr[2], hostarr[3], hostarr[4]);
} else if (hostarr[l] = "YieldCurveRefresh") {

refresh_yield_curve();
} else if

Figure 2: PASTEL Implementation (primitive and interpreter loop)

Copyright© 1995 Software Engineering Press

Disk lltll lzatlon
12 r

10 -

8 -

6 -

..... , .. ,

..
cf'd""'4:uti lization of cl<O -
cfd""'4:utillzatlon of d<1 ······
cf'd""'4:utlllzatlon of d<4 - -

............................... ,
0 ...

16:00

. . J ...
·,_ ..

...... I, ... , ············"
16:10 16:20 16:30 16:40 16:50 17:00

Tl,oe starting Wed Jan 11 16:00:00 1995

Figure 3: Disk Performance Signature

provides limited control flow and
synchronization constructs. PASTEL programs
are structured as sets of files called tapes, with
control flow changes accomplished by
executing RunTape <next-tape-file>
to transfer control to the top of the named tape.
The prototype interpreter does not yet support a
stack so PASTEL does not provide call/return
semantics. Synchronization is implemented
assuming a shared file system, with a touch/
synch pair supporting a blocking rendezvous
where touch creates a file and synch waits
for the removal of the file. There is also a
delay (seconds) construct to insert pauses

4 Characterizing Application Behavior

PASTEL provides a platform for executing a
sequence of application primitives over a set of
hosts. It does not, however, address the problem
of characterizing application usage: "Who
executes what sequences of primitives at what
interval?" The problem is particularly
challenging because simple statistical models
are inadequate. When an employment number
comes out or the Fed announces a rate change,

Copyright© 1995 Software Engineering Press

many traders simultaneously access the system To
capture these effects, the developers instrument
the existing application code to log each time
application primitives are invoked by each user.
Then, PASTEL tapes are constructed to recreate
the actions of specific users at specific times of
specific days. The actual load test is driven by a
configuration file that has one ordered triple for
each test user containing: (hostname, usemame,
initial-tape). Typically, the last two lines of the
initial-tape will be

synch start_test
RunTape nextape.USERNAME

The file start_test is deleted to allow the test
to proceed, and each user begins executing a
designated PASTEL script.

5 Calibrating the Test with Performance Signa­
tures

The technology described in the previous section
allows us to execute a full performance test, but
how do we calibrate the test, to insure that it does
in fact represent the behavior of the true
production system? We address this problem with

295

shared resource performance signatures. Our
applications all depend on shared resources. In the
trading application discussed earlier, the key
shared resource is the Sybase dataserver. To
capture its performance signature, we collect CPU
and Disk Utilization versus time using the
standard UNIX iostat command as well as
information on the number of active client
connections. Figure 2 illustrates a typical disk
performance signature. Figure 3 shows the
calibration process. There are two inputs to the
process: the performance signature from the
instrumented production dataserver and the test
load (PASTEL tapes) that are intended to
reproduce this signature. We run the PASTEL
tapes under LoadRunner and monitor the
dataserver to collect a performance signature.
Finally, we compare the production and test
signatures, iterating if the match is inadequate.
Currently, this is a manual trial and error process,
though we expect to apply pattern filtering
techniques to compute quantitative measures of
closeness of match between the production and
test signatures [Leclerc 1994]. Once the match is
sufficiently close, the PASTEL workload is
applied to the new version of the application
software

6 Experience and Future Work

We have presented a new framework for
application release testing that reduces the risk of
introducing bugs into production software. The
PASTEL system represents a significant step
forward because it allows the developer to
reproduce full distributed production workloads.
In a real world trading application, we developed 15
PASTEL primitives with less than three hours of
developer interaction, encoded these primitives in
perhaps eight more hours, and had the developers
running 50 workstation tests on their own. PASTEL is
a system where proper knowledge representation
empowers developers to test applications code under
controlled production conditions.

In practice, PASTEL has isolated two classes of
problem and allowed us to quantify performance
improvements across releases. First, while
developing the primitives, we tried numerous
arbitrary interleavings of primitives, encountering
one that simply did not work because of a bug in

296

the code. Second, under a full production load, we
drove the Sybase dataserver to deadlock in a pre­
release version of the application. Finally, by
running the workload in a loop for a twenty
minute period before each release, we have been
able to develop the "Peak trades/minute" metric
which allows us to compare performance across
releases.

While the PASTEL prototype is in production
use, several areas would benefit from
improvement. One limitation of the LoadRunner
software is that it runs all software as a single
UNIX user ID. For our current test, this is not a
significant problem, because the application has
its own user identification system, disjoint from
the UNIX system. However, it does present
obstacles to accurately testing certain other
Lehman products.

A second limitation is the complexity of
implementing a full set of primitives. For
example, the 15 primitives available in the system
test described in this paper ignore many features
of the application. We overcame this shortcoming
with human agents: two or three developers
exercise bring up the application while the batch
test is running to exercise the "exotica".

Acknowledgment

We would like to thank Jeff Borror for an
environment that fosters innovative solutions to
business problems.

References

F. Leclerc and R. Plamondon, "Automatic
Signature Verification: the State of the Art-1989-
1993," International Journal of Pattern
Recognition and Artificial Intelligence (June
1994) vol.8, no.3, p. 643-60

Y. Lirov, A. Goldberg, and A. Tzvieli,
"Intelligent Infrastructure for the Distributed
Front Office," Artificial Intelligence in Capital
Markets, Chicago: Probus, 1994.

TSL Script Language Reference Manual, Mercury
Interactive Corporation, 1993.

Copyright@ 1995 Software Engineering Press

Balasubramanian, Ravikumar:223
Baratlo, Arash: 276
Beirjandi, Heshmat:223
Bloom, Ben: 117
Buntine, Wray L.: 2
Bynum, Sue: 117
Cadden, David T.: 232
Castillo, Oscar: 80
Chandra, A: 199
Chenoweth, Tim:74
Choi, JaeHwa: 63
Coy, Steven 223
Dasgupta, Partha: 276
Deotta, F. : 151
DiCresce, A.: 151
DiGiorgio, Rinaldo: 263
Driscoll,Vincent: 232
Edelson, William: 168
Fernandez, Eugenio: 92
Freedman, Roy S. : 263
Garavaglia, Susan: 190
Gargano, Michael L. : 11, 168
Geller, James: 2
Georgiou, George K. : 146
Gilardoni, L. : 151
Gobreial, Hany: 42
Goldberg, Aaron: 292
Golden, Bruce L. : 223
Goldschmidt, Peter: 24
Grinfeld, Boris: 285
Haetke, Christian: 212
Halper, Michael: 2
Hassan, Mohamed R.: 100
Hiemstra, Ypke: 212
Kar, Santanu: 203
Karakoulas, Grigoris: 108
Kedem, Zvi M. : 276
Knower, Bryan: 11
Krakovsky, Dimitri: 276
Krovi, Ravi:199

Copyright <C> 1995 Software Engineering Press

INDEX BY AUTHOR

Kumar, Ned: 199
Kwon, Ohseok: 223
Lee, Myung K. : 63
Lirov,Yuval: 285, 292
Long, Alan: 53
Lotvin, Mikhail: 3 6
Lyons, Patrick J. : 203
Mahfoud, Sam: 174
Mani, Ganesh: 17 4
Marchese, Frank: 11
Markovitch, James: 218
Melin, Patricia: 80
Miller, Walter: 232
Nemes, Richard: 36
Noble, Robert: 117
Obradovic, Zoran: 7 4
Olmeda, Ignacio: 92
Perl, Y ehoshua: 2
Prunotto, P. : 151
Rafea, Ahmed: 100
Rajagopalan, B. : 199
Raphael, Theodore D. : 158
Rhee, Moon-Whoan : 63
Rocca, G. : 151
Rosenberg, Burton: 182
Rotov,Dimitri:272
Roy, H. Scott : 2
Scandizzo, Sergio: 238
Shafik, Suzanne S. : 100
Sher, David B.: 146
Sherman, Andy: 285
Sy, Bon K. : 146
Tenti, Paoli: 243
Tick, Evan: 253
Todd, Cheri: 117
Tyree, Eric W. : 53
Varley, John: 158
Wadelton, Frank: 285
Yang, Oscar: 2

297

Addendum

Avoiding overfitting by locally matching the noise level of the data

Andreas S. Weigend
Department of Computer Science
and Institute of Cognitive Science

University of Colorado
Boulder, CO 80309-0430

andreas@cs.colorado.edu*

Morgan Mangeas
Electricite de France, Direction des Etudes et Recherches
1, av. du general de Gaulle, 92141 Clamart, France, and

Department of Computer Science
University of Colorado, Boulder, CO 80309-0430

mangeas@cs.colorado.edu

Abstract When trying to forecast the future behavior of a real-world system, two of the key
problems are nonstationarity of the process (e.g.; regime switching) and overfitting of the model
(particularly serious for noisy processes). This articles shows how gated experts can point to solutions
to these problems. The architecture, also called society of experts and mixture of experts consists
of a (nonlinear) gating network and several (nonlinear) competing experts. Each expert learns a
conditional mean (as usual), but each expert also has its own adaptive width. The gating network
learns to assign a probability to each expert that depends on the input.
This article first discusses the assumptions underlying this architecture and derives the weight update
rules. It then evaluates the performance of gated experts in comparison to that of single networks,
as well as to networks with two outputs, one predicting the mean, the other one the local error bar.
This article also investigates the ability of gated experts to discover and characterize underlying the
regimes. The results are:

• the gating network discovers the different regimes that underlie the process: the outputs of the
gating network segment the data correctly into the different regions

• the widths associated with each expert characterize the sub-processes: i.e., the variances give
the expected squared error for each regime

• there is significantly less overfitting compared to single nets, for two reasons: only subsets of the
potential inputs are given to the experts and gating network (less of a "curse of dimensionality"),
and the experts learn to match their variances to the (local) noise levels, thus only learning as
much as the data support.

This article focuses on the architecture and the overfitting problem. Applications to a computer-generated toy problem
and the laser data from Santa Fe Competition are given in [Mangeas and Weigend, 1995], and the application to the
real-world problem of predicting the electricity demand of France are given in [Mangeas et al., 1995].

1 Introduction

Conventional time series models are global models. They can be linear, assuming that the next is superposition
of preceding [Yule, 1927, Chatfield, 1989], or they can be nonlinear, typified as neural networks with hidden units
[Lapedes and Farber, 1987, Weigend et al., 1990]. Global models are well suited to problems where the underlying
dynamics is stationary.

However, man real-world time series are not stationary, but rather switch between different regimes. For example, the
regimes of electricity demand depend on the seasons, and regimes of financial forecasts depend on the economy (e.g.,
recession or growth) [Granger, 1994, Hamilton, 1994]. Although-in principle-a single global model can emulate
any function, including regime switching, in practice it might be very hard to learn. A typical problem in trying to learn
regimes with different noise levels by a single network is that the network starts to extract features in some regime that
do not generalize well (local overfitting) before it has learned all it could have in another regime (local underfitting).

1.1 Gated experts

We here present a class of models for time series prediction that we call gated experts. They were introduced into the
connectionist community as mixture of experts [Jacobs et al., 1991]; [Rumelhart et al., 1995] use the term society of
experts. The basic idea behind gated experts is simple: rather than using a global model, we try to learn from the data
several local models (experts) simultaneously with the splitting of the input space.

*http://www.cs.colorado.edu/~andreas/Home.html

We use the term gated experts for nonlinear gated nonlinear experts: the input space can be split nonlinearly by
using the hidden units of the gating network, and the sub-processes can be nonlinear through the hidden units of the
expert networks. In contrast to related work (e.g., [Hamilton, 1994, Jordan and Jacobs, 1994]) we allow the noise­
level parameter associated with each individual expert to adapt separately to the data. Different regimes can thus be
approximated with different precision. This turns out to be a new approach to the problem of overfitting, of matching
model-complexity to data-complexity.

Apart from excellent predictive performance and robustness against overfitting, gated experts lend themselves to a
rigorous statistical interpretation that allows to segment the series and identify the underlying regimes. This approach
is more fundamental than previous connectionist methods for segmentation, based on the errors [Elman, 1990], and on
the activations of the hidden units [Doutriaux and Zipser, 1990]. In order to achieve reliable convergence and numerical
stability, we had to combining the EM algorithm (explained in Section 2.3) with a second-order method for the nonlinear
optimization. Given our experience so far, we expect this class of models to scale up well to larger problems.

1.2 Organization of the article

Section 2 gives a mathematical and probabilistic perspective on the architecture, the cost function and the search.
Section 3 analyzes why the gated experts help avoid overfitting and compares gated experts with a method to determine
local error bars introduced in [Weigend and Nix, 1994]. This is done on the task of predicting the electricity demand
of France.

1.3 Related Work

The idea of splitting an input space into subspaces is not new. In the time series community, one of the first examples
is the threshold autoregressive (TAR) model [Tong and Lim, 1980]. In contrast to gated experts, the splits there are
very simple and ad hoc; there is no underlying probabilistic interpretation.1 More closely related to gated experts are
the mixture models of the econometrics community [Hamilton, 1990, Hamilton, 1994]. Expressed in connectionist
language, the mixture models used there do not have any hidden units: both the gate and all the experts are linear.
To our knowledge, neither the double-nonlinear gated experts used here nor the flexible individual noise levels for the
different regimes have been used in economics or econometrics [Granger and Teriisvirta, 1993, Hamilton, 1994].2 The
rigorous probabilistic interpretation of the linear gated experts fully generalized to the gated experts discussed here.

An important inspiration for our work has been the introduction of mixture models into the connectionist
community by Jacobs, Jordan, Nowlan and Hinton (1991),3 and the convergence proof [Jordan and Xu, 1995].
[Jordan and Jacobs, 1994] developed a related architecture of a hierarchical mixture of linear experts (with fixed
widths). [Waterhouse and Robinson, 1995] applied this architecture to time series prediction of the sunspots
[Weigend et al., 1990, Nowlan and Hinton, 1992] and for nonlinear regression on an example of noise heterogene­
ity [Weigend and Nix, 1994]. Further related work is [XU, 1994] who applies this architecture to two linear AR(2)
processes, and [Muller et al., 1994] who use "hard competition" for a similar task.

Before turning to the theory, we would like to point out that gated experts do not just simply average different "experts:"
in contrast to an additive model where the weights of the individual predictors are fixed, the outputs of the gating
network vary dynamically with the input. This allows the experts to specialize and learn the areas of their responsibility,
whereas simple averaging (e.g., as in [Perrone, 1994]) requires all sub-models to be equally responsible over the entire
space.

1TAR models still are quite popular in economics and econometrics. Typically, a cut in one of the input variables is introduced,
and two hyperplanes are fitted, each of them to the points in each corresponding subspace. The constraint of continuity across the
cut is introduced by hand (whereas it emerges naturally for gated experts). Successful applications of TAR models are typically
on problems with relatively few data points (0(100)) and splits now splits are often made in an exogenous variable, such as the
volatility [Engle, 1982, Bollerslev, 1986, Bollerslev et al., 1990]. A more flexible model of multivariate adaptive regression splines
(MARS) [Friedman, 1991] has recently been applied to forecasting of financial data [Lewis et al., 1994].

2The problem of estimating local noise levels is known in the statistics literature as noise heterogeneity [Seber and Wild, 1989].
Statistics, however, tends to assume a specific, often rather stringent model for the noise as a function of the input.

3Steve Nowlan suggested the application of Gaussian mixture models to time series analysis to us in 1991; the present article
summarizes the work done since and includes some of the results presented at an invited talk at IEEE Workshop on Neural Networks
for Signal Processing and at Neural Networks in the Capital Markets (NNCM) in 1994.

2 Theory of Gated Experts

This section describes the ingredients needed to specify a connectionist model: the architecture (network topology and
activations functions), the cost function (in a maximum likelihood framework related to an error model), and the search
algorithm that minimizes the cost function.

2.1 Architecture

Fig. 1 shows the architecture of the gated experts model. The entire model consists of K experts and one gating
network. The task of each expert is to approximate a function over a region of the input space. The task of the gating
network is to assign to each input vector one expert. Both the experts and the gating network have access to the inputs.
The teacher signal that is directly available is the target (i.e., the next value in time series prediction)-the splitting
of the input space is not known. To solve the problem, we need to blend supervised and unsupervised learning: the
supervised component learns to predict the next value, and the unsupervised component discovers the (hidden) regimes.

E[y Ix]

y I (YK (x) gl (x) gK(x)

EXPERT 1 EXPERTK I GATING NETWORK

variance variance
O" 2

I
O" 2

K

X

Figure 1: The architecture of gated experts. The inputs x
are at the bottom of the figure. The boxes indicate nonlin­
ear neural networks. The gating outputs g;(x) weight the
expert outputs Yi (x); the expectation value of the output is

Lf=l Yi(x)yi(x).

yl
y

y2

y3

X

Figure 2: Probability density function given
by a mixture of Gaussians (Eq. 6). The out­
puts of the experts, Yi (x), give the centers of
the Gaussians and vary with the input. The
widths, indictated by ui are indpendent of the
input. The three Gaussians densities sketched
are multiplied with different gates Yi.

In more detail, expert j learns a function Yi(x), implemented as standard neural network with tanh hidden units and a
linear output unit. The output Yi can be interpreted as a parameter of a conditional target distribution. For example, if it
parametrizes a Gaussian, Yi corresponds to its mean.4 The other parameter of a Gaussian, its width Uj, is a property of
the expert; it does not depend on the specific input vector, but it adapts during learning to the noise level in the regime
it is an expert for (see Eq. 19).

The gating network has one output for each expert. The goal of outputj is to estimate the probability that a given input
was generated by expert j. We use normalized exponentials (also called "softmax" -units) for the outputs of the gating
network to incorporate into the architecture the constraints that the outputs should be positive and sum to unity. The
first level of the gating network is an ordinary single network with hidden units. The hidden unit activations e are then
combined with a weight vector wi for each j = 1, 2, • • •, I{ into an intermediate activation

Si = Wj • e + Ci (1)

where the dot product implies the sum over the hidden units and Cj is a constant ("bias") term. The Sj are then
exponentiated and normalized to sum to unity, giving for the weighting of jth expert

(2)

4If there is only a single expert and we assume a Gaussian error model with constant-noise level (variance), then this is
equivalent to minimizing the squared error between the output and the target value (as can be seen by taking the negative logarithm
of the Gaussian) [Rumelhart et al., 1995]. If we allow the width of the Gaussian to become a function of the inputs (e.g., by
adding a second output unit to the network to predict the local error bar), we obtain a model for estimating the local noise level
[Weigend and Nix, 1994, Nix and Weigend, 1995].

The gating network can be viewed as generating K mutually completing probabilities as a function of the input x. The
built-in constraint of outputs of the gating network summing to unity implements a competition between the experts.

Having described the topology and activation functions, we now need to specify the cost function. The next section
uses a maximum likelihood framework to derives a cost function.

2.2 Cost function

We begin by defining the variables we use:

• x is the input vector

• d is the target (or "desired output value")

• Yi is the output of expert j (corresponds to the mean of the Gaussian)5

• ai is the width of the Gaussian represented by expert j

• P(Y = y I x, j) is the probability density associated with the jth expert for the stochastic variable Y to take
the value y

• gi (x) is the probability the pattern is generated by the jth expert, given the input x

• hi (x, d) is the posterior probability that the pattern was generated by the jth expert, given input x and target d
• j denotes the event that the pattern is generated by the jth expert, (1 ::; j ::; K).

We now make an important assumption: only one expert is responsible for a pattern, i.e., we assume that the events of
choosing the experts are mutually exclusive, allowing us to write for the probability of observing the data point d given
the input and the model:6

K K K

P(Y =YI x) = LP(y,j Ix)= LP(j I x)P(y I x,j) = Lgi(x)P(y I x,j)
i=I

where the sum extends over the experts.

i=I i=I
(3)

Eq. 3 is written in terms of probability distributions. In order to give a single number as "the prediction," we take the
expectation value of the probability density.7 It is given by the linear combination of the expectation values of the
individual experts, Yi = E [y I x, j], weighted by the gi 's:

K

ii= Lgi(x) Yi(x) (4)
i=I

Note that this model is not included in the usual class of feed-forward networks: the expectation value is a product
of the outputs of single networks. However, as usual, the y is a deterministic function of the input, and the noise is
included in the assumption of an error model [Rumelhart et al., 1995].

We now want to evaluate goodness of the model by how well the data are predicted by the model. To be specific, we now
assume each experts to describe a Gaussian. The probability of generating a value y by expert j is then proportional to

P(ylx,0i)= ~exp(-(Y-Yj(~,Oi))
2

) (5)
21T<T? 2 (Ti

J

The parameters 0i and the variance aJ characterize expert j. Pis the probability density of observing a Y = y where
Y is a stochastic variable.

51n this article the output is a scalar; the generalization to a vector is straightforward.
6If k events (A;)ie{i,2, ... ,k} are mutually exclusive, then P(A; I\ Aj) = 0 if i =f. j, and P(A1, A2, ... , AK) = I::1 P(A;).
7The expectation value is only a good statistic if the distributions is more or less unimodal. If the assumption that each pattern

was generated by a single expert is correct, the g's should during learning become binary. In that case only one Gaussian remains
active for every data point, and the goal of a point-prediction is well justified. It is a good idea to check the distribution of the g
values; if it remains at intermediate levels, there might be a mis-specification of the model (e.g., nothing is gained by splitting the
data into different regimes) or the task (e.g., predicting a single value is not appropriate. There are approaches to predicting arbitrary
probability densities; the mixture ofGaussians prior to taking the expectation value can be used [Bishop, 1994]; an alternative is the
nonparametric "fractional binning" technique [Weigend and Srivastava, 1995].

The probability density of the mixture in response to an input pattern x is given by the weighted sum of the individual
Gaussians (see Fig. 2)

K

LYi(x,09) P(y I x,0j) (6)
j=l

Assuming statistical independence (the superscript t enumerates the patterns, their total number is N) allows us to
obtain of the full likelihood by taking the product of the likelihoods of the individual patterns:

N N K
C = IT P(Y = d(t) I x(t)) = IT L Uj(x(t), 09) P(it) I x(t), 0j) (7)

t=l t=l j=l

fri=gj(x(t),0g) 1 2 exp (-(d(t)_y~~(t),0j))2)

t=lj=l M J

(8)

The cost function C is given by the negative of the logarithm of the likelihood function:

(9)

Having described the global probability model, we now proceed to the estimation of the parameters
09 ,01,02,· • •,0K ,u1,o-u • •,<TK. The usual way of minimizing the cost function·c with respect to the parameters through
gradient descent did not work out here: it turned out to be too hard for simple backpropagation of this cost function to
learn at the same time both the individual maps of the experts as well as the splits of the input space through the gating
network. Note that the sum inside the logarithm makes the cost function significantly more complicated than in the
case of a single network.

Following [Hamilton, 1994, Jordan and Xu, 1995], we now use the Expectation-Maximization algorithm to solve the
optimization problem. This algorithm is based on the assumption that some binary variables are missing. In our case,
the information that is missing is which expert it was that generated a given pattern.

2.3 Search: Expectation Maximization

The cost function Eq. 9 is quite difficult to minimize with backpropagation (gradient descent). However, we can
reformulate the problem such that it allows us to apply the Expectation-Maximization algorithm (EM). To map the
problem onto EM, we first need to identify some missing (or "hidden") variables. We choose as the missing variables
the probabilities that a given pattern (t) was generated by expert j; j = 1, • • •, K. Second, to get rid of the awkward
sum inside the logarithm, we assume (consistent with Eq.3) that only a single expert generated the pattern; this is
implemented by an "indicator variable." We thus choose the missing data to be a set of indicator random variables

Ymis = {Iy),j= l, ... ,K,t= 1, ... ,N}with

/t) _ { 1 if pattern (t) is generated from the jth model
i - 0 otherwise.

This allows us to rewrite the likelihood, replacing that sum over experts by a product over experts-this is ok since the
indicator variable filters out all but the true term.

Now, the problem is that we do not know the values of Ij. This is where the two-step EM algorithm comes in. In the
first step (E), we compute the expectation values for Ij (assuming that all the network parameters are known). And in
the second step (M), we update our the parameters of the model (assuming that the Ij 's are known: we just take those
from the E-step).

More formally, we assume that the distribution of the "complete-data" (Y, Y mis) is given by the following likelihood
function:

N K 1<•)
P(Y, Y mis I 8) = II II [uj (x(t>, 0g) P(it) I x(t), 0j)] i (11)

t=lj=l

where 0 = (0 u, 01 , 02, • • • , 0 K, 0-1, 0-2, • • • , o-K). So far we have chosen two distribution, one for Ymis (Eq. 10), and
one for (Y, Y mis) (Eq. 11). Note that when we integrate out Ymis, we obtain the probability of Y given 0 (Eq. 8) as
the marginal distribution, P(Y I 0) = J P(Y, Y mis I 0) dYmis .

Unfortunately, we cannot directly use this new likelihood (Eq. 11) because we do not know the missing variables. So,
the idea of the EM algorithm is to replace the missing variables J(t) by their expectation values h)t) (The superscipt i
denotes the iteration number; we iterate back and forth between the E-step and the M-step). These expectation values
are computed in the E-step:

-

E [1Y) I Y,0Ci)] = P(j I xCt),d(t))

P(j, d(t) I xCtY) P(j I x(t)) P(d(t) I xCt), j)
P(d(t) I x(t)) - P(d(t) I x(t))

gj (x(t), 0~i)) P(d(t) I x(t), 0Y))

Lf=1 gk (x(t), 0~i)) P(d(t) I x(t), 0~i))

(12)

(13)

(14)

Assuming Gaussian distributions for the experts, we can express h entirely through the easily available quantities g, d,
and Yi (and the parameters o- and 0):

(15)

Taking the negative logarithm of Eq. 11, and replacing the I's by the h's (i.e., their expectation values) allows us to
arrive at the EM cost function:

N K

CEM = -LLhf)1n[gj(xCt),00)P(it)lxCt),0j)] (16)
t=l j=l

- ~~ h\t)ln [g·(x(t),0) 1 exp (- (d(t) _ Yj(x(t),0j))2)]
~~ J J g r,;::::.i. 20-?
t=I j=I y 21ro-j 3

(17)

·= -~~h\t)[1n(g·(x(t) 0)-(d(t)_Yj(xCt),0j)/ _!ln21ra-?]
~ ~ 3 3 ' u 20-? 2 3
t=I j=I J

(18)

The M-step uses this cost function and adjusts the parameters of the network in order to minimize it.

Specifically, the updates for the variances can be computed directly:

N 2 L h?) (it) - Yi (x(t)))
o-J:= _t=_I ___ N _____ _ (19)

Eh?)
t=l

The variance of the jth expert is set to a weighted sum of squared errors; the weight is given by the posterior probability
that expert j generated that pattern. The denominator normalizes the weightings for that expert.

Since we use nonlinear hidden units, the weights of the networks cannot be computed but are found through gradient
techniques. The weight change is proportional to the difference between the desired value d and the expert output Yi,

acCt)
EM = -h\t) _!_ (d(t) - y· (x(t) 0~)) (20) ow J ~ J , J

This leaning rule adjusts the parameters such that the expert output Yi moves towards the desired value d. However,
note the two factors in front of the usual difference between desired value and prediction:

• The first factor, hy), modulates the weight change proportional to the importance of that expert for the pattern.

• The second factor, 1 / a-J, modulates the learning according to the general noise level in the regime of expert j.
If the average squared error (Eq. 19) in the regime is large, the influence is scaled down. If the regime is
believe to only have little noise, small differences in (d - Yi) are exaggerated by dividing through a small
number. This can be interpreted as a form of "weighted regression," increasing the effective learning rate in
low-noise regions and reducing it in high-noise regions. As a result, the network emphasizes obtaining small
errors on those patterns where it can (low a-2); it discounts learning patterns for which the expected error is
going to be large anyway (large a-2).

We have found it useful to introduce a lower bound for a-2 ; its exact value depends on the specific problem. For the laser
data of the Santa Fe competition, for example, we set it to the experimental resolution given by the analog-to-digital
converter. This hard limit corresponds to the assumption of a prior distribution for the variance that is flat above the
cut-off and zero below the cut-off. Choosing an appropriate prior is an important part of modeling, particularly for
short and noisy data sets.

The weight changes of the gating network are proportional to the gradient of the cost function with respect to the
intermediate variable Sj (prior to exponentiation and normalization in the "softmax" part, see Eq. 1):

3c(t)
EM=_ (h~t) _ g·(x(t) Bi))

8s • 3 3
' 9

J

(21)

This parameters are adjusted such that P(j I x) = gi (xCt), 0~) gets pulled toward P(j I x, d) = h)t) Note the difference
between the g's and the h's. hi is the posteriori probability of using the jth expert-its computation uses both input
and output information. gi is only a function of the input; it tries its best to approximate hi without knowing the target
value. In learning the g's move toward the h's; a scatter plot of gi vs hi where each pattern gives an entry is a good
diagnostic.

In all of our experiments, the gating network and the expert networks are nonlinear, and we use a second-order
method to update the parameters in the M-step(the Broyden-Fletcher-Goldfarb-Shanno algorithm, or BFGS, see
[Press et al., 1992]). This batch method computes a descent direction as function of the first and second derivatives,
and chooses the best step in this direction in order to minimize the cost function.

2.4 Comparison to other cost functions

We close this section by interpreting the cost function that we minimize (for clarity suppressing the implicit dependencies
on the parameters, and by comparing it related cost functions. Dropping also the sum over patterns t, i.e., writing it as
per-pattern cost function, we started out with a mixture of Gaussians,

(22)

(as the exact cost function), and in the EM implementation after introducing hi as posterior probability that a pattern
was generated by expert j

1 [(d-y·)2 l
CEM=y-hjlngi+ 2yhj a-JJ +lna-J+ln21r (23)

The first term here can be viewed as an entropy term. Since gi gets pulled to hj (Eq. 21), the term can be approximated
by Lj gj ln 1/ gj. This entropy is a measure of "disorder" of the experts: it is cheapest if there is most order, i.e., if
only one expert is fully responsible for the pattern. The cost increases if more than one expert gets gated in and reaches
is maximum if all gj = 1/ I{, i.e., if an average over all experts is taken.

The expression in squared brackets, weighted for each experts by its relevance, is identical to the cost function derived
in [Weigend and Nix, 1994] for the case of predicting "local error bars" (i.e., of a network with two output units, one
for the conditional mean, the other one for the conditional variance),

1 [(d - y(X))
2

2 l
CLEB = 2 a-2(x) +lna- (x)+ln21r (24)

where LEB stands for "local error bars". This architecture is more complicated in that the variance u2 (x) is an explicit
function of the input, and it is more simple in that there is no gating network. Eq. eq:CLEB, and the square bracket
in Eq .24 share an important feature: there is a trade-off between the two terms containing u2. The squared-error term
could be made small by a large value of u2, but the cost increases logarithmically with u2. The minimum w.r.t. u2 just
corresponds to setting u 2 to the expected squared error, see Eq. 19.

A standard least mean square minimization of •

C = ! [(d-yj(x))
2

+lnu2 +ln21r]
LMS 2 u2

(25)

assumes that u2 is a constant. If we are only interested in finding the minimum, dropping all constants from 25is

equivalent to minimizing the squared error, (d - Yi (x)) 2 .

3 Avoiding Overfitting by Estimating the Noise Level: Weighted Regression

To investigate the learning dynamics, we compare three architectures: gated experts (Fig. 3), learning the variances
(Fig. 4), and a single neural network (Fig. 5) on the problem opfpredicting the energy demand of France. Details are
given in [Mangeas et al., 1995]. In all cases, we plot as a function of training time (on the same scales) the normalized
mean squared error

Lt ET (observationk - prediction)2
ENMS = · 2

LtET(observatlont - meanr)
(26)

ENMS compares the performance of the model on set T to simply predicting the mean on that set.

0.07

en
~0.06
z
w

0.05

0.02

Gated Experts

'---,~00~200__...,;300,,..._..,..,__,,..,500~.600~700~8,,.,00-900-,---J1000
Iterations

Figure 3: The normalized mean
square error ENMS (Eq. 26) as func­
tion of training iterations for gated
experts. The solid line is the in­
sample error (training), the two bro­
ken lines are out-of-sample errors.

M7

en
~0.06
z
w

0.05

0.0-,

0.03

0.02

local Error Bars

'---,=-00_200,,,_,__,,,300,.....-,,..,c-----csoo'--c"'°=----c'=-oo---=aoo----cc-,oo-,---J1000
Iterations

Figure 4: ENMS learning curve for
~he model that learns both to predict
the next value and prediction and the
local error bar (variance).

Single Network
o.,.,----~~~~~~~~~--.

o.o
2
L1=-oo---=200=:;;soo:;==..,;:::500;;:::::::;:.,,==:,oo;::::aoo:;=;,=..,=,Jooo

Iterations

Figure 5: ENMS learning curves for a
single network trained by backprop­
agating the squared errors. In this
case the cost function is identical to
the plotted ENMs performance.

Note that the in-sample error (solid line) is significantly lower for the single network than forthe other two architectures.
However, the out-of-sample performances (broken lines) never reach as good minima as the other two methods,
Furthermore, the single network overfits significantly worse, i.e., determining the exact stopping point becomes very
important.

Analyzing the costs as functions of training time (not shown here) shows significant overfitting on the respective costs
in all three examples. However, Figs. 3-5 show that the pe,formance differs significantly. Whereas the gated experts
show very stable learning and do not overfit much (Fig. 3), the local error bar network is somewhat worse (Fig. 4), and
the single network (Fig. 5) a lot worse.

It is thus important to distinguish between the full cost (which might include penalty terms, robust errors, etc.) and the
performance term we are ultimately interested in (which we take here to be squared error, but it could be anything from
percent correct, to the profit a neural network trading strategy makes). In our experience with flexible neural networks
and noisy data, the cost function almost always overfits [Weigend, 1994]. The key is to choose the cost function that it
learns features that generalize well such that its overfitting has little effect onto the true performance we are interested

in. Distinguishing between the cost function and the performance part is an important degree of freedom in modeling,
particularly for short data sets and noisy problems [Weigend et al., 1990].

4 Application to financial data

We have applied gated experts on the financial problem of foreign exchange trading. The main architecture have been
outlined here; the size of the data set (both the number of inputs and the record length) was comparable to the problem
reported here (and similar to [Weigend et al., 1995]). The key feature we found for the gated experts was that two of
the experts become active on about 1110th of the trading days (active being defined as g > 0.8). On those days, their
out-of-sample accuracy is larger than 70%. This architecture manages to find regimes where the variance is lower than
average, and allows for successful modeling of the dynamics in those lower-noise regimes.

Acknowledgments

Applying a Gaussian mixture models to time series analysis was first suggested in 1991 to Andreas Weigend by Steve
Nowlan. This material is based upon work supported by the National Science Foundation under Grant No. RIA ECS-
9309786 to Andreas Weigend. Morgan Mangeas is grateful for discussions with Mike Jordan during the summer school
of the Electricite de France (EDF) in 1994 and acknowledges support by EDF while visiting the Computer Science
Department of the University of Colorado at Boulder.

References

[Bishop, 1994] Bishop, C. M. (1994). Mixture density networks. Technical report, Aston University.

[Bollerslev, 1986] Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics,
21 :307-328.

[Bollerslev et al., 1990] Bollerslev, T., Chou, R. Y., Jayaraman, N., and Kroner, K. F. (1990). ARCH modeling in finance: A review
of the theory and empirical evidence. Journal of Econometrics, 52(1):5-60.

[Chatfield, 1989] Chatfield, C. (1989). The Analysis of Time Series. Chapman and Hall, London.

[Doutriaux and Zipser, 1990] Doutriaux, A. and Zipser, D. (1990). Unsupervised discovery of speech segments using recurrent
networks. In Touretzky, D.S., Elman, J. L., Sejnowski, T. J., and Hinton, G. E., editors, Proceedings of the 1990 Connectionist
Models Summer School, pages 303-309, San Fransisco, CA. Morgan Kaufmann.

[Elman, 1990] Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14: 179-211.

[Engle, 1982] Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of united kingdom
inflation. Econometrica, 50:987-1007.

[Friedman, 1991] Friedman, J. H. (1991). Multivariate adaptive regression splines. Annals of Statistics, 19: 1-142.

[Granger, 1994] Granger, C. W. J. (1994). Forecasting in economics. In Weigend, A. S. and Gershenfeld, N. A., editors, Time Series
Prediction: Forecasting the Future and Understanding the Past, pages 529-538, Reading, MA. Addison-Wesley.

[Granger and Terasvirta, 1993] Granger, C. W. J. and Terasvirta, T. (1993). Modelling Nonlinear Economic Relationships. Oxford
University Press, Oxford, UK.

[Hamilton, 1990] Hamilton, J. D. (1990). Analysis of time series subject to changes in regime. Journal of Econometrics, 45 :39-79.

[Hamilton, 1994] Hamilton, J. D. (1994). Time Series Analysis. Princeton University Press, Princeton.

[Jacobs et al., 1991] Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E. (1991). Adaptive mixtures of local experts.
Neural Computation, 3:79-87.

[Jordan and Jacobs, 1994] Jordan, M. I. and Jacobs, R. A. (1994). Hierarchical mixtures of experts and the EM algorithm. Neural
Computation, 6:181-214.

[Jordan and Xu, 1995] Jordan, M. I. and Xu, L. (1995). Convergence results for the EM approach to mixtures of experts architectures.
Neural Networks, (in press).

[Lapedes and Farber, 1987] Lapedes, A. and Farber, R. (1987). Nonlinear signal processing using neural networks. Technical
Report LA-UR-87-2662, Los Alamos National Laboratory, Los Alamos, NM.

[Lewis et al., 1994] Lewis, P. A. W., Ray, B. K., and Stevens, J. G. (1994). Modeling time series using multivariate adaptive
regression splines (MARS). In Weigend, A. S. and Gershenfeld, N. A., editors, Time Series Prediction: Forecasting the Future
and Understanding the Past, pages 296-318, Reading, MA. Addison-Wesley.

[Mangeas et al., 1995] Mangeas, M., Muller, C., and Weigend, A. S. (1995). Forecasting electricity demand using a mixture of
nonlinear experts. In World Congress on Neural Networks (WCNN'95).

[Mangeas and Weigend, 1995] Mangeas, M. and Weigend, A. S. (1995). First experiments using a mixture of nonlinear experts for
time series analysis. In World Congress on Neural Networks (WCNN'95).

[Miiller et al., 1994] Miiller, K.-R., Kohlmorgen, J., andPawelzik, K. (1994). Segmentation and identification of switching dynamics
with competing neural networks. In Proceedings of International Conference on Neural Information Processing (JCONIP'94),
pages 213-218.

[Nix and Weigend, 199 5] Nix, D. A. and Weigend, A. S. (1995). Local error bars fornonlinear regression and time series prediction.
In Tesauro, G., Touretzky, D. S., and Leen, T. K., editors, Advances in Neural Information Processing Systems 7 (NIPS*94). MIT
Press, Cambridge, MA.

[Nowlan and Hinton, 1992] Nowlan, S. J. and Hinton, G. E. (1992). Simplifying neural networks by soft weight-sharing. Neural
Computation, 4:473-493.

[Perrone, 1994] Perrone, M. P. (1994). General averaging results for complex optimization. In Mozer, M. C., Smolensky, P.,
Touretzky, D. S., Elman, J. L., and Weigend, A. S., editors, Proceedings of the 1993 Connectionist Models Summer School, pages
364-371, Hillsdale, NJ. Lawrence Erlbaum Associates.

[Press et al., 1992] Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1992). Numerical Recipes in C: The Art
of Scientific Computing. Cambridge University Press, Cambridge.

[Rumelhart et al., 1995] Rumelhart, D. E., Durbin, R., Golden, R., and Chauvin, Y. (1995). Backpropagation: The basic theory. In
Chauvin, Y. and Rumelhart, D. E., editors, Backpropagation: Theory, Architectures, and Applications, pages 1-??, Hillsdale, NJ.
Lawrence Erlbaum Associates.

[Seber and Wild, 1989] Seber, G. A. F. and Wild, C. J. (1989). Nonlinear Regression. Wiley, New York.

[Tong and Lim, 1980] Tong, H. and Lim, K. S. (1980). Threshold autoregression, limit cycles and cyclical data. J. Roy. Stat. Soc. B,
42:245-292.

[Waterhouse and Robinson, 1995] Waterhouse, S. R. and Robinson, A. J. (1995). Non-linear prediction of acousitc vectors using
hierarchical mixture of epxerts. In Tesauro, G., Touretzky, D. S., and Leen, T. K., editors, Advances in Neural Information
Processing Systems 7 (NIPS*94). MIT Press, Cambridge, MA.

[Weigend, 1994] Weigend, A. S. (1994). On overfitting and the effective number of hidden units. In Mozer, M. C., Smolensky, P.,
Touretzky, D. S., Elman, J. L., and Weigend, A. S., editors, Proceedings of the I 993 Connectionist Models Summer School, pages
335-342, Hillsdale, NJ. Lawrence Erlbaum Associates.

[Weigend et al., 1990] Weigend, A. S., Huberman, B. A., and Rumelhart, D. E. (1990). Predicting the future: A connectionist
approach. International Journal of Neural Systems, 1: 193-209.

[Weigend and Nix, 1994] Weigend, A. S. and Nix, D. A. (1994). Predictions with confidence intervals (local error bars). In
Proceedings of the International Conference on Neural Information Processing (ICONIP'94), pages 1207-1212, Seoul, Korea.

[Weigend and Srivastava; 1995] Weigend, A. S. and Srivastava, A. N. (1995). Predicting probability distributions: A connectionist
approach. International Journal of Neural Systems, 6.

[Weigend et al., 1995] Weigend, A. S., Zimmermann, H., and Neuneier, R. (1995). The observer-observation dilemma in neuro­
forecasting: Reliable models from unreliable data through CLEARNING. In AI Applications on Wall Street.

[XU, 1994] XU, L. (1994). Signal segmentation by finite mixture model and EM algorithm. In Proceedings of the 1994 International
Symposium on Artificial Neural Networks (JSANN'94), pages 453-458, Tainan, Taiwan.

[Yule, 1927] Yule, G. (1927). On a method of investigating periodicity in disturbed series with special reference to wolfer's sunspot
numbers. Phil. Trans. Roy. Soc. London, A 226:267-298.

The Observer-Observation Dilemma in Neuro-Forecasting:
Reliable Models From Unreliable Data Through CLEARNING

Hans Georg Zimmermann
Ralph Neuneier

Siemens AG, ZFE T SN 4
Otto Hahn Ring 6

Andreas S. Weigend
Department of Computer Science
and Institute of Cognitive Science

University of Colorado
Boulder, CO 80309-0430

andreas@cs.colorado.edu*
D-81739 Milnchen, Germany

georg.zimmermann@zfe.siemens.de

This paper introduces the idea of clearning, of simultaneously cleaning data and learning the un­
derlying structure. The cleaning step can be viewed as top-down processing (the model modifies.
the data), and the learning step can be viewed as bottom-up processing (where the data modifies
the model). After discussing the statistical foundation of the proposed method from a maximum
likelihood perspective, we apply clearning to a notoriously hard problem where benchmark perfor­
mances are very well known: the prediction of foreign exchange rates. On the difficult 1993-1994
test period, clearning in conjunction with pruning yields an annualized return between 35 and 40%
(out-of-sample), significantly better than an otherwise identical network trained without cleaning.
The network was started with 69 inputs and 15 hidden units and ended up with only 39 non-zero
weights between inputs and hidden units. The resulting ultra-sparse final architectures obtained with
clearning and pruning are immune against overfitting, even on very noisy problems since the cleaned
data allow for a simpler model. Apart from the very competitive performance, clearning gives insight
into the data: we show how to estimate the overall signal-to-noise ratio of each input variable, and we
show that error estimates for each pattern can be used to detect and remove outliers, and to replace
missing or corrupted data by cleaned values. Clearning can be used in any nonlinear regression or
classification problem.

1 Introduction

Traditionally, observed data are assumed to be "the truth," and model building reduces to data fitting. In contrast,
in human reasoning, people constantly use their internal model of the world to (re-)evaluate and possibly discard
observations. This can be called the observer-observation dilemma: Neglecting the data entirely reduces to dreaming
or hallucinating, and neglecting the model entirely without building models and hypotheses prevents us from forming a
consistent view of the world, recognizing outliers, etc. Winograd and Flores (1986) nicely describe the use of implicit
knowledge and top-down processing in human perception and cognition, and how it could be applied in the computer
sciences.

Most mathematical modeling assumes noise-free inputs: the model is built from the data in bottom-up fashion. Our
basic assumption is that the data is noisy and the data set size is limited, conditions surely fulfilled when modeling
financial data on the time scale or daily data. The method we propose here also includes top-down processing: the
emerging model is allowed to modify data if the cost of moving the data is smaller than the gain in cost associated with
the output error.

This paper introduces a formalism for building numerical models that uses the top-down information from the model
in order to correct outliers and characterize and understand the inputs better. Conceptually, the method consists of two
steps:

1. learning: use the data to modify the model (structure);

*http://www.cs.colorado.edu/~andreas/Home.html

2. cleaning: use the structure to modify the data (observations).

We use the term clearning to describe the simultaneous application of both steps in model building. Note the trade-off
between the belief in the data and the belief in the model, the observer-observation dilemma.

The idea is broadly applicable; as motivation, we give an example of classification, as it occurs in financial decision
making. Let us consider the case of two classes (e.g., input patterns of the first class belong to a trending market, input
patterns of the second class represent a side market). On the one hand, if these clusters are well separated, it is easy to
find a decision boundary. On the other hand, if the clusters overlap, a flexible model will be able to find a complicated
boundary that will not generalize well to new patterns. Cleaning the data corresponds to moving patterns on the training
set closer to their centers, reducing the overlap on the training set, and allows a simpler decision structure to match the
cleaned data.

Although the proposed method is useful for decision making (classification) and portfolio applications, this paper focuses
on its application to forecasting or time series prediction, essentially a regression problem. So far, all connectionist
models for regression assume noise-free inputs and try to find a regression surface that approximates the targets (desired
values) associated with the inputs as well as possible. The standard approach breaks the potential symmetry between
inputs and outputs. Particularly in univariate time series prediction where the inputs are just lagged values of the output,
this assumption is clearly inconsistent.

When trying to work with financial data, there are several sources of errors. One source is the entering of the data
(such as wrong numbers, sometimes as blatant outliers), or unreliable timing in quotes (no longer tractable). Even
if the available data are entered correctly, they might be poor indicators for the underlying economic processes (e.g.,
industrial production and unemployment). Another source stems from the uncertainty in measuring quantities such as
the GNP or the tax revenue, quantities that are difficult to assess and typically revised. Finally, there always are external
influences that are not captured by the inputs into the model. They show up as noise.

Having very noisy data and very flexible methods (such as neural networks) is potentially a dangerous combination: if
the model is too flexible, it will not only model the signal but also the noise, and yield poor out-of-sample performance.
In particular, outliers absorb resources: In case of an outlier, the network moves a hidden unit to the outlier in order to
reduce the error. As a consequence, there are not enough resources left to approximate the true structure in lower-noise
regions. The many attempts of applying neural networks to financial problems have made one fact clear, that the
pro~lem of controlling the flexibility of the model is central.

In order to obtain good generalization (out-of-sample performance) on problems with finite, noisy data sets, such
flexible models require regularization. We briefly describe some of the methods that are useful on financial data. One
of them, pruning, will play a crucial role in combination with clearning (discussed in the Section 2).

• Stop early. Backpropagation is an iterative procedure: the complexity of the model gradually increases with
training time [Weigend, 1994]. Starting training with small weights and stopping early introduces a preference
for linear models since the weights do not have enough time to grow large enough to express significant
nonlinearities. This can be a serious problem when trying to find nonlinear structure in noisy data. In any
case, we al ways monitor an error on a cross-validation set; when it starts going up as function of training time,
we begin to bring in some of the other techniques.

• Penalize network complexity. Adding a complexity term to the cost function that effectively counts the
number of significantly sized weights is known as weight-elimination [Weigend et al., 1990]. This method
treats the weights as independent; it has first been applied to financial data in [Weigend et al., 1991].

• Prune weights. To evaluate the reliability of the information coded in a weight, we use the size of the weight
relative to the standard deviation of its fluctuations. (The fluctuations occur in response to the training inputs
on a pattern-by-pattern basis.) We start with an oversized network, rank all weights in terms of a test statistic
(Eq .9), and remove those oflow significance in order to obtain a sparse network topology [Finnoff et al., 1993].
The pruning step is performed in conjunction with early stopping. This pruning limits the ability of the network .
to memorize the training data without introducing a bias towards linear models-this is an important distinction
to the use of early stopping alone [Weigend and LeBaron, 1994].

• Neuro-fuzzy methods. Constraints, extracted from humans in the form of logical rules, can be used to
constrain the network architecture and learning. In terms of overfitting problems, this corresponds to building
a model that is resistant against outliers. A recent example is the insertion of priors that describe the derivative
of the outputs with respect the inputs [Neuneier and Zimmermann, 1995].

• Hints. [Abu-Mostafa, 1995] gives the example of the symmetry-hint for predicting foreign exchange data
This hint corresponds to viewing exchange rate returns first from one country, then from the other country.
The hint suggests that the dynamics should be the same. During training, the cost functions switches back
and forth between gradient descent in the performance cost function (i.e., learning to predict the returns), and
learning the hint (i.e., learning to minimize the difference in response to a pattern and to the flipped version of
the pattern).

• Pseudo-data: add noise to inputs that reflect our belief in their accuracy. The idea is best explained
through an example. Let us assume that we believe that the response of the network to a certain pattern
should be the same also when the pattern is slightly compressed or stretched in time. Backpropagation is an
iterative procedure; at each presentation of a training pattern, we allow for some stretching or compressing of
the pattern by repeating or dropping an observation of the time series with a certain probability. The network
thus learns to also recognize stretched and compressed versions of the training patterns. It will subsequently
generalize better on the test set if this belief about the data is indeed correct. The difference between hints and
pseudo-data is that any input vector can be used to descend on the hint, whereas pseudo-data tend to stay close
to the actual data since the added noise has them explore the vicinity of the data points [Weigend, 1995].

Our approach here is quite different.1 Rather than adding different random noise to the inputs at each training iteration
in order to prevent the network to overlearn outliers, we prevent the network from overfitting by continually moving the
inputs to a more likely point by using information from the observed output and the model. There are two assumptions
involved. First, that there is a clean or "true" input value. This gives us the hope of building a better model, i.e., a
model with less stochasticity. Second, that cleaning moves the inputs closer to that true value; we will show in the next
section how this is achieved with gradient descent in a backpropagation framework. Note that during training, we both
use the data to adjust the model and the model to adjust the data: cleaning is only possible through a model.

2 Cleaming = Cleaning and Leaming

We here derive the regression case; the method can also be applied to the classification case (using sigmoid outputs for
predicting the probability of increase of the price of an asset), and to the portfolio case (using normalized exponentials).
Suppressing pattern indices, the total per-pattern cost is given by the sum of two terms,

E = !1] (y- yd/+ !x; (x - xd/.
2 2

The first term, EY = ½11 (y - yd)
2

, is the usual squared error term between network output

y=y(x,w)

(1)

(2)

and the desired value of the output yd. (The symbol w denotes the vector of model parameters.) The second term,
E'c = ½ x: (x - xd)

2
, is the squared deviation between the cleaned input x and the data input xd.

There are two sets of update rules, the update rules for the weights, and the update rules for the input values. The
gradient descent update rule for the weights is identical to standard backpropagation

8E d 8y
Wi+I = Wi - - = W; - 1J (y - Y) - (3)

8w 8w
The update rule for the cleaned input x; at iteration i is given by

8E
Xi+I = Xi - -8x

(4)

1This approach can be related to the method of total least squares [Huffel and Vanderwalle, 1991] (in the context of linear
models), to error in variables [Seber and Wild, 1989] and to methods dealing with missing data [Buntine and Weigend, 1991,
Tresp et al., 1994].

Rewriting xi as a sum of the original data point xd and a correction term (Li;, also at iteration i),

Xi= Xd + Li; '

the update rule can be expressed most easily as

(d) fJy Li;+! = (1 - K)Li; -1] Y - Y -
fJx

The elements of the update rule for the input correction term are:

• Exponential decay of .tl.
Without new impulses, .tl shrinks back to zero, proportional to 1 - "'· (0 :a:; "' :a:; 1).

• Proportionality to the output error (y - yd).

(5)

(6)

This is the same proportionality as in "normal" error backpropagation: the larger the deviation, the larger its
effect on the update (in this case on the cleaning). Note that 17 enters here since it describes the scale of the
output error.

• Proportionality to the sensitivity of the output with respect to the input, fJy / fJx.
This quantity describes the slope (gradient) of the surface at the present operating point x (the cleaned value-the
network does not see xd any more). (This quantity is already computed in error backpropagation.)

Note that there are two step-sizes involved, the learning rate 17, and the cleaning rate"'· From the perspective of classical
mechanics, they can be interpreted as spring constants (E = ½kil2); from the perspective of statistics as the inverse of a
noise variance.

A mechanical interpretation of the cost function and the (relative) learning and cleaning rates is given in Fig. 1. The
standard case (without cleaning) can be viewed in the following way. The data points are put in the (input x output)
space. The regression output (network response) can be viewed as a surface above the input space. The data points
are vertically attached to the surface with springs; these springs store the (internal) energy. The model complexity lies
in the trade-off between the stiffness of the regression surface and the stiffness 17 of the springs. In the one extreme,
an infinitely flexible model would just go through all of the data points. On the other extreme, infinitely weak springs
would not modify the model from its prior value (e.g., from a hyperplane).

The new addition are the springs in the input space, between each input data point xd and its cleaned value x. The
energy stored in that spring is ½Kil2. "'is the spring constant and .tl = xd - x the amount the spring is stretched.
Minimizing the total cost function (Eq. 1) corresponds to minimizing the total energy stored in the input springs and the
output springs (averaged over all patterns). The ratio between 17 and"' describes the trade off between the stiffnesses
(or importances) between the output errors and input errors.

A statistical interpretation of the cost function can be given in a maximum likelihood framework
[Rumelhart et al., 1995]. We assume that each pattern was generated by a "true" input (estimated by x) and a "true"
output (estimated by y). We then assume that it is corrupted by Gaussian noise (additive to all the inputs and all the
outputs, independent in each component). This statistical interpretation, in conjunction with the model that we have
obtained, allows us to characterize the inputs by their noise levels. The total variances of the inputs (i.e., sum of the
noise and the signal) are easily computed (and, in connectionist modeling, used to scale the inputs). The present method
allows us to estimate the two parts (the noise level and the signal level) separately2 by using the model that we have
learned already. We record the squared deviations .tl2(t) of each input as functions of the pattern index t (the time when
each prediction is made). This allows us to gain insights that cannot be obtained otherwise into the process:

• Detect outliers. Plotting the squared errors of all the inputs and the outputs for each pattern as a function
of time (like a spectrogram) allows us to extract three signatures: Individual spikes point to a typo-like error.
Horizontal bars points to an outlier in the input that has been generated by a smoothing operation (e.g., a moving

2This is in principle an ill-defined problem: there are many ways of writing one number as the sum of two numbers (Jerry
Friedman, public communication, NIPS'90). However, since the final model is quite respectable asjudged from the out-of-sample
performance, the estimates of the noise levels are also reasonable.

Figure 1: Mechanical analogy of the trade-off between learning and cleaning. In contrast to error-free input modeling,
we here attach a spring to the data point xd and allow that spring to be stretched to x for a price: the energy stored in

that spring is 1/2i;, (xd - ~ where i;, is the spring constant. The ground state is reached when the sum of this energy
and the energy stored in the spting in the output (next to 'r/ in the figure) is minimal. J

average training signal). Horizontal bars point to outliers in the output: several inputs try to compensate for
the output outlier; the output itself also has a large error.

• Characterize input variables by their stochasticity. Taking the mean of the squared errors across time (i.e.,
computing the mean squared errors of each of the inputs) allows us to characterize the signal-to-noise-ratio of
each input feature. This is not possible without using a model.

• Error covariance matrix. Computing the covariance matrix of the errors allows us to investigate the validity
of the assumption of statistical independence of the noise of the inputs. If there are significant non-zero
off-diagonal contribution, the modeling can be improved by transforming the data by the inverse of the noise
covariance matrix.

• ARSCH Models (AutoRegressive Special Conditional Heteroskedasticity). Estimating the noise levels
enables us to generalize ARCH and GARCH models [Engle, 1982, Bollerslev, 1986, Bollerslev et al., 1990]:
since we allow for nonlinearities at every level, we call these models where we input the noise levels
averaged over an exponentially decaying window in time ARSCH models (AutoRegressive Special Conditional
Heteroskedasticity).

The remainder of this section discusses how models that were built on cleaned data are to be used for prediction. We
first discuss the case of point predictions where the goal is to predict the expectation value. We then give an algorithm
that exploits the noise structure in the inputs to obtain a probability distribution over the output values.

Predicting the expectation value (point predictions). Once we have built the model, point predictions are obtained
by a simple feed-forward pass through the network. In principle, we use cleaned data whenever available: e.g., any
lagged variable in the input should be replaced by its cleaned value.3 In practice, however, when the majority of
variables are not simply past values of the outputs but more complicated indicators, we simply use the raw data to obtain
the predictions. The results reported in this papers were obtained with the raw inputs in the final feed forward step.

Predicting the probability density of the next step. We have emphasized the importance of knowing the accuracy
of the prediction from a number of sources.4 The clearning algorithm puts us in the fortunate position of being able to

3This also applies to variables derived from cleaned inputs; e.g., a moving average should be replace by its cleaned value. This
process can be iterated.

4Examples are (1) estimating uncertainties due to the splitting of the data [Weigend and LeBaron, 1994]--crucial when

estimate the error in the outputs due to the uncertainty in the inputs. We start by computing the matrix of empirical
input errors Ll(t); this matrix consists of one vector (across inputs) for each time step (or pattern). In order to forecast
the probability density of the next value, we use today's input vector (as in the case of point predictions), randomly
pick one of the empirical noise vectors, and add it to today's input, and record the resulting output. We then draw (with
replacement) a second vector from the set of empirical noise vectors, add it to today's (original) input, and generate and
record the corresponding output. We repeat this procedure typically with several hundred to a thousand resamplings.
We then present the prediction for tomorrow as a histogram of these predictions.

This section has discussed the clearning strategy, and indicated how predictions are to be obtained. To not clutter the
presentation, we have omitted the details of the pruning that is done in parallel with the clearning. The next section
discusses our pruning algorithm.

3 Pruning

In Section 1, we discussed the standard methods of regularization in neural networks. In Section 2, we discussed how
to use the evolving model to modify the input data. We now combine the two concepts; using cleaned data instead
of the noisy data allows us arrive at even smaller networks since there are fewer irregularities in the data that would
absorb resources that are not supported by the underlying dynamics: simpler data allow for a simpler model. In our
experience, we were able to obtain truly ultra-sparse models, unprecedented in what has been done before. We typically
end up with fewer weights than inputs! The final networks are immune against overfitting; having found the nonlinear
structure in the data, we train the resulting ultra-sparse networks to minimize the error on the test set as well as they
still can.

In more detail, we clearn until we observe overfitting, measured by an increase of :Z:::(Y - yd)2 on the validation set.
Our goal is to thin out the connections between input and hidden units; we want to remove the weights that respond
most to the noise. Consider a specific weight in the network; w denotes its present value in training. The key idea is
the following: we present one epoch (iteration) of input patterns t = I, ... , N. We then compare the size of the weight
(at the end of the epoch) to its fluctuations in response to the inputs during that epoch.

Let et denote the weight change in response to pattern t. (In gradient descent: et ex: -a Et/ aw). The mean and standard
deviation of the weight change over the epoch are given by

I N

mean(e) = N L)t mean weight change (over epoch) ,
t=I

and

std(e) = ~ =

This allows us to formulate the following test statistic:

lw + mean ce) I

test value : std (O

rms weight change (fluctuations)

I weight at end of epochl
fluctuations during epoch

(7)

(8)

(9)

If this test value is large, we keep the weight since it is well determined (the fluctuations are small compared to size
of weight). If the test value is small, we prune the weight since it is not well determined (the size of weight is small
compared to its fluctuations). We are primarily interested in pruning connections from the inputs to the hidden units.5

All the weights of the input-to-hidden layer are ranked according to their test value.

cross-validation sets are set aside to determine meta-parameters, (2) estimating confidence intervals for unimodal distributions
[Weigend and Nix, 1994]-useful for problems that consider Sharpe ratios, (3) obtaining essentially.model free arbitrary distributions
with the method of fractional binning [Weigend and Srivastava, 1995]-important for multi-modal processes, e.g., when we expect a
big move that could go either up or down, and (4) finding trading days where we can trust our model to a higher than average degree,
using the method of gated experts [Weigend and Mangeas, 1995]-important for very noisy processes.

5We are particularly interested in removing inputs completely; an alternative method for variable subset selection based on the
information theoretic measure of mutual information is described in [Bonnlander and Weigend, 1994].

Figure 2: Distribution of test values (Eq. 9) for the weights for the final network trained on exchange rate prediction
with pruning only. (Screendump from the SENN simlulator.) The top two rows are for the weights that are active; the
bottow row for the weights that are pruned away.

One further decision has to be made: we have the choice of evaluating the test value using the raw or the cleaned inputs.
We here compute this statistic on the raw (uncleaned) data for two reasons:

1. The fluctuations of the weights mirror the noise present in the data. In this sense it can be viewed as noise-filter.

2. In prediction mode, the very recent inputs are only available in uncleaned form. Using the raw inputs in
pruning is thus closer to the final task.

Furthermore, the fluctuations of the data are mirrored in the fluctuations of the weights. Removing the part of the
network that is in resonance with the external noise can be viewed as a nonlinear noise filter. Fig. 2 shows the typical
histograms of the test values (Eq. 9), both for the active weights and the pruned weights.

After one pruning epoch, we return to clearning. At overall early stages of the entire procedure, we reinitialize the now
smaller network with a new set of random weights (0(10-4)) and also reset the cleaning correction vector ll to zero.
This restart of the smaller architecture corresponds to a search in a reduced sub-space. At the later stages of the entire
procedure, we omit the re-initialization part. Re-initialization presents, just like early stopping, a strong bias towards
linear models that we want to avoid at the final model. Only sufficiently long learning allows the network to extract the
nonlinearities present in the data.

When does the entire process stop? The test statistic is evaluated on all weights, not only the survivors. If the test value
of weights that were pruned away becomes large again, this is an indication for overpruning. We then revive these
overpruned weights by resurrecting them, and finally train to the local minimum. Given the ultra-sparse architectures
we have reached, there is no overfitting left. Fig. 3 shows the remaining network of the example discussed in the next
section.

Figure 3: The weight diagram of the weights between inputs and hidden units for the exchange rate example. The
larger the weight, the darker the field. (In gray-scale rendering, we lose the information about the sign of the weight.)
A gray "X" means the weight has been pruned away. Note that more than half of the potential inputs are completely
disconnected. In this sense the clearning and pruning procedure acts also as feature selection.

4 Example: Exchange rate predictions

We demonstrate the proposed method on the problem of predicting daily foreign exchange rates between the US Dollar
and the German Mark. The entire time period ranges from January 15, 1985 through January 27, 1994. We first set the
test data aside as out-of-sample data: we pick the last 216 days for the test period, covering the prediction for January
4, 1993 through January 27, 1994. From the remaining block, we put aside every fourth day as our cross-validation set
to estimate the generalization performance.

The architecture is a simple feed-forward network with 15 tanh hidden units.6 There are 69 inputs. 12 inputs reflect
chart information derived from the series itself (relative strength index, skewness, point and figure chart indicators, ...).
57 inputs reflect fundamental information beyond the series itself (indicators depending on exchange rates between
different countries, interest rates, stock indices, currency futures, ...). These inputs contain information from six
countries (France, Germany, Japan, Switzerland, UK, and USA). The network has 3 outputs. The first output predicts
the return (we use a normalized version of the return; we divide it by the standard deviation computed over the last 10
trading days. In our experience, solely training the network on the one-day forecast makes it hard to capture long-term
dynamics of the market. We thus add two further tasks, provide the network with information about" the next turning
point, defined as the next maximum or minimum of the daily series. The two additional outputs are the number of days
to next turning point, and the return between today and the next turning point (divided by the standard deviation of the
data).

When computing the return on investment on the test set, we take the position size as given by the sign of the first
output (return output). The profit and loss curves shown in Fig. 4 include a transaction costs of 0.001. We were able
to reduce the network with pruning alone to 60 weights between the inputs and the hidden units. Using clearning in
conjunction with pruning, we manage to arrive at the ultra-sparse architecture of only 39 weights. The annualized
return on investment is significantly above 30% in the difficult 1993/94 period.

Acknowledgments

We thank Art Owen for suggesting to bootstrap the input errors to obtain the distribution of the forecast, and Barak
Pearlmutter for sharing his intuitions about the cost function. The simulations were carried out with SENN (Simulation
Environment for Neural Networks) at the University of Colorado at Boulder. Andreas Weigend acknowledges support
by the National Science Foundation (Grant No. RIA ECS-9309786).

6We usually obtain faster convergence and more stable results by using a layer of normalized sigmoids as hidden units; since this
paper focuses on cleaming, we use the standard tanh architecture for the comparison.

Test Set: 4/1 /93 - 1 /27 /94

1.75

10 i,70

5 1.65

0 i.60

0 50 100 150 200
Trading Days

Figure 4: We compare clearning to learning without clearning (both with pruning) on the held-out test set, ranging
from April 1, 1993 to January 27, 1994. The top curve is with cleaning. The curve below without cleaning. The scale
on the left corresponds to these profit and loss curves. We also give the exchange rate during this time period (bottom
curve); its corresponding scale is indicated on the right.

References

[Abu-Mostafa, 1995] Abu-Mostafa, Y. (1995). Hints. Neural Computation, 7:(inpress).

[Bollerslev, 1986] Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econo­
metrics, 21:307-328.

[Bollerslev et al., 1990] Bollerslev, T., Chou, R. Y., Jayaraman, N., and Kroner, K. F. (1990). ARCH modeling in
finance: A review of the theory and empirical evidence. Journal of Econometrics, 52(1):5-60.

[Bonnlander and Weigend, 1994] Bonnlander, B. V. and Weigend, A. S. (1994). Selecting input variables using mutual
information and nonparamteric density estimation. In Proceedings of the 1994 International Symposium on Artificial
Neural Networks (ISANN'94), pages 42-50, Tainan, Taiwan.

[Buntine and Weigend, 1991] Buntine, W. L. and Weigend, A. S. (1991). Bayesian back-propagation. Complex
Systems, 5:603-643.

[Engle, 1982] Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of
united kingdom inflation. Econometrica, 50:987-1007.

[Finnoff et al., 1993] Finnoff, W., Hergert, F., and Zimmermann, H. G. (1993). Improving generalization performance
by nonconvergent model selection methods. Neural Networks, 6:771-783.

[Ruffel and Vanderwalle, 1991] Ruffel, S. V. and Vanderwalle, J. (1991). The total least squares problem: Computa­
tional aspects and analysis. In Frontiers in Applied Mathematics, volume 9. SIAM.

[Neuneier and Zimmermann, 1995] Neuneier, R. and Zimmermann, H. (1995). An efficient method of neurofuzzy in
forecasting. In Proceedings of !CANN 95 (in press).

[Rumelhart et al., 1995] Rumelhart, D. E., Durbin, R., Golden, R., and Chauvin, Y. (1995). Backpropagation: The basic
theory. In Chauvin, Y. and Rumelhart, D. E., editors, Backpropagation: Theory, Architectures, and Applications,
pages 1-??, Hillsdale, NJ. Lawrence Erlbaum Associates.

[Seber and Wild, 1989] Seber, G. A. F. and Wild, C. J. (1989). Nonlinear Regression. Wiley, New York.

[Tresp et al., 1994] Tresp, V., Ahmad, S., and Neuneier, R. (1994). Training neural networks with deficient data.
In Cowan, J. D., Tesauro, G., and Alspector, J., editors, Advances in Neural Information Processing Systems 6
(NJPS*93), pages 128-135, San Francisco, CA. Morgan Kaufmann.

[Weigend, 1994] Weigend, A. S. (1994). On overfitting and the effective number of hidden units. In Mozer, M. C.,
Smolensky, P., Touretzky, D.S., Elman, J. L., and Weigend, A. S., editors, Proceedings of the 1993 Connectionist
Models Summer School, pages 335-342, Hillsdale, NJ. Lawrence Erlbaum Associates.

[Weigend, 1995] Weigend, A. S. (1995). Time series analysis and prediction. In Smolensky, P., Mozer, M. C., and
Rumelhart, D. E., editors, Mathematical Perspectives on Neural Networks. Erlbaum Associates, Hillsdale, NJ.

[Weigend et al., 1990] Weigend, A. S., Huberman, B. A., and Rumelhart, D. E. (1990). Predicting the future: A
connectionist approach. International Journal of Neural Systems, l: 193-209.

[Weig-end and LeBaron, 1994] Weigend, A. S. and LeBaron, B. (1994). Evaluating neural network predictors by
bootstrapping. In Proceedings of International Conference on Neural Information Processing (JCONIP'94), pages
1207-1212. Technical Report CU-CS-725-94, Computer Science Department, University of Colorado at Boulder,
also submitted to IEEE TNN. •

[Weigend and Mangeas, 1995] Weigend, A. S. and Mangeas, M. (1995). Experts for prediction: discover­
ing regimes and avoiding overfitting. Technical Report CU-CS-764-95, University of Colorado at Boulder,
ftp:/ /ftp.cs.colorado.edu/pub/Time-Series/My Papers/experts. ps.Z.

[Weigend and Nix, 1994] Weigend, A. S. and Nix, D. A. (1994). Predictions with confidence intervals (local error bars).
In Proceedings of the International Conference on Neural Information Processing (ICONIP '94), pages 1207-1212,
Seoul, Korea.

[Weigend et al., 1991] Weigend, A. S., Rumelhart, D. E., and Huberman, B. ·A. (1991). Generalization by weight­
elimination with application to forecasting. In Lippmann, R. P., Moody, J.E., and Touretzky, D.S., editors, Advances
in Neural Information Processing Systems 3 (NJPS*90), pages 875-882. Morgan Kaufmann.

[Weigend and Srivastava, 1995] Weigend, A. S. and Srivastava, A. N. (1995). Predicting probability distributions: A
connectionist approach. International Journal of Neural Systems, 6.

[Winograd and Flores, 1986] Winograd, T. and Flores, F. (1986). Understanding Computers and Cognition. Ablex
Publishing, Norwood, New Jersey.

Pace University
School of Computer Science and

Information Systems
One Pace Plaza,

New York, NY 10308 $65.00

ISBN 0-938801-09-0

Software Engineering Press
an imprint of the Systemsware Corporation

