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Chairman's Introduction 

Ils disent queles eclipses presagent malheur, parce que les malheurs sont ordinaires, 
de sorte qu'il arrive si souvent du mal, qu'ils devinent souvent; au lieu que s'ils 
disaient qu'elles presagent bonheur, ils meutiraient souvent. Ils ne donnent le 
bonheur qu'a des rencontres du ciel rares; ainsi ils manquent peu souvent a deviner. 

They say that eclipses predict bad luck. But bad luck is common, so that when bad 
things happen, they frequently predict it. On the other hand, if they would say that 
eclipses predict good luck, they would often be lying. They only attribute good 
luck to rare heavenly conjunctions; therefore they fail less often in prediction. 

Blaise Pascal (1623-1662), Pensees, no. 173. 

The Third International Conference on Artificial Intelligence Applications on Wall Street is 
organized to continue the momentum generated from the conferences held in 1991 and 1993. Our 
goal is to provide a serious international forum where the newest applications of knowledge-based 
technologies for trading, asset allocation, and regulation can be discussed and evaluated. 

The last two years have emphasized the fact that we live in a world full of risk. In some sense, 
risk is a statistical description of danger - an attribute that rational beings seek to minimize. 
Predicting natural (earthquakes, hurricanes, famine), political (war, terrorism), and financial 
disasters are difficult, to say the least, unless one is as pessimistic as Pascal. His point is that 
since disasters happen so often, then on average, any indicator will predict one. On the other 
hand, a description of risk purely in terms of mathematical expectation is misleading, since this 
sense of risk replaces the risk of an individual with the risk of an average. This is what can get 
investors into trouble. 

Over the past year, we have seen how the risks associated with currency devaluation, interest rate 
movements, and leverage in derivative markets led to near-disasters for some market participants 
investors, and governments. Some of these situations could have been avoided if the dangers 
associated with these instruments were made more comprehensible. I believe that one of the 
responsibilities of conferences like this is to help make financial risk understandable. 

This conference could not have happened without the help of numerous people. I first want to 
acknowledge the support of this year's sponsor, the Pace University School of Computer Science 
and Information Systems, and in particular, Dean Susan Merritt and Professor David Sachs. 
Thanks to Susan Atwell of Pace for smoothly coordinating the paper submission and review 
process. I also want to acknowledge the help of the cooperating societies and supporting 
publications; our paper session and panel session chairs; our invited speakers; and of course, our 
international Program Committee, who did a thorough job in carefully reviewing the many 
submitted papers. Special thanks to Pat White of Systemsware Corporation, for her diligence in 
preparing for this international event and for publishing the quality Proceedings. At Inductive 
Solutions, I want to thank Marie De Luca and Stacy Pennebaker for their help in organizing the 
program. 

Roy S. Freedman 
Program Chairman - AI/WS-95 
Inductive Solutions, Inc. 
New York City. June, 1995 
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Modeling Business Applications with the 
OODB Ownership Relationship 

Michael Halper 
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Yehoshua Perl, Oscar (Ou) Yang, James Geller 
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Abstract 

Ownership is a very important relationship in 
the business world. It is endowed with rich seman­
tics and various complexities with respect to both 
the owner and the property that is owned. In this 
paper, we present a formal model of "ownership" 
relationships in the context of an Object-Oriented 
Database (OODB) system. As our motivation, we 
employ three scenarios involving various ownership 
relationships that exhibit a wide range of distinc­
tions. Essential aspects of ownership relationships 
are their related transactions such as sale, lease, and 
donation. Since certain of these can be applied with 
respect to specific kinds of ownership, while others 
cannot, we need to explicitly model this behavior in 
order to properly represent ownership in an OODB 
system. The ownership relationship, at times, ex­
hibits inheritance behavior, where the values of cer­
tain attributes are derived with respect to it. With 
these issues in mind, we have identified and formally 
defined various characteristics (which we call the di­
mensions) of ownership. Our ownership model in­
corporates all these to capture the functionality of 
ownership's transactions and inheritance. 

1 Introduction 

Ownership is a very important relationship in the 
business world. It is endowed with rich semantics 
with respect to the owner and the property that is 
owned. As used in the corporate world, ownership 
can exhibit a hierarchical structure. For example, 
one company can own other companies. 

Because of its complexity, modeling ownership 
in the context of a database system can be an ex­
tremely difficult task. In this paper, we introduce 
an "ownership" relationship model that can be inte­
grated into an Object-Oriented Database (OODB) 
system. The use of this relationship greatly facili­
tates the problem of modeling real-world ownership 
and of enforcing its associated constraints. 
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To motivate the need for an ownership relation­
ship and to see what kinds of problems one might 
encounter when trying to model it, we shall employ 
three example scenarios, pictured in Fig. 1, 2, and 
3. Corresponding database schemata are included in 
the Figures, which have been drawn using our OOd­
ini graphical notation [9]. Ownership is denoted by 
a bold, dotted arrow. This symbol was chosen for 
the mnemonic association between the dots and the 
"o" in "ownership." 

Let us now describe these scenarios. In the first 
one, Jim and his business partner David own a man­
ufacturing business that produces an item for which 
Jim holds a patent. The business resides in a build­
ing which Jim owns and for which a bank, First 
Nat'l Trust, holds a lien. Jim and David have a 
joint business bank account. Jim rents his house 
from Tom. Jim also uses a car that is legally owned 
by his business. A car owned by Jim is used by 
his son John. Jim and David each have individual 
bank accounts and investment portfolios, consisting 
of corporate stocks and government bonds. In addi­
tion, each possesses a life insurance policy and the 
appliances in their homes. 

In the second scenario, Chrysler owns Jeep, Ply­
mouth, and Dodge, each of which in turn owns 
subsidiaries, manufacturing plants, industrial equip­
ment, etc. Dodge and Mitsubishi jointly own the Ea­
gle Corporation. Chrysler, being a public company, 
issues stock that is owned by shareholders who are 
persons or other corporations. 

The third scenario deals with an individual in­
vestor. Here, Jack owns several portfolios of invest­
ments, including stocks, bonds, and mutual funds. 
Together, these portfolios represent all of Jack's in­
vestments. 

Against these scenarios, one is liable to carry out 
any of the various transactions associated with own­
ership, such as sales, leases, or donations. Such 
transactions are often restricted due to complex con­
straints. For example, under some circumstances, 
the sale of an object might be disallowed. Owner­
ship also exhibits "inheritance" behavior, where val-

Copyright © 1995 Software Engineering Press 
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Figure 1: Instance and schema diagrams for first scenario. 

ues of certain attributes of objects can be derived 
from other attributes via ownership relationships. 
We note that an investor's net worth can be deter­
mined directly from the values of his or her portfo­
lios. 

As can be gathered from the above, dealing with 
the issues of ownership can be very complex. To 
model such behavior in the context of a traditional 
relational database system [3, 4] would require that 
some programmer write programs ( apart from the 
database system itself) to ensure that all business 
transactions are carried out in accordance with the 
semantics of ownership. However, if one were to 
bypass such programs, then no guarantee could be 
made about the database's integrity. Certain "ille­
gal" ownership transactions may be allowed to com­
mit, leaving various constraints violated and the 
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database in an invalid state. 

In an OODB system, the programmer could in­
corporate the additional constraint satisfaction code 
into the methods of any classes that participate in 
ownership relationships. However, this would still 
require manual programming labor. Furthermore, 
the correctness of the. code would be very difficult to 
verify given all the subtleties of ownership. Ensuring 
that the programmer has properly accounted for all 
the necessary constraints in the program code would 
be nearly impossible. 

In order to avoid such ad hoc programming ap­
proaches and remove the burden from the program­
mer, we present an ownership relationship model 
that expands and enhances an existing OODB data 
model. This relationship serves to encapsulate the 
rich semantics of ownership and its related trans-

3 
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Figure 3: Schema and instance diagrams for third scenario. 

actions. Using it, one can declaratively specify the 
desired behavior and then allow the OODB system 
to enforce it. In this sense, the ownership relation­
ship is a "semantic relationship," meaning that its 
interpretation does not lie solely "in its name" [13) 
but rather in its constraint-satisfaction and inheri­
tance mechanisms. In this light, our ownership re­
lationship can be viewed as a modeling primitive of 
an OODB system with built-in semantics. In previ­
ous research, the IS-A (or SUBCLASS) relationship 
[2, 12) and the PART-OF relationship [6, 7, 8, 10, 11) 
have been modeled as semantic relationships. 

The remainder of this paper is organized as fol­
lows. In Section 2, we discuss the legal definition 
of ownership. In Section 3, we formally define the 
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ownership relationship and describe its "character­
istic" dimensions, which capture the wide range of 
distinctions exhibited by ownership. Section 4 con­
tains concluding remarks. 

2 Definition of Ownership 

When we describe a state of "ownership," we 
must, in general, include the following three features: 
(1) The owner, (2) the property that is owned, and 
(3) the characteristics of the relationship between 
the two. We are interested in identifying what types 
of objects can fill the roles of (1) and (2), and what 
the characteristics that distinguish the various kinds 

Copyright@ 1995 Software Engineering Press 



of ownership are. 
According to Webster's Dictionary, ownership is 

defined as follows: 

1. The state or fact of being an owner. 

2. Proprietorship; Legal right of property; Legal 
or just claim or title ( to something); in law, 
the right to use for one's own advantage some 
property. 

The owner referred to above can, by law, be a nat­
ural person, a corporation, or an organization. The 
latter two are, in general, referred to as legal entities. 
Under the law, legal entities are vested with certain 
powers, some of which are also held by natural per­
sons. Others, like the power to exist in perpetuity, 
are unique to legal entities. In our databases, we see 
that Jim as a natural person owns his business. The 
Chrysler Corporation as a legal entity owns Dodge. 
In Fig. 1, bank, smalLbusiness, and corporation are 
legal entities. All "owner" classes in Fig. 2, except 
person, represent legal entities. 

Ownership of an item is often distributed among 
persons and legal entities. E.g., Jim and David to­
gether own a business J&D Lightings, and a busi­
ness bank account. Also, the Eagle Corporation is 
a joint venture of Chrysler and Mitsubishi. We de­
scribe such a situation as joint ownership. It is le­
gitimate for a person and a company to jointly own 
a property. The ownership need not be divided into 
equal portions. Stock holdings partition the owner­
ship of a public company into various percentages. 
Jim, e.g., owns thousand shares of Chrysler. 

In law, property means the rights which one has in 
anything subject to ownership, whether it be mobile 
or immobile, tangible or intangible, visible or invisi­
ble. Ownership is used synonymously with rights in 
property. Thus, a person is said to be the owner of 
a property if he has certain rights in it. The term 
ownership is often used to indicate that one has the 
"highest rights" [1] in a property, but it may be used 
even when one does not have all the rights; thus, we 
say that a person is an owner of a house even though 
he has rented it to a tenant who has exclusive rights 
to the use of the house during the term of the lease 
[1]. 

A property can be classified as real, intellectual, 
or personal. A real property refers to the rights that 
one has in land or things closely related to it. An in­
tellectual property is the rights held on an idea (e.g., 
the design of an invention) or a creative work (such 
as a musical composition or a novel). For such prop­
erty, the rights apply to a potentiality-no claim is 
made on any tangible item. Copyrights and patents 
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are the ordinary forms of intellectual property. Per­
sonal property encompasses everything that is not a 
real or intellectual property. 

As examples, Jim's business resides in a build­
ing which is his real property. The patent (num­
ber A908) for the Long-Life Bulb is his intellectual 
property. Bank account 369 and the car used by 
John are his personal property. In Fig. 1, the class 
building denotes a real property. Patent is an intel­
lectual property. The remainder of the "property" 
classes represent personal properties. In Fig. 2, the 
only real property is manufacturing_plant. The rest 
are personal properties. 

One characteristic of the ownership relationship 
itself centers around the existence of a legal docu­
ment that verifies the owner's rights to a property. 
A copyright owner, e.g., is granted a legal certificate 
giving him exclusive rights to possess, make, publish, 
and sell copies of his intellectual production, or to 
authorize others to do so. In contrast, the owner of 
a household item does not have a legal document to 
support his ownership, but he has the right to use it 
as he pleases. We call ownership of the former kind 
documented and ownership of the latter kind undoc­
umented. So, Jim's patent is documented, while his 
ownership of a toaster oven is undocumented. 

In Fig. 1, the following ownerships (written 
as: owner class-property class) are among those 
that can be classified as documented: bank-mort­
gage, person-building, person-smalLbusiness, per­
son-bank_account, person-patent, and smalLbusi­
ness-car. The relationship between the classes per­
son and household_appliance is undocumented. All 
ownerships in Fig. 2 are documented. 

As a final distinction, some kinds of ownership are 
acquired by operation of law, while some others are 
not. We call ownership of the former kind de jure 
and ownership of the latter kind de facto. 

3 Ownership as an OODB Semantic 
Relationship 

3.1 Transactions and Inheritance 

As noted above, the most crucial aspects of own­
ership are the constraints that it imposes on its re­
lated transactions such as sale and lease. Certain 
transactions can be applied to specific kinds of own­
ership, while others cannot. For example, in the 
case of exclusive ownership, the owner can sell his 
belonging without restriction (and thus the trans­
action "sale" can be applied freely), while for joint 
ownership an owner cannot sell the property without 
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the consent of the other owners (so the use of "sale" 
must be controlled). When a person has accepted an 
offer to sell his house, he cannot accept another of­
fer, even though he is still the owner, until that time 
when the first offer becomes invalid. We call own­
ership of. this kind action-limited. Similarly, when 
one has bought a stock option, the ownership of it 
may expire after a certain period of time if it is not 
exercised. In this case, we say that the ownership 
is time-limited. Likewise, when one has ownership 
of some property like a car or a house, it cannot be 
sold without its supporting documentation. 

Let us consider some of these complexities of own­
ership transactions in the context of our example 
scenarios. If Jim wants to sell the business, he needs 
the consent of David, his partner. If David wants to 
buy half of the business's building from Jim, then 
he must have the consent of First Nat'l Trust which 
owns the mortgage. What would happen if David 
wanted to sell his half of the company to a new 
partner? Depending on the partnership agreement, 
he may need Jim's approval. With respect to their 
joint checking account, do both Jim and David need 
to sign every check together? Clearly that depends 
on the nature of the account. What about the sale 
of properties that are being used by others? For ex­
ample, can Tom sell the house that he is renting to 
Jim? Yes, but the new owner would be unable to 
occupy the house until the lease expired. Is John 
allowed to sell his father's car? No, because even 
though he is using the car, he does not possess the 
proper ownership documentation required to sell it. 

Aside from the transactions, the ownership rela­
tionship plays a vital role in more accurately mod­
eling various application domains via its inheritance 
mechanism, which allows values of certain attributes 
to be propagated across it. For example, Jack's net 
worth (i.e., his "value") can be determined directly 
as the sum of the values of the portfolios that he 
possesses. Consider also that to calculate Chrysler's 
profits for 1994, the profits of Dodge, Plymouth, 
and Jeep must be added together. Furthermore, the 
profits of Dodge must take into account the profits 
of Eagle. In all these examples, a value propagation 
between properties and owners is required. 

From the above we see that to properly support 
transactions and inheritance with respect to owner­
ship, we need to explicitly model the different char­
acteristics ( which we call the dimensions) of the 
ownership relationship. Our investigation has re­
vealed six important dimensions. In this section, 
we will first formally define the ownership relation­
ship and its constituent dimensions. Thereafter, we 
will examine two of the dimensions, exclusiveness 

6 

and value propagation, in some detail. We will then 
briefly describe the others. 

3.2 Formal Definition of the Ownership 
Relationship 

Let E(C) denote the extension of a class C, i.e., 
the set of all its instances. The ownership relation­
ship between a property class B and an owner class 
A ( denoted OB,A) is defined as the following septu­
ple: 

where 0~ is a relation from E(B) to E(A). The pair 
( b, a) E 0~ indicates that the instance b of class B is 
the property of (i.e., is owned by) the instance a of 
class A. We will ordinarily express this fact as bO~a. 
The remaining elements of the septuple are the six 
characteristic dimensions, whose names are Legal­
ity, Documentation, Limitation, Exclusiveness, De­
pendency, and Value Propagation, respectively. For 
each, we list its domain in the following: 

,\ E { de jure, de facto}, 

/3 E { registration-docum 'ted, transfer-docum 'ted, 

undocum 'ted}, 

a E { action-limited, time-limited, 

action&time-limited, unlimited}, 

X E { exclusive, free-joint, percentage-joint, 

global-percentage-joint}, 

6 E { owner-to-property, nil}, 

v E { up, down, up Trans, down Trans, 

up&down, nil}. 

The values of both 6 and v may be nil, indicat­
ing that the particular characteristic ( dependency or 
value propagation) is inapplicable. For lack of space, 
formal descriptions of only two dimensions will be 
given. The rest of the dimensions are described for­
mally in [5, 14]. (In [14], we had only four dimen­
sions and the notion of transactions is not connected 
to the dimensions of ownership.) For the following 
definitions, assume an ownership relationship OB,A· 

Definition 1: Va E E(A), let P0 A(a) = {b I b E 
B . 

E(B) I\ bO~a}. P0 A(a) is called the property set of 
a with respect to <JB,A, i.e., the set of instances of 
B which are properties of a. 

Definition 2: Vb E E(B), let N0 A(b) = {a I a E 
B 

E(A) I\ bO~a }. N0 A (b) is called the owner set of b 
B• 

with respect to the ownership OB,A, i.e., the set of 
instances of A of which b is a property. 
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Figure 4: An example of exclusive ownership. 
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Figure 5: Jointly owned bank accounts. 

3.3 Exclusiveness Dimension 

Ownership can be classified as exclusive or joint. 
In other words, a property may be owned by one 
owner or jointly owned by several owners. The for­
mal definition for the exclusive ownership relation­
ship follows: 

Definition 3: For the ownership relationship OB,A, 

x = exclusive implies that Vb E E(B), IN0 ~(b)I ~ 1. 
In other words, a property cannot have more than 
one owner. 

To represent this graphically, we add an X to the 
dotted arrow to denote eXclusive (Fig. 4). 

Those ownership relationships which are not ex­
clusive are referred to as joint, in which case a prop­
erty may be either jointly owned freely, i.e., there is 
no explicit partition of the rights of the joint own­
ers in the property ( e.g, a joint bank account is 
freely shared by a couple-we call this free joint), 
or jointly owned such that each owner takes a cer­
tain percentage of the ownership (e.g., husband and 
wife each own 50% of their house-we call this per­
centage joint). We call the case where all owners 
have the same percentage equal joint. Although the 
exclusiveness dimension has been included in some 
OODB models (e.g., SHOOD [11) and our part rela­
tionship model [7, 8)), percentage joint is unique to 
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ownership. Percentage joint plays an important role 
in economic activities. A shareholder has the right 
to receive his percentage of dividends. 

In our graphical notation, a plain dotted arrow in­
dicates free joint (Fig. 5). Percentage joint and equal 
joint are denoted by labels of P and =, respectively 
(Fig. 6). 

Definition 4: For the ownership relationship OB,A, 

x = free-joint implies that Vb E E(B), OB,A does 
not impose any constraints on INnA(b)I. That is, 
each instance b may have any numbir of owners. 

Definition 5a: For the ownership relationship 
OB,A, x = percentage joint implies that Vb E E(B), 
each of its owners a has an associated number Pb,a 

(0 < Pb,a ~ 100) indicating a's percentage of own­
ership of b. The percentages Pb,a associated with all 
the owners of b must total 100%. 

Definition 5a defines the percentage joint owner­
ship relationship when the property class has only 
one associated owner class. At times, the ownership 
of an object may be distributed among owners from 
different classes. This case is defined as follows. 

Definition 5b: The ownership relationships OB,Ai, 

OB,A 2 , ••• , OB,A,. are global percentage joint if Vb E 
E(B), each of its owners (regardless of their classes) 
own percentages of b totaling 100%. 
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Figure 6: Stocks are owned (percentage) jointly by person and company. 

To better understand Definition 5b, refer to Fig­
ure 6, where Ostoclc,Person and Ostoclc,Company are 
two global percentage joint relationships. For any 
instance of class Stock, the ownership is distributed 
among its owners such that each of them takes a 
certain percentage and the sum of the percentages 
is 100%. In Figure 6, the IBM stock owners are Os­
car and Cecilia of class Person, and AT&T of class 
Company, with 20, 30, and 50 percent of the owner­
ship, respectively. 

3.4 Value Propagation Dimension 

There are times when a certain feature of a prop­
erty is naturally assimilated as a feature of its owner, 
or vice versa. E.g., the address of a person may be 
modeled as the address of his house rather than as 
an intrinsic attribute of the person. Likewise, the 
name that appears on the passport can be taken 
to be the name of its owner. In the former case, 
the value of address, rather than being duplicated, 
should be stored solely with the house and propa­
gated upward on demand. Address, in this sense, is 
a derived attribute of person. 

As another example, Jack's net worth can be de­
termined directly from his portfolios. Specifically, 
Jack's net worth (denoted as his "value") is just the 
sum of the values of his various portfolios. As these 
fluctuate on a minute-to-minute basis, so too should 
Jack's worth. Therefore, it does not make sense to 
store this value statically. Rather, it should be de­
rived dynamically from the appropriate sources on 
demand. The ownership relationship can automat­
ically (i.e., without the need for manual program­
ming) perform the necessary retrieval and computa­
tion. 

Definition 6: Let 7rB: E(B) -+ r be an attribute 
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of B. The ownership relationship OB,A is said to be 
invariant upward propagating if it defines a property 
7rB on the class A such that the value of 7rB for an 
instance a E E(A) is identically the value of 7rB for 
that b E E(B) which is owned by a. 

For example, if the property address is propa­
gated from the class house to the class person, then 
the ownership relationship would define the property 
address on class person as follows: 

dd ( ) 
_ { address(b), 

a ress a - d fl d un e ne , 
if3b E P0 A(a), 

B 

otherwise. 

Thus, the address of a person is identically that of 
the house that he or she owns. Invariant propagation 
in the other direction is defined analogously ( see [5]). 

Transformational upward value propagation is de­
signed to take contributions for the value of the 
propagated (or inherited) attribute from any num­
ber of objects that are owned. The multiple values 
are transformed into a single value of the attribute's 
data type. 

Definition 7: Let 7rB: E(B) -+ r be an attribute 
of B. The ownership relationship OB,A is said to be 
transformational upward propagating if it defines a 
property 7rB on the class A such that the value of 
7rB for an instance a E E(A) is derived by applying 
some transformation collectively to the values of 7rB 
for all b E E(B) such that b is owned by a. 

Here, instead of being identical to a value at a sin­
gle "property" object, the value of the propagated 
attribute is derived through a transformation of val­
ues from many owned objects. For the example of 
the net worth of an individual, the propagated prop­
erty value would have the following definition: 
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Figure 7: An example of value propagation. 

I ( ) _ { I::7=1 value(bi), 
va ue a - d fi d un e ne , 

'vi, value(bi) defined 
otherwise, 

where a is an investor and b1, b2, ... , bn are his port­
folios. The above is shown graphically in Fig. 7, 
where we also show the specific example of Jack 
obtaining his net worth from his three portfolios. 
Another derived attribute, an investor's total gain 
(which is just the sum of the gains of the portfolios), 
is shown in the figure as well. 

3.5 Additional Dimensions 

Due to space limitations, we mention the issues 
of several other dimensions only briefly. For details, 
see [5, 14). The dependency dimension regulates the 
semantics of deletion of owner class A or property 
class B. It defines when deletion of one should cause 
deletion of the other. Ownership can be either 4oc­
umented, or undocumented. Documented ownership 
always has a supporting legal document, while un­
documented ownership does not. 

Some kinds of ownership are acquired "by opera­
tion of law," i.e., through a formal legal procedure. 
We call such ownership de jure. Others are not, and 
are called de facto. These are the values for the 
legality dimension. Ownership is often used to indi­
cate the "highest rights," but it may be used when 
one does not have all the rights. In other words, 
ownership may be limited in some aspects. For ex­
ample, if the owner of a house has accepted an offer 
to sell that house to someone, then he cannot sell 
it to some other person, even though he is still the 
owner, unless the offer becomes invalid. 
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4 Conclusion 

We have addressed the issue of representing own­
ership relationships in OODBs with a model that 
captures a variety of semantics. In particular, we 
have distinguished a number of aspects for the roles 
of the owner and property in such relationships. 
These aspects define notions like exclusive and joint 
owners. Formal definitions for various ownership re­
lationships were presented. To complement these, 
we have presented graphical symbols for each of 
the ownership relationships which expand the OO,.­
dini graphical schema representation language for 
OODBs [9]. We have also investigated the inter­
action between the various ownership transactions 
and the ownership relationship's characteristic di­
mensions. We plan to integrate the ownership rela­
tionship that we have defined here into a commercial 
OODB system. 
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AN APPLICATION OF ARTIFICIAL 
INTELLIGENCE - SIMULATING THE 

BUSINESS ENVIRONMENT 

By 

Bryan Knower, Michael Gargano, and 
Frank Marchese. 

I. INTRODUCTION 

This study uses an artificial life paradigm . We 
developed a model of a localized business 
environment in an attempt to study long term 
business trends. The study investigated the 
relationship of non living dynamic systems to 
living ones. This was done using a model called 
CORPWORLD. 

The model can be conveniently divided into three 
main component parts, namely: Artificial Life, 
Genetic Algorithms, and Corporate Behavior. 

We will take up each of these topics in tum and 
discuss them in relation to each other. The main 
focus of this paper is the application of such a 
model to a simulated business environment. 

II. BACKGROUND FOR THIS 
EXPERIMENT 

The background for this experiment was a 
simulation of an artificial life system, called the 
Kreecher Simulation, inspired (and very loosely 
based) on the work of Thomas Ray. 11 

THE KREECHER SIMULATION 

History: 

Each individual (known as a Kreecher) competed 
with all the others based on simple interaction 
rules. The simulation accommodated three 
different genotypes, namely Passive, Coercive, and 
Destructive. All Kreechers were born with a 
specific vitality quotient. This indicator was 
depleted every cycle unless a particular individual 
was chosen via genetic selection for reproduction. 
Any genotype could reproduce. If selected, the 
vitality quotient of that individual was enhanced 
and the genotype was propagated via crossover 
with the genetic string of the Kreecher selected in 
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the previous cycle. The simple rules for interaction 
were: 

• Passive Kreechers actively avoided 
opponents, and had no direct effect on them. 

• Coercive Kreechers transformed the 
genotypes of opponents to their own. The 
sphere of influence was limited, and meeting 
was random. 

• Destructive Kreechers actively sought out 
opponents and destroyed them. The sphere 
of influence was limited but destructive 
types tended to migrate towards densely 
populated areas of the simulation grid. 

RESULTS OF THE KREECHER SIMULATION 

It appeared that populations of different types 
became dominant, ruled, and then decayed in a 
surprisingly cyclic manner. When a specific 
genotype became dominant, others tended to 
become suppressed, showing swings in population 
levels and vitality well below the stabilization level 
of the dominant genotype. As the dominant 
genotype decayed another would come up to take 
its place, and this process would go on indefinitely 
except in the case of a population explosion within 
the destructive genotype. Such an event led to 
mass destruction and eventually total extinction. 
The ordering of the dominance cycles showed no 
pattern, so that it was impossible to predict which 
genotype would become dominant next. Seeding 
the simulation with a passive genotype tended to 
produce the best results (i.e .. consistently long 
simulation runs with no chaotic disintegration), in 
the long term, while the other genotypes tended to 
produce random divergent behavior, probably 
based on their predatory behavior patterns. 

An average run consisted of approximately five to 
ten thousand generations, within which the cyclic 
dominance behavior was readily evident. (A 
generation was one iteration of the simulation 
process). In the extreme long term, a pattern of 
chaotic behavior interspersed with long stretches of 
stable behavior became evident. In addition, long 
periods of cyclic behavior were interspersed with 
short periods of random chaotic behavior during 
which no dominant genotype could be identified. 
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III. ARTIFICIAL LIFE 

Artificial Life is the study of man-made and 
non-living natural systems that exhibit behaviors 
characteristic of natural living systems. In order to 
simulate a living system, certain fundamental 
characteristics of living systems are assumed. The 
CORPWORLD model attempts to preserve the 
sense underlying these assumptions in the 
following propositions: 

PROPERTIES OF LIFE 

• Life is a pattern in space time rather than a 
specific material object. 

• Self representation must be present. 
• The organism should have a metabolism. 
• Functional external interaction should be 

present. 
• The organisms should eventually stabilize 

under most perturbations. 
• Evolution must be present. 

Evolution is taken to be present given the following 
characteristics; 

HEREDITY- Offspring are similar to their parents. 
VAR/ABILITY- Offspring are not identical to their 

parents or to each other. The two 
characteristics are complimentary. (i.e .. 
the copy process must produce unifonnly 
similar offspring but not consistently 
identical ones over the life of the process.). 

Both the Kreecher simulation and the 
CORPWORLD simulation satisfy these conditions. 

IV. GENETIC ALGORITHMS 

Genetic algorithms are selection procedures that 
work via evolutionary fitness and mutation. They 
are often used in the solution of optimization 
problems, and can be part of the machine learning 
process. In general, genetic algorithms incorporate 
a selection mechanism, coupled with a crossover 
mechanism and a mutation process. 

The genetic algorithms used in the CORPWORLD 
simulation are simple. They use fitness functions 
to select the fittest individual and/or genotype at a 
specified point in time. 

CROSSOVER 

12 

Genetic crossover is minimal in the model due to 
the fact that in a corporate environment, healthy 
corporations do not necessarily incorporate the 
behavior of successful corporations that have gone 
before them, especially in the area of corporate 
behavior. In CORPWORLD, therefore, crossover 
is restricted to the transference of genotype 
characteristics to off spring during reproduction, 
and transference of individual assets between peers 
during mergers or takeovers. 

MUTATION 

Mutation (in the model), transforms individuals 
from one genotype to another, and occurs during 
birth, reproduction, and even randomly on an 
infrequent basis. The four possibilities in the 
character matrix are: Conservative, Hyperactive, 
Expander and Virulent. Mutation ensures that 
variation exists in the execution of the various 
dynamic processes making up the life of the 
individual, and that the copying process in the 
genetic mechanism contains random imperfections, 
ensuring that it does not become a simple template 
function. 

V. THE CORPWORLD MODEL 

RATIONALE 

The question of whether the principles of artificial 
life, (as they were demonstrated in the Kreecher 
Simulation), could be used to explore simulated 
interactions in a corporate environment, formed the 
basis of the experiment. It was decided to model 
four basic genotypes which would, (hopefully), 
incorporate variations in corporate behavior 
dynamics. Certain characteristics were immediately 
evident as dominant candidates for selection such 
as the raider mentality, acquisition of ailing 
companies by healthy ones, mergers in the face of 
increasing competition from large adversaries, 
traditionalism and conservative management, and 
aggressive entrepreneurship. 

We decided to incorporate the raider mentality into 
a representation called the Virulent genotype; the 
expansion within a supportive market type 
corporation was represented by an Expander 
genotype; the traditional conservative management 
oriented type was represented by a Conservative 
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genotype, and the aggressive entrepreneurship type 
was represented by a Hyperactive genotype. 
Acquisitions and mergers were incorporated (in 
various degrees), into the common behavior 
patterns of all the aforementioned genotypes. 

STRUCTURE 

The simulation environment is a two dimensional 
plane on which individual corprobes exist and 
interact. Each corprobe is located at a specific 
point on the x,y plane. Its grid coordinates identify 
it uniquely. A corprobe's sphere of influence is the 

grid area within which the corprobe's presence has 
an effect on the market share of others, and within 
which its performance is affected by them. The 
further a competitor is from the center of a 
corprobe's sphere of influence, the lesser the effect 
it is likely to have on that corprobe's performance. 
A corprobe's health and vitality are measured by a 
rating known as the Financial Soundness Index 
(FSI). The higher the rating, the healthier the 
individual. Corprobes born via reproduction inherit 
the characteristics and vitality of their parents 
while those born via random birth inherit the 
characteristics and vitality of the initial seed 
population. 

The following variable parameters can be used to 
control and limit the simulation. 

• Percentage of each type as a fraction of one 
hundred percent. 

• Size of initial seed population. 
• Number of time steps to run or infinite 

horizon option. 
• The option to re-seed the population if 

extinction approaches. 
• Tum on (or off) a file trace with adjustable 

trace points. 
• Turn on ( or off) the graphical display with 

adjustable display points. 

The system allows sampling of statistical data over 
a moving average of cycles which can be set to a 
desired level. Statistics are updated every cycle. 
Statistical data is also dumped to a file trace if this 
option has been turned on. In addition, the output 
trace prints out data points to a disk file or printer 
at fixed time intervals that can be varied. A 
summary of statistics for the entire run is written to 
a disk file in addition to the trace data. This 
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summary is broken down by genotype and shows 
average values per cycle for FSI levels, production 
costs, marketing expenditure, and population 
levels. 

GENOTYPES 

lncn:uing ... 

EXPANDER VIRULENT 

CONSERVATIVE HYPERACTIVE 

lncrc.ulng aggn:nlon 

fig 1. Genotype Interrelationships 

The four genotypes are differentiated by the 
strength (or weakness) of two characteristics called 
the Risk Factor, and the Aggression Factor. (Fig 
1). 

Expander 

The Expander genotype uses aggressive marketing 
to expand market share. Expanders have a high risk 
factor coupled with a low aggression factor. 

Conservative 

The Conservative genotype keeps production well 
within demand. Both risk factor and aggression 
factor are low for this genotype. 

Virulent 

The Virulent genotype is destructive in nature and 
tends to keep production at high levels most of the 
time. Both risk and aggression factors are high in 
this genotype. Profits for the Virulent genotype are 
usually at the expense of other neighboring 
genotypes via decrease of market share. 

Hyperactive 

The Hyperactive genotype is a crossbreed between 
the Expander and the Conservative. It has a low 
risk factor coupled with a high aggression factor. 
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VARIABLE PARAMETERS 

The Reproduction Threshold 

The Reproduction Threshold controls the point any 
corprobe must reach before it can reproduce. 

The Takeover Threshold 

The Takeover Threshold is the point at which 
corprobes are deemed to be failing, and are tagged 
as candidates for take over. (Corprobes which are 
tagged and not taken over during the current cycle, 
are deemed bankrupt.). 

The Merge Threshold 

The Merge Threshold is a level that s aspiring 
corprobes need to reach in order to successfully 
take over a vulnerable corprobe. Increasing the 
Merge threshold makes it harder for a selected 
candidate to qualify for the take over process, and 
can lead to an increased failure rate and vice versa. 

The Resource Multiplier 

The Resource Multiplier is a factor in calculating 
consumer demand for the product of a corprobe. It 
is analogous to the initial number of customers per 
square area for a specified market, and is fixed for 
each run of the system. Current consumer demand 
for a particular corprobe's product is calculated 
using the Resource Multiplier, the number and 
location of other corprobes within the active 
corprobe's sphere of influence, and other factors. 
Current consumer demand is inversely related to 
the population density within the active corprobe's 
sphere of influence. 

The Random Mutation Frequency 

Random Mutation Frequency determines the 
probability that a corprobe will mutate during the 
current cycle. The actual probability of mutation is 
a function of the healthiness of the current 
genotype. Increasing the Random Mutation 
Frequency can lead to chaotic behavior. 

The Random Birth Frequency 

Random Birth Frequency determines the 
probability that a new corprobe will enter the 
system arbitrarily. Random Birth Frequency is 
intended to model new entrants to a market and 
also serves the purpose of rejuvenating the 
population. 
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The Selection Ratio 

The Selection Ratio determines what percentage of 
the population (excluding the bestcorprobe), 
executes a standard cycle. Those corprobes not 
selected have their assets depleted via depreciation 
and become weaker relative to those that 
successfully execute a standard cycle. 

THE LIFE CYCLE 

Each cycle consists of a selection via fitness 
function of the healthiest individual in the 
population. The indicator used is the Financial 
Soundness Index (FSI) which tracks the vitality of 
an individual corprobe. The selected individual 
executes an enhanced cycle. A random sampling of 
the remaining population execute a standard cycle. 
All corprobes have their assets depreciated by a 
fixed percentage each cycle. This depletion models 
overhead costs, which are incurred regardless of 
production. 

SELECTION VIA FITNESS 

The method used in the selection process for the 
CORPWORLD model is a biased roulette wheel. 
In the case of selection of the fittest individual, the 
fitness function assigns weights based on the health 
of each individual. (Health is given by the 
Financial Soundness Index indicator (FSI) for each 
individual). In the case of selection of the fittest 
genotype, the fitness function assigns weights to 
each genotype based on the cumulative health 
index of the individuals belonging to that genotype. 

THE ENHANCED AND ST AND ARD CYCLES 

Cost of production is calculated for both the 
healthiest selected individual and those selected via 
random sampling of the population remainder. This 
cost is based on Current asset level, Current 
demand level, Characteristic type, and Market 
Factors. Consumer demand for active corprobe's 
product during the current cycle is given by 

Consumer Demandf- f(Gridsize, 
ResourceMultiplier) 

Once Consumer Demand has been determined, the 
projected production figures, (Estimated Sales), for 
each corprobe are calculated. Estimated Sales for 
the active corprobe is given by 
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Estimated Sales~ f(Cost, MarkUp) 
Cost ~ f ( Marketing, Research&Development) 
Marketing~ f(Current_Liquid_Assets,Risk, 

Aggression, Financial_Soundness_lndex) 
Research&Development ~ f(Liquid_Assets, Risk, 

Aggression, Financial_Soundness_lndex) 

Penalties are incurred for overproduction, ensuring 
that indiscriminate expansion does not occur. Also, 
random market fluctuations are simulated by 

additions to or subtraction from asset level 
recalculations for the active individual. New asset 
levels for the corprobe are calculated by 

Liquid_Assets ~ f(Cost, Sales, Diversity, Quality, 
PreviousSales, 
Random_Market_Fluctuations) 

Quality ~ f(Liquid_Assets, Sales, 
Research&Development) 

Diversity~ f(Marketing, Quality, Sales) 

Fixed assets are also subject to fluctuation due to 
market conditions, and are depreciated at a rate 

• given by the variable parameter Depreciation. If 
fixed assets fall below a specific level they are 
renewed via transfers from liquid assets. The 
Financial Soundness Index is recalculated for the 
new asset levels and a revised sphere of influence 
is also established. These are given by 

Financial_Soundness_lndex ~ f(TotalAssets) 
GridSize ~ f(Financial_Soundness_lndex) 

This process constitutes a standard cycle and is 
executed by both the healthiest selected individual 
and the random sampling of the population 
remainder based on the variable parameter Select 
Ratio. The healthiest selected individual also 
executes a special reward procedure which 
enhances its asset levels and hence its FSI and 
related sphere of influence. In addition, the selected 
individual is also made eligible for reproduction. 
Those corprobes that do not execute any form of 
the business cycle do not earn profit for the current 
cycle but incur depreciation and overhead costs. 

THE TAKEOVERMECHANISM 

Every cycle, those corprobes whose liquid asset 
levels fall below the Takeover Threshold are 
marked as vulnerable and open for acquisition. For 
each of these individuals, an acquirer is selected. 
The selection is based on the strength of the 
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Financial Soundness Index, ensuring that only the 
healthiest individuals are selected as acquirers. A 
prospective acquirer must have adequate resources 
to complete the acquisition. Adequate resources are 
indicated by comparison with a threshold known as 
the Merge Threshold. The acquirer must minimally 
have liquid assets at the level of this threshold to 
acquire the target corprobe. A corprobe can 
acquire only a single target during a single cycle. 
This prevents a single individual from acquiring 
the assets of all failing corprobes for a single cycle. 
If a merger cannot go through because the selected 
acquirer has insufficient resources to complete the 
procedure the target corprobe goes bankrupt and is 
removed from the system during the next business 
cycle. 

THE REPRODUCTIVE MECHANISM 

During each life cycle, the corprobe that is selected 
as the healthiest individual (i.e .. the corprobe that 
executes an enhanced cycle), is also made eligible 
to reproduce. In order for reproduction to take 
place, the selected corprobe must have a liquid 
asset level of Reproduction Threshold or greater. If 
the selected corprobe, (the parent), meets this 
criteria, a fresh node is added to the active corprobe 
list and given the same behavior characteristics as 
the parent. Asset levels for the child corprobe are 
based on a percentage of the parent corprobe's asset 
levels and are therefore linked to the parent health 
index. Newly created corprobes can mutate directly 
after birth, ensuring that the copy process is not a 
template function but a variable process. Entry to 
the mutation procedure does not imply that 
mutation takes place. Parent corprobes undergo a 
reduction in asset levels to reflect the energy 
expended in the creation of a new individual. 
Corprobes can also be added via the Random Birth 
mechanism. 

VI. RESULTS AND CONCLUSIONS 

The simulation was run at varying Resource 
Multiplier levels ranging from one thousand 
through one million. Also, thresholds were varied 
to find out if there was significant behavior change 
at differing threshold levels. In all cases, a single 
parameter was varied while others were held 
constant, in order to measure the amount of change 
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in a controlled situation. Data was sampled via a 
moving average to smooth out short term 
anomalies as well as to observe long term trends. 
One hundred runs were done with each parameter 
set, and the results were averaged over the life of 
that specific run to smooth out random fluctuations. 

We discovered that in the Resource Multiplier 
range of four thousand to twelve thousand, there 
was a steady, consistent increase in population 
growth, along with corresponding increases in FSI 
levels for all four genotypes. (See Appendix A: fig 
1-2). Growth varied among the genotypes, but the 
overall picture showed a linear increase that was 
relatively consistent over all four types. Beyond 
this point, the population remained stable while FSI 
levels, which had increased dramatically towards 
the latter portion of the range, dropped to about a 
half of their peak value, and stabilized in a cyclic 
pattern. (See Appendix A: fig 3-4). The system 
stabilized at the transition point and levels 
remained consistent thereafter. Varying thresholds 
(such as the Reproduction Threshold and the 
Takeover Threshold) produced an amplitude shift, 
with the focus of the shift being concentrated in the 
population graph. (See Appendix A: fig 5-6). In all 
cases studied, varying the parameters did not 
essentially change the shape of the initial growth 
curve or the consequent transition point. Effects 
were mainly visible in the stabilization levels 
produced thereafter. 

We think that the above results indicate that the 
model optimizes the population levels of the 
available genotypes for a specific resource level 
(i.e .. consumer demand) and a particular set of 
controls (the various thresholds and limits). The 
model was able to optimize over an extremely 
large range of values for the Resource Multiplier. 
The tested range ran from four thousand to one 
million. The statistical data indicated that large 
increases in the Resource Multiplier showed up as 
correspondingly large up-shifts in the graph as a 
whole. 

The growth curve leading to the transition ledge is 
analogous to a youthful dynamic market which 
gradually becomes saturated over time. We think 
that the transition ledge indicates the point of 
market saturation. The dramatic plunge in FSI 
levels, from the transition point to stabilization 
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levels is indicative of companies that invested too 
heavily in growth and expansion at the tail end of 
the market expansion curve, and were forced to pay 
a penalty when predicted demand did not meet 
expectations. 

From the heights of the peaks in the FSI graph 
levels, it can be seen that the different genotypes 
show different growth patterns. The Conservative 
genotype shows the lowest peaks on average, and 
this indicates its nature. The Expander genotype 
generally has the highest average peaks, (indicative 
of its nature) and therefore shows more fluctuations 
in health over time. Overall, it would seem that the 
Conservative genotype is less susceptible to market 
fluctuations than the other three types, and that the 
Expander and Hyperactive genotypes have 
consistently larger market share. The model seems 
to show that the amount of risk undertaken is 
directly proportional to overall market share and 
vulnerability to market fluctuations. 

Further experiments were conducted, in which the 
simulation was run with the absence of a particular 
genotype until a specific time frame was reached. 
As before, the system stabilized itself for the 
existing three genotypes. After stabilization, the 
absent genotype was introduced, and mutation and 
birth procedures were allowed to make use of this 
genotype. The system soon restabilized itself for 
the new configuration, albeit at a lower level from 
the one established earlier. (See Appendix A: fig 
7-8). Introduction of a fresh genotype to a stable 
system resulted in the incorporation of the new 
genotype into the environment matrix at the cost of 
production decreases and health index depletion in 
the existing gene pool. In the context of the 
corporate environment, the model seems to imply 
that new entrepreneurs with characteristics widely 
differing from those already established, can find a 
niche in the marketplace, with the result that there 
is less market share for everybody, and a decreased 
likelihood of extended growth. 

Changes in the threshold parameters tended to 
make the system less stable under extreme 
conditions. For example, increasing the 
Reproduction Threshold, the Merge Threshold, and 
the Takeover Threshold simultaneously produced a 
situation where it was harder for a corprobe to 
reproduce itself, and also harder to take over the 
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resources of a failing corprobe. Additionally, 
corprobes failed at a higher rate. In such a case, the 
rate of entropy for the system as a whole, tended to 
be higher than the rate of growth, leading 
eventually to population depletion, or market crash, 
(i.e .. failure of simulation due to inadequate 
number of corprobes, or inadequate number of 
healthy ones). 

Raising the Reproduction Threshold made it more 
difficult for corprobes to reproduce, but those that 
did were correspondingly stronger than in a 
situation where the threshold was lower. Since 
reproducing corprobes supported their new 
offspring by direct asset transfer, the new 
corprobes, mostly of the same genotype as the 
parents, were correspondingly stronger financially 
and healthwise. The result was higher PSI levels 
for the genotype as a whole, with the PSI graph 
plots showing higher peaks corresponding to 
increased corporate stability. 

VII. SUMMARY 

In conclusion, it was observed that 
CORPWORLD does effectively model certain 
aspects of the corporate environment and the 
behavior of corporations within the limitations 
imposed by simulation's design. It can be viewed as 
a prototypical model that can explore behavior 
patterns in the corporate environment using such 
tools as Artificial Life and Genetic Algorithms. 
Further enhancements to the model, in order to 
make realistic projections regarding specific 
markets would involve: 

• Maintaining a gene pool of successful 
phenotypes, which could be used to 
incorporate true genetic breeding. In this 
case, genetic evolution would be directed 
towards the best possible survivor in an 
environment. 

• Changing the genotype over time to enable 
it to adapt more flexibly to its environment 
than at present. This would be a 
pre-requirement for genetic evolution. In 
particular, the Risk Factor and Aggression 
Factor could be made continuously variable, 
and active over a wider range. 

• Changing the behavior patterns for each 
genotype to more aggressively reflect its 
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nominal characteristics. In particular, the 
Virulent genotype could be designed to 
actively seek out targets within its sphere of 
influence, while the Expander genotype 
could be altered to factor in the healthiness 
of adversaries as well as its own, within its 
sphere of influence . 

• Giving individual corprobes rudimentary 
intelligence, at least to the level of being 
able to make minor adjustments (such as 
adjusting sales and production to population 
levels), to its immediate environment based 
on its perception of that environment. 

• Making resources (consumers) migratory, 
rather than fixed, as at present. 

• Linking corprobes over relative distances on 
the grid, based on their familial links. This 
would include the ability to move assets 
back and forth between nodes of a larger 
distributed corporation. 

• Making production a function of multiple 
variable markets rather than a single fixed 
one. 

• Being able to consider many different types 
of environments based on economic 
variables. 

CORPWORLD has the potential to become a 
valuable tool for experimentation and exploration 
of various corporate environments. 
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Abstract 

ALCOD is a cooperative multi-agent intelligent 
decision support system to assist stock market 
surveillance teams in the classification of 
alerted non-compliant events transacted on the 
exchange. ALCOD facilitates the review of the 
classifications. The system combines heuristic, 
approximate and causal reasoning and is 
centred around a relational database which is 
used as a control blackboard. 

1. INTRODUCTION 

1.1 Stock Market Surveillance and 
Decision Processes 

Major international capital market providers 
currently use various sutveillance techniques to 
ensure that the market participants are well 
informed and that illegal activities are detected, 
Keyes (1991). The stated mission of the 
Australian Stock Exchange (ASX) is "to 
provide, for the benefit of all participants, the 
most internationally competitive and fair market 
for financial securities and derivatives so as to 
enhance Australia's position as a regional 
financial centre. "2 

When the ASX was reorganised in 1989, the 
need for a formal market sutveillance function 
was recognised. Prior to this date, equities 

1
We gratefully acknowledge the cooperation 

of the Surveillance Division of the 
Australian Stock Exchange. 
The author is indebted to Professor Philip 
Brown , The Department of Accounting and 
Finance and Dr Paul Hadingham, The 
Department of Computer Science, The 
University of Western Australia for their 
advice and encouragement. 

2 ASX Annual Report (1994, p. 2). 
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market sutveillance was divided among the ASX 
Companies and Membership Divisions, the 
federal National Companies and Securities 
Commission (NCSC) and the Corporate Affairs 
Commissions and the six separate states, the 
Australian Capital Territory, and the Companies 
Office of the Northern Territory. The 
sutveillance Division was an outgrowth of the 
reorganisation. 

The Surveillance Division's role is to monitor 
the market to ensure trading is fully informed 
As a result, it may detect unusual patterns of 
market behaviour that might instance market 
manipulation, insider trading and similar 
practices. Once an unusual pattern is detected, 
if no adequate explanation is found and there 
appears to have been a breach of the ASX rules, 
it is reported to the Exchange's Companies 
Division (if a listed company is involved), ASX 
Membership Division (if a broker is involved), 
or the Derivatives Division (if derivatives are 
involved). Where there appears to have been a 
breach of the law, the matter is reported to the 
federal government body that administers the 
corporations law, namely the Australian 
Securities Commission (ASC). 

When it was formed, the Surveillance Division 
commenced a program that combined computer-

• based decision support systems to analyse 
market events, with communications software, 
text retrieval and graphics. This program 
resulted in the Surveillance of Market Activity 
(SOMA) and related subsystems such as real­
time monitoring of market events, news display, 
market replay, 
and alerts' history. The SOMA system 
originated from the NYSE's STOCK WATCH 
system and has been modified for the Australian 
context. 

The SOMA system is evolutionary, to keep pace 
with improvements in sutveillance methods, 
changes in technology, and evolving market 
behaviour. The complete SOMA system is 
written in Cobol and C and runs on PCs 
supported by a Local Area Network. 
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Figure 1. How ASX Surveillance Works 
Source: ASX Surveillance Division 
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Toe Surveillance Monitoring System at the ASX 
comprises two components: i) the automated 
system for the initial monitoring, and ii) the 
market analyst's review, comprising the 
subsequent decision processes. The automated 
system generates an "alert", the structured 
component, which a market analyst then 
scrutinises, the unstructured component. An 
alert is generated when there is an occurrence in 
the trading of a security that is outside pre-set 
values of any of a number of parameters. If the 
market analyst isolates unexplained unusual 
patterns of market behaviour and concludes an 
investigation is justified, the details are 
forwarded to the assistant manager of 
Surveillance who then determines if an 
investigation is required. If one is required, the 
report is sent to an investigating analyst who 
calls for brokers' records, conducts an analysis 
of all the available data, and decides whether a 
report of the activity to the relevant regulator is 
warranted (Berry and Yanco, 1990). 

1.3. The Surveillance Operations Tasks 

Toe SOMA model monitors between 50,000 and 
80,000 trading entries per day and includes 
priorities that are determined by the type of alert 
generated For example, when there is a volume 
type alert (e.g., when there is an extraordinarily 
large volume of trades), the number of days 
since the stock was previously traded will be a 
factor that contributes to the choice of the alert's 
priority. Surveillance operations con be broken 
down into a sequence of steps as follows. 

• Once the automated system detects unusual 
market activity, it produces an alert. The 
type of alert depends on the nature of the 
unusual activity. 

• SOMA separates the alerts into those that 
relate to one of the top 96 liquid stocks3 

and 
the rest (about another 1,000 stocks), which 
are classified as illiquid stocks. An analyst 
is responsible for each category. Liquid 
stocks are, by their nature, well researched 
by market participants. They make up a 
large part of the market index and can be 

3 Market capitalisation and value of trades are 
the metrics used to measure liquidity. 
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seen as representing "the market". Alerts 
generated by events are sent to the one 
market analyst for scrutiny. Alerts for the 
illiquid stocks, which make up the bulk of 
the alerts, are sent to an assistant market 
analyst who is supervised by a market 
analyst. To reduce the number of rejected 
alerts, all alerts are now prioritised into two 
categories: viz., primary and secondary 
alerts. Primary alerts are those that are 
maintained for scrutiny and subsequently 
recorded in an alerts history file for 
referral. Secondary alerts are recorded in an 
alerts history file for reference, if necessary, 
at a later date. 

• At the start of analysis, the assistant market 
analyst is presented with graphic user 
interface (GUI), displaying the current alerts 
generated by the primary system, keyed by 
ASX code. 

• When the assistant market analyst selects a 
stock code for which there is an alert, she is 
presented with the report that details why 
the alert was generated 

• Toe assistant market analyst then adds 
comments to the GUI, using as a guide a set 
of questions that are documented in her 
manual. The answers to these questions 
determine whether the alert is to be rejected 
or accepted for further scrutiny. They 
relate, for example, to issues of price or 
volume movements compared to previous 
movements of that stock and to the 
movement in the relevant share index, or the 
presence of company announcements, 
brokers' newsletters, etc. Reference is made 
to charts of the past trading patterns of the 
stock and the index, the stock alert history, 
news services, and other information that 
may be of interest. Comments are added to 
the alert (via the GUI) on anything that the 
assistant market analyst believes may help 
the market analyst in reviewing the alert. 

• Toe assistant market analyst compares the 
stock's price and volume movements with its 
history and with movements in the relevant 
index, in addition to the comparisons made 
by the automated system. 

• Toe assistant market analyst (when 
possible) inputs alert codes. These codes 
flag the alert status as judged by the 
assistant. They may indicate, for example, 
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that the alert is "not for analysis", "watch" 
or "in line with sector". 

• If, at this stage of the review, an alert 
identifies a significant change in the market 
for a stock that is unexplained by news and 
other market infonnation, then the 
circumstances are referred to ASX 
Companies Division personnel. They 
contact the relevant company or broker(s) 
should they deem it necessary. 

• The next step of surveillance is conducted 
by the market analyst, who also has access 
to a database containing points of interest 
relating to news items, brokers' 
recommendations, public newsletters and 
journal recommendations, online charts, the 
response from the ASX Companies Division 
personnel or the ASX Membership Division 
(if either is applicable), and alert history 
files. On occasion she may alter the alert 
codes entered by the assistant analyst 

• If there is an unexplained pattern of trading 
it is brought to the market analyst's attention 
for further inquiry. After conducting a 
detailed analysis including (for example, an 
analysis of who bought and who sold, and 
an evaluation of the value of the transactions 
of the trading concerned proportionate to the 
stock's capitalisation) a report is prepared 
for the surveillance assistant manager (the 
senior analyst) who then determines if an 
investigation is justified If so, the report is 
forwarded to a surveillance investigator who 
conducts an inquiry into the matter. 

2.1. THE ALCOD SYSTEM 

The ALCOD System [ALCOD], is an Intelligent 
Decision Support System [IDSS], Hotzman 
(1989), Gottinger and Weiman (1992), and 
Marzano (1992), developed to assist the 
surveillance team in classifying the alerts 
generated by the SOMA system. ALCOD 
functions in a complex environment where the 
information used by the analysts is often highly 
context sensitive in high volume. 

ALCOD uses Multi-Agent Technology, Bond 
and Gasser (1989), Bird (1993), Jin and Levitt 
(1993), Morrison (1993), O'Valle (1994), to 
reflect the multi-agent surveillance team, as well 
as Fuzzy Modelling, Evidence Combining, 
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Zadeh (1978,1983,1986), Yager (1983,1987) 
and Torasso and Console (1987, 1989a, 1989b), 
and the concept of Blackboard Control 
Architecture, Hayes-Roth (1985), Mookerjee 
and Chaturvedi (1993) to model aspects of the 
surveillance team's decision making tasks. 

ALCOD's primary function is to suggest an 
appropriate alert code, and to present the 
evidence supporting this suggested code. One of 
the results of ALCOD is the generation of an 
audit trail of the decisions made by the team. 
This trail is being used for fine-tuning the 
ALCOD system, and potentially can be used for 
reviewing the threshold levels in the SOMA 
system, for case-based reasoning to evaluate 
historical alerts, codes and evidence, O'Leary 
(1992), Gamer and Chen, (1992) and Mott 
(1993), as the decision outcomes are retained, 
and as a training tool for novice analysts. 

2.2. Initial Monitoring 

As mentioned, the initial monitoring facilitates 
structured decision making and is done by the 
real-time procedural, SOMA system. The 
threshold levels of SOMA can be adjusted each 
trading session by altering the start-of-day 
threshold parameters. SOMA produces 40 
different types of alert reports including the alert 
details. This output is converted to produce 
input for ALCOD. 

Typical alert reports include, for example: Sale 
Price versus Close of any of the last n Days, 
Sale Price versus Previous Close, Volume of n 
Days versus Past n Day Volume, and Today's 
Volume over n% of Issued Capital: 

2.3. Secondary and Subsequent 
Monitoring and Decision Processes 

The alerts generated by SOMA identify 
suspected breaches in compliance. However as 
the threshold levels have a high granularity, the 
alerts need to be evaluated to determine if they 
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are true positive alerts or false positives. Due to 
the temporal and context sensitive nature of the 
infonnation required to evaluate each alert 
report in this complex environment, it is 
necessary for the analysts to use a large amount 
of infonnation that may correspond to or 
conflict with the alert under review. The 
decision process involves the accumulation of 
evidence based on this infonnation. This 
evidence is used to classify the alert. There are 
24 different classifications of an alert, each 
requiring supporting evidence. 

Typical classifications include, for example: 
Analysis Commenced, On-Market Buy Back 
Scheme, Investigation Commenced, Media 
Article, Company Announcement, Portfolio 
Adjustment, Watch, Watch and Ring Companies 
Department, In-line with Underlying Security, 
Substantial Shareholding Notice and Not for 
Analysis, for various reasons, such as 
insufficient volume, insufficient price, in-line 
with industry classification or in-line with 
market index. 

Surveillance team members use internal and 
external information, as well as historical cases 
which include an alert code as well as its 
supporting evidence. Consequently, the analysts 
are typically faced with large amounts of 
temporal and context sensitive infonnation, both 
directly and indirectly related to the event under 
scrutiny. This may lead to inconsistencies in the 
analysts' decision making and evidence 
production. Additionally analysts may present 
biases which manifest as inconsistencies over 
time and as inconsistencies between the analysts 
in the team. 

Under this complex decision making 
environment, the decision makers can be assisted 
in their decision processing by computerised 
decision support systems [DSS], Gory and 
Scott-Morton (1971), Sprague (1980), Sprague 
and Watson (1986), Sviokla (1986), Silver 
(1990) and Todd and Benbassat (1990). The 
goal of this DSS is to assist the decision maker 
in matching events generated by an external 
agent, to known, or suspected, patterns of 
anomalous, agent behaviour. This goal can be 
seen as the tenninal hypothesis supported by 
subgoals or node hypotheses. The objective of 

Copyright © 1995 Software Engineering Press 

this DSS is to minimise the inconsistencies 
discussed above and to impose a nonnative 
framework for the combination of 
complementary and conflicting evidential 
infonnation. This nonnative framework also 
assists the analyst in the management of the high 
volume of related external information. 

2.3.1. ALCOD Model Dynamics 

After initial alert generation (produced using 
quantitative methods with coarse-granule 
thresholds), the first task of the team i$ to 
determine if an alert is feasible. This and 
subsequent decisions are based on team 
members' expert determinations (supported by 
evidence) to classify the alert. The alert's 
classification is then reviewed by more senior 
members of the team, who use the alert code as 
a basis to review the evidence consistent with the 
assigned code. They may add, modify or 
disprove this evidence. The result of the review 
process is the retention or modification of the 
code plus evidence. 

To assist in evaluating the information relevant 
to an alert, and to generate the evidence, 
ALCOD combines prototypical knowledge 
representation with heuristic, approximate and 
causal reasoning and evidence combination 
methodologies. This allows for combining 
heuristic and deep reasoning. The techniques 
used are discussed in detail in Torasso and 
Console (1989a). 

Our basic model uses non-monotonic reasoning 
to apply defeasible logic on frame-based, 
Minsky (1975), knowledge structures. The 
fuzzy modelling and related evidence combining 
techniques are used in preference to the 
Bayesian framework measure of the strength of 
evidence, the likelihood ratio, because of the 
limitations with respect to the use of likelihood 
ratios as inputs which constrain the evidence 
aggregation. For details see Krishnamoorthy 
(1993). Additional justifications for the 
techniques used can be found in Torasso and 
Console (1989a), pp 3-26. 
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Figure 3. The frame Substantial Shareholder Notice, Short Term 
Price Movement (prototypical and control knowledge parts) 

FRAME: Substantial Shareholder Notice [SSN] 

TRIGGERS 
Today's Price versus Previous Close 

RM=l.0 
NECESSARY FINDINGS 
The level of importance of an SSN being lodged recently to the price move 
<Vl,0.75> <1,0.5> <Sl,0.25> <NI,0.0> 

RM=l.0 
SECONDARY FINDINGS 
The level of importance a particular broker being responsible for all or most of today's 
volume to the price move 
<El,1.0> <Vl,0.75> <1,0.5> <Sl,0.25> <Nl,0.0> 

RM=0.9 

The level of importance of a particular broker having layers 
of bid and asks, and being noted in the history 
<El,1.0> <Vl,0.75> <I,0.5> <Sl,0.25> <NI,0.0> 

RM=0.05 

The level of importance of the company having been queried in the last few months 
about the top 20 shareholder because of an increase in the volume of trading AND 
this volume attributed to changes in the top 20 shareholders, to the price move 
<El,1.0> <Vl,0.75> <1,0.5> <Sl,0.25> <NI,0.0> 

RM=0.5 

The level of importance to the price move of enquiries by ASX to the company about 
an announcement (including periodic reports) 
<El,1.0> <VI,0.75> <1,0.5> <SI,0.25> <Nl,0.0> 

RM=0.05 

VALIDATION RULES 
confum if SSN (timing, level of importance) 

in context -
RM=l.0 

AL TERNA TE HYPOTHESES 
confnn .if alert previously classified as SSN (timing, level of importance) 

in context -
RM=l.0 

DEFAULT SPECIALISATION 
The level of importance of an SSN being lodged recently to the price move 
<EI,1.0> 

RM=l.0 
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Knowledge representation [KR] 

On the heuristic level, which is hierarchically 
organised, the KR is in the form of frames which 
contain structural knowledge slots, prototypal 
knowledge slots and control knowledge slots. 
The higher heuristic levels are coarse 
classification hypotheses whereas the lower 
levels are more specific. These high and lower 
levels are connected by a specialisation 
relationship connecting the frames that represent 
general classification hypotheses to frames 
representing more specific hypotheses. 

Structural knowledge is fanned by these 
generalisation and specialisation slots which 
describe a frame's position in the system. The 
specialisation slots contain the names of the 
classification hypotheses that are more specific 
than the one under consideration. The 
generalisation slot indicates the hypotheses 
generalising the one under consideration. 

Prototypical knowledge is divided into 
subdivisions containing primary or necessary 
conditions, and secondary conditions. The 
primary conditions need to be satisfied in order 
for an hypothesis to be confinned The 
secondary conditions are a variation on Cravetto 
et. al. (1985) sufficient conditions, which 
establish the hypotheses under consideration 
when a sufficient condition is met As these 
sufficient conditions are often difficult to define, 
they have been replaced by secondary 
conditions, which allow for the completion of 
primary conditions by describing more specific 
conditions that are not strictly necessary. 

Control knowledge may have up to five slots: 
Triggers, Validation Rules, Associated 
Hypotheses, Alternate Hypotheses and Default 
Specialisation. 

• Triggers are rules that need to be satisfied 
by actual data before a frame is instantiated. 

• The slot Validation Rules contain 
production rules that involve specific data to 
confirm or reject the instantiation of a 
frame. 

• The slot Associated Hypotheses contains a 
list of those hypotheses that are associated 
with the current one and the slot Alternate 
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Hypotheses contains a list of those 
hypotheses that are alternative to the current 
one. 

• The Default Specialisation slot contains a 
list of specialisations that are more common 
when a generic classification can be 
established. When a frame corresponding to 
a generic classification can be established by 
actual data and no specialisation frame can 
be triggered, this default specialisation can 
be used. 

Relevance measures and evidence formulation 

In order to weigh the importance of data or 
conditions on data, we use the concept of 
relevance measures [RM]. The RM metrics 
associated with each atomic condition in a 
complex condition lies on the [0,1] interval. An 
RM of 1 has the maximum relevance and 
conversely the minimum RM is 0. RMs are 
elicited from the experts as part of the initial 
knowledge acquisition, and are built into the 
system. 

When data is input by the user in the fonn of a 
boolean variable, i.e. True or False, linguistic 
variables [L V] are associated with each positive 
response. There are five LVs ranging from 
extremely important, [EI] to not important, [NI]. 
These LVs are then combined with the RM to 
produce an evidence measure for each element 
concerned. Elements associated with the same 
classification goal are then combined to form an 
'evidence chunk'. The control knowledge, 
heuristic knowledge, causal and approximate 
reasoning are used to evaluate the global degree 
of evidence for the hypotheses under 
consideration. The end result is the required alert 
code, plus its supporting evidence. 

The Multi-Agent Component 

ALCOD is centred around a relational database 
which contains the output from SOMA, and the 
reference databases. The RDB is also used as a 
blackboard on which results and various 
controlling parameters are recorded, and by 
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Figure 4. Influence of Relevance Measures on Evidence Evaluation 
Adapted from: Torasso and Console (1989a, 1989b). 

The combination of the relevance measures and the level of importance, takes the form of a 
connective, 

[CONNECTIVE: DEV x DRM ➔ DEV 

where ~V represents the domain of evidence, i.e. the level of importance, and DRAf is the 
domain of relevance measures. The 'corrected' evidence obtained by applyingfcONNECTIVE 
to the pair <obseived_evidence, RM) of a fact is the same as that used in the fuzzy evaluation 
of the complex condition. The general requirements for the connective function are shown in 
(1) and (2) for the two cases of AND and OR connectives respectively. 

(1) 

fANn(e,0)=1 
fANn(e,l)=e 
fAND(O,m)=l-m (2) 
f ANDCl,m)=l 
f AND(e,m)'2:,e if O <e <1 and O <m <1 

fOR(e,0)=0 
fOR(e,l)=e 
foR(O,m)=O 
fORCl,m)=m 
f OR(e,m)5.e if O<e <l and O <m <1 
f AND(e,m)=m*e+(l-m) 

The first operand of both f AND and fOR represents the obseived evidence of an atomic 
condition and the second one the relevance measure of the finding occurring in the atomic 
condition. 

To constrain the form of the formulae which definefAND and foR we use the functions (3) 
which satisfy (1) and (2). We are also experimenting with function (4). 

fAND(e,m)= m*e + (1-m) 

(3) fOR(e,m)=m*e 

2 2 2 
fANn(e,m)=e (m -m)+e(2m-m )+(1-m) 

(4) 
2 2 2 

foR(e,m)=e (m-m )+m e 

Once the revised evidence degree has been evaluated for the elementary conditions, we use (5), 
(6) and (7) to combine the elementary evidence to form a chunk of evidence. 

(5) e(AND (T1 T2 ... T n)) = a+P * <P-a) 

n n 

where a= II e(T;) and 13 = min e(Tj) 
j=l j=l 

e(NOT T) = 1 - e(T) (6) 

(7) e(OR (T1 T2 ... Tn)) = e(NOT (AND ((NOT T1) (NOT T2) ... (NOTT n)))) 
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Figure 5. A Heuristic Approach to Evidence Combination 
Adapted from: Torasso and Console (1989a, 1989b). 

To combine the evidence degrees of the related knowledge chunks to fonn the global evidence 
degree of the terminal hypothesis, the starting point is the Bernoulli fonnula (8). 

However, as this considers the degrees of evidence as the same with no single value having a 
privileged position we proceed from (9) to fonnulate (10) to distinguish between the primary 
and secondary findings. 

where the parameter 11. represents the degree of privilege. 

(perfect privilege) 

(unfair privilege) 

with ei < X < 1 when O < A < 1 

By varying 11. we can obtain an evidence combination scheme which assigns more or less 
predominance to the evidence obtained 

Finally to evaluate the overall global degree of evidence of the hypothesis under consideration 
we use (11) to combine the degrees of evidence of the separate knowledge chunks obtained 
from the primary evidence e(P), the secondary evidence e(S), the exclusion rule e(ER) and the 
comfirmation rule e(CR) 

(11) e(H) = ((e(P) +u e(S)) Of (1 - e(ER)] +u e(CR)). 
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which team members' communicate their results. 
The homogeneous and heterogeneous 
components constitute the multi-agent 
architecture; that is, i) the Analysts, ii) the 
KBSs, iii) the Blackboard, and iv) the 
Databases. 

Once an alert code plus supporting evidence has 
been assigned to an· alerted stock, the 
information is passed to the next team member 
for review. Modifications to this result can be 
performed either by manually editing this output 
or by using the hedging strategies. The results 
of each team member are added to the decision 
audit trail. 

EXTENSIONS AND FUTURE RESEARCH 

Further research is currently being conducted or 
planned including; increasing the range of L Vs 
to include three points within each L V, temporal 
case-based reasoning to evaluate historical 
classifications and evidence, natural language 
processing of company announcements, the 
incorporation of a cost function to evaluate the 
risk of further analysis, and· issues related to 
extending the analysis-team-wide modelling to 
include modelling the investigation task . 

CONCLUSION 

ALCOD is a proof of concept prototype 
currently under review by the Surveillance 
Division of ASX. The system is built using 
Smart Elements/Nexpert and MSAccess. It is 
PC based. 

Preliminary real-time testing was conducted over 
a five day period on alert report, 'sale price 
compared to the previous close'. Oassifications 
generated by a senior analyst were compared 
with those generated by ALCOD. The results 
showed that in 38 cases out of 50 reviewed, 
76%, the ALCOD result agreed with the 
analyst's determination. In two cases, 4%, the 
analyst modified her classification to that 
recommended by ALCOD. In the remaining 10 
cases, 20%, ALCOD ranked the analyst's 
recommendation as second with a difference in 
the degree of evidence between first and second 
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being less than 11 % . Further system 
development and fine-tuning is currently being 
conducted. 

The ALCOD system is discussed in detail in 
Goldschmidt (forthcoming), and is used as an 
illustrative example of the concept of 
compliance monitoring for anomaly detection in 
a complex environment. 
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In the first proceedings of this conference, 
in which we presented a paper dealing with 
patent protection of financial software, we 
discussed those patents that afford exclusive 
rights to developers of software systems and 
their underlying financial applications. Since 
then, many patents for financial software 
applications have issued, and the importance 
of software patents in general has been 
growing with increased recognition of their 
value. 

Recently, software patents have been 
given extensive coverage in the press. To cite 
an example, Stac Electronics won a $120 
million jury verdict against Microsoft for 
infringement of data compression patents. 
(Subsequently, however, the case was settled 
with Microsoft paying millions to Stac.) This 
case once again underscores the great 
potential value of software patents. Similarly, 
controversy surrounding a patent issued to 
Compton's New Media, who claimed exclusive 
rights to searches in multimedia text/graphics 
environments, attracted a great deal of 
attention. In response to pressure from 
industry, the Patent Office, on its own motion, 
which is unusual, initiated proceedings to 
reexamine this patent. In addition, largely in 

response to the computer industry's reaction 
to this patent, the Patent Office held public 
hearings concerning software patents. 

In our previously mentioned paper, we 
stressed that although software is entitled to 
patent protection (including software for 
financial applications), the courts continue to 
struggle with the problem of distinguishing 
patentable subject matter from so-called 
"mathematical algorithms" and from abstract 
ideas, both of which are not patent 
protectable. 

In the early 1980's, the United States 
Court of Appeals for the Federal Circuit was 
created as a unified appellate jurisdiction for 
patent-related cases. Although the Supreme 
Court can, at its discretion, review the 
opinions of that court, it rarely does so, and 
therefore the decisions of the Federal Circuit 
constitute the most important body of patent 
law. Between 1982 and 1989 the Federal 
Circuit issued only two decisions relating to 
patentability of software, namely In Re Iwasha 
and In Re Grahams , both discussed in our 
previous paper. In 1992 it came out with 
another decision, Arithmia Research 
Technologies, Inc. v. Corazonix Corporation, 
and in 1994 it issued a whopping four 

1 This paper represents the opinions of the authors and not necessarily those of the organizations with which they 
are associated. 
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decisions related to the patentability of 
software. 

Particularly relevant subject matter was 
discussed in the 1994 case In Re Schrader, 
where the Court addressed the patentability of 
a method for competitively bidding on 
auctioned items. and in In Re Trovato, which 
analyzed patent claims concerning a purely 
graph-theoretic algorithm. In In Re 
Warmerdam the patentability of software for 
a "bubble hierarchy" was discussed, and in In 
Re Alappat the Court considered the 
patentability of an anti-aliasing oscilloscope 
system. Although these cases do not display 
much consistency and clearly articulated 
guidance is nowhere to be found. a discussion 
of these decisions ought to provide some 
guidance to software developers. 

Before analyzing these new decisions and 
discussing their relevance to the protection of 
AI systems for financial and business 
applications a few words regarding patents in 
general are in order. A patent typically 
consists of two main parts: a detailed 
disclosure of the invention, which is a detailed 
description of its embodiment intended to be 
understood by persons "skilled in the art," 
and the claims. which define the scope of 
intellectual property that is subject to patent 
protection. While the disclosure is detailed 
and specific. the claims, on the other hand, 
are written as broadly as possible, subject of 
course to originality and clarity requirements. 
Many factors are considered in determining 
whether a given invention is entitled to a 
patent, the most important being novelty and 
non-obviousness. While these factors are 
common to all areas of technology, software 
has an additional dimension, namely, the 
fundamental question regarding the 
patentability of software in the first place. 
Even though software is a main-stream branch 
of engineering, in the 1970's and early 80's it 
was confused with mathematics and abstract 
ideas, both of which are not entitled to patent 
protection. (Mathematics, in particular. is 
considered a phenomenon of nature that is 
always in the public domain.) This cast a 
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shadow on the entire area of software 
technology. 

Turning now to the cases cited above, in In 
Re Warmerdam the Federal Circuit 
considered the claims to an algorithm and 
data structure for implementing collision 
detection using "a bubble hierarchy." The 
invention is an improved technique for 
detecting the perimeter of an object using a 
hierarchically structured logical "bubble," 
which contains lower-level bubbles of smaller 
diameter, each of which encloses a portion of 
the object. The algorithm successively 
intercepts the object with bubbles moving 
down the hierarchy. and if at the lowest level 
at least one bubble is "burst", the program 
determines that a collision would occur. 
Those claims addressed to a method of 
generating a data structure were rejected. 
The court held that the method constituted a 
mathematical procedure and simply 
manipulated "abstract ideas." A claim 
directed to a "data structure" generated in 
accordance with the method of the invented 
algorithm was deemed to mean "nothing more 
than another way of describing the 
manipulation of ideas." (One of the reasons 
that the court was confused regarding the 
term "data structure''. was that the patent 
application did not define the actual bubble 
data structure.) Interestingly, the court found 
that the claim directed to a machine having a 
memory that contains data representing a 
bubble hierarchy using this method was in fact 
statutory. The court in footnote 6 stated "our 
predecessor court has recognized that the 
storage of data in a memory physically alters 
the memory and thus in some sense gives rise 
to a new memory." 

In analyzing this decision, it appears that 
the failure to articulate an area of application 
was an important factor. Had the claims 
referred to an application, particularly to 
physical actions for which the algorithm was 
obviously intended, the chances of success at 
the Patent Office would have been greater. 
Clearly, this court was confused by the term 
"data structure" and did not make the 
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connection to physical memory (i.e RAM) 
arranged in a certain way, which is how 
computer scientists view data structures. 

In In Re Trovato the Federal Circuit 
addressed patentability of a heuristic for 
determining the shortest path in a graph. Its 
broadest claims relate to (a) storing a 
configuration space data structure, and (b) 
propagating cost waves in the configuration 
space data structure to fill the configuration 
space data structure with cost values according 
to a space variant metric. The claims were 
found nonstatutory by the Federal Circuit. 
The court concluded that "Trovato does not 
claim to have invented a new kind of 
computer which the recited mathematical 
algorithm controls. Nor do they claim that 
the recited mathematical algorithm has been 
combined with a new memory controlling a 
computer known to the art. Putting Trovato's 
claims in their most favorable light, the most 
they provide is a systemic way in which to 
compute a number representing the shortest 
part. A new way to calculate a number 
cannot be recognized as statutory subject 
matter." 

Regarding "data structures," in In Re 
Lowry (1994), the Federal Circuit determined 
that a claim directed to data structure is 
proper. It characterized the data structure as 
a physical entity: 

Data models define 
permissible data structure -­
or ganiza ti onal structures 
imposed upon the data used 
by the application program -­
compatible with particular data 
processing systems. Data 
structures are the physical 
implementation of a data 
model's organization of the 
data. Data structures are 
often shared by more than one 
application program. 

Thus, several decisions issued at 
approximately the same time came out with 
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opposing conclusions regarding the meaning 
of "data structure." This means that, in 
general, the notion of data organization can 
be patented; care should be taken, however, 
to explain in a patent application that the 
reference is to the physical organization of a 
computer's memory. In inventions related to 
Al, where the innovation is entirely in 
software, care should be taken to explain in 
great detail that what takes place is not 
abstract, but rather that a machine under 
software control is directed to perform a new 
function. Although the disclosure is supposed 
to be addressed to "a person skilled in the 
art," for pragmatic reasons it is advisable to 
provide specifications that are at a much lower 
level than is customarily done when addressing 
programmers. This means that though all 
educated programmers know what a data 
structure is, the patent office and courts might 
not, so a prudent patent application writer will 
provide careful explanation of such notions 
using physical terms. 

In In re Schrader the Federal Circuit 
rejected as unpatentable a method of 
conducting auctions. The claims essentially 
covered a way of determining an optimal 
combination of bids. The Federal Circuit held 
that the claims of this patent were directed to 
"a mathematical algorithm," which is not 
under the current laws subject to patent 
protection. The claim was drafted in purely 
logical terms and did not discuss any physical 
implementations whatsoever. Had this claim 
included a description, even at the most 
elementary level, showing how computers are 
used in auction environments, the outcome 
might have been different. 

In Arithmi Research Technology v. 
Corazonix Corporation the Federal Circuit 
found that a method for analyzing 
electrocardiographic signals in order to 
determine certain characteristics of heart 
function was patentable. Though the process 
of analyzing electrocardiographic signals was 
implemented entirely in software, nevertheless, 
the court found that the claimed steps of " 
'converting', 'implying', 'determining' and 

Copyright@ 1995 Software Eng½1eering Press 



'comparing' are physical process steps that 
transform one physical, electrical signal into 
another." One of the reasons that the court 
was persuaded that this software claim was 
patentable is that it was directed to a well 
articulated practical application. In addition, 
this court took a more liberal approach to 
software claims in general, stating that 
"computers came to be generally recognized 
as devices capable of performing or 
implementing process steps, or serving as 
components of an apparatus, without negating 
the patentability of the process or the 
apparatus." 

In In Re Alappat the Federal Circuit 
addressed patentability of an anti-aliasing . 
algorithm used for high quality oscilloscope 
displays. In essence, the invention amounts to 
a mathematical transformation of input 
voltage data into display output data that 
represents screen pixel intensities. Although 
the invented procedure could easily be 
implemented as a program, the patent 
application was artfully drafted in that its 
disclosure showed circuitry (AND, OR, 
NAND gates; ROM, ALU, etc.) instead of 
program code. The ·claims, however, were 
written strictly along software lines, making no 
explicit mention of circuit components. The 
court was persuaded that the disclosed circuit 
elementscorresponded to the elements of the 
software claim and found that the claim 
related to statutory subject matter. The court 
was also persuaded that this claim clearly 
recited its intended application, i.e., a 
rasterizer for creating a smooth wave form. 
In the conclusion of the majority opinion, the 
court stated that "a computer operating 
pursuant to software may represent patentable 
subject matter ... In any case, a computer, 
like a rasterizer, is apparatus not 
mathematics." 

Several minority opinions were entered in 
this case that disputed the patentability of the 
invention. One minority opinion drew the 
analogy between a general-purpose computer 
and a player piano, with software being the 
counterpart to the piano roll, . which merely 
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provides the guiding pattern underlying the 
piano's operation. The argument said that a 
melody encoded on a piano roll cannot be 
patented, and similarly software, intrinsically, 
cannot be patented. Clearly, the majority 
opinion was not influenced by this argument, 
and to the contrary, it confirmed that a 
computer programmed in accordance with 
software is considered a new machine, 
provided that it is new in view of other 
requirements of patent law, such as novelty 
and non-obviousness. 

This decision illustrates again that 
describing the underlying physical structure of 
an invention in detail helps in achieving 
patentability. Whether the hardware is 
described as a low-level circuit as in Allapart 
or as high-level computer architecture, such 
descriptions increase the chance that the 
patent examiner or the court will not object to 
software claims. This is especially true in view 
of the other cases that were rejected because 
the courts did not see sufficient physical basis. 

What about AI systems? Since these tend 
to be high-level applications, frequently 
compnsmg, essentially, only number 
crunching, it is imperative that one describe 
an underlying hardware platform, even to a 
minimal degree (e.g. simple block diagram), 
when applying for a patent. It is also 
important, as indicated earlier, to provide an 
area of application and to connect the abstract 
( data structures, mathematical formulas, etc.) 
to physical structures. By carefully structuring 
patent applications it is possible to obtain 

• practical patent protection for AI inventions. 
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SHORT ABSTRACT 

A multicriteria associative memory 
{MAM} approach is proposed to encode 
associations between a set of stimulus 
vectors constituting a matrix S and a 
corresponding set of response vectors 
constituting a matrix R. Kohonen (1988} 
originally suggested that a "memory" matrix 
M be constructed such that MS is as close as 
possible to R in the least-squares sense. The 

A + 
solution to this problem is M = RS , where 

+ ' 
S is the Moore-Penrose generalized inverse 
of S. Unfortunately, though, when calculated 

this way, M has low robustness to noise. The 
MAM approach suggested here increases 
robustness by separately assessing costs of 
the deviation of MS from R and for the sizes 
of elements in M. 

The major application of this MAM 
approach is to gain a priori information for 
nonlinear dynamical systems, such as the 
Solow-Swan Economic Growth Model, in 
order to initialize an extended Kalman Filter 
{EKF} for parameter and state estimation. 
Kalman Filtering is a method for system 
identification, which is identifying the 
properties of an unknown system from 
observations, to predict the system's future 
behavior. For the Solow-Swan nonlinear 
economic model, the MAM approach 
converts observations of system output into 
usable initial estimates for EKF to estimate 
the state vector. Discrepancy values 
generated from the MAM approach provide 
initial state estimates as well as the initial 
state covariance for the EKF. This, in turn, 
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leads to a highly reliable estimate of system 
parameters. 

Keywords: Artificial neural networks, linear 
associative memory, multicriteria 
optimization, nonlinear estimation, 
extended Kalman Filtering, Solow-Swan 
growth model 

To be presented at the Third International 
Conference on Artificial Intelligence 
Applications on Wall Street June 1-9, 1995. 

INTRODUCTION 

Parameter estimation problems for 
nonlinear systems are typically formulated 
as nonlinear optimization problems in the 
presence of noise requiring an iterative 
approach to its solution. Several on-line and 
off-line methods have been developed in the 
past, most of them based on different 
variants of the Gauss-Newton method;Gray 
[4]. Probabilistic formulations, such as 
maximum likelihood, bayesian multi-model 
technique and the Extended Kalman Filter; 
Mehra [71 have also been developed. Yet the 
basic difficulty when facing identification of 
a large number of parameters from 
input-output data, is caused by the fact 
that the cost function's surface may have 
multiple minima and therefore, convergence 
to the "correct" parameters is iteratively 
possible only when one starts from a close 
enough initial guess of the parameters to be 
identified. For quadratically convergent 
iterative methods, such as Gauss-Newton 
methods, the components of the initial 
estimate for the parameter vector often 
have to be within ten to twenty percent of 
their true values; Cuyt [2]. Possible 
difficulties that might result from 
inaccurate estimates are slow rates of 
convergence, weakly observable set of 
observations as well as oscillatory behavior. 
Computational difficulties due to 
ill-conditioning may also arise. 

An alternative method of performing 
parameter estimation is to use an 
associative memory approach. Here, rather 
than iteratively solving the inverse problem 
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for a given input-response pair as is 
commonly done in on-line identification, 
the forward problem is repeatedly solved for 
various input-response pairs and a memory 
matrix is adduced which optimally 
associates the inputs with the outputs. Thus 
when the estimation scheme is later 
presented with a given input (output), it 
can then estimate the output (input) that 
corresponds to it. Different learning 
schemes that develop the memory matrix 
that maps the input to the output have been 
devised. 

THE ASSOCIATIVE MEMORY 
APPROACH 

The goal of the approach of associative 
memories or associative mappings is to get 
initial estimates for nonlinear systems. For 
each parameter vector Ii in a selected 
training set {I1,I2, ... ,Iq}, the system 
equations determine a vector Si of system 

outputs. A "memory" matrix M is then 
constructed to optimally (in the sense of 
least squares) associate each "stimulus" 
vector Si with its corresponding "response" 
vector Ii, in the sense of least squares. 

A + 
Specifically M=RS , where R denotes the 
matrix [I1,I2, ... ,Iq] of training parameter 

+ 
vectors and S denotes the Moore-Penrose 
generalized inverse of the training output 
matrix S = [s1,s2, ... scJ. Given an observed 

system output vector s*, an estimate r for 
the system parameter vector is obtained by 

setting r = Ms*. 
Surprisingly accurate parameter 

estimates were obtained for an illustrative 
nonlinear image processing problem when 

the observation vectors s* are noise 
free;Kalaba [6]. However, instability 
problems were encountered when memory 
matrices constructed from noise-free 
training vectors were subsequently used to 
recover parameter estimates from 
observation vectors corrupted with noise. 

This paper describes development and 
application of a multicriteria associative 
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memory (MAM) procedure to initialize a 
successive approximation scheme, such as 
an Extended Kalman Filter, which will lead 
to rapid convergence for nonlinear 
estimation problems. The MAM approach 
directly and systematically guard against 
the ill-conditioning of the memory matrix. 

+ 
The memory matrix M = RS corresponds to 
the extreme point of the MAM frontier 
where the association cost Ca is minimized 
with no regard for the size cost Cz, i.e., with 
no separate consideration given to the size 
of the elements of M. By moving away from 
this extreme point along the frontier, 
bias( training association error) is increased 
in return for a decrease in the variance of 
the resulting parameter estimates. The 
MAM frontier is thus analogous to the 
coefficient frontier obtained using ridge 
trace procedures in regression 
analysis;Vinod[ll]. A key difference, 
however, is that the purpose of the MAM 
frontier is to provide one or more useful 
initial parameter estimates for some given 
nonlinear estimation problem. 
Consequently, the usual criticism of ridge 
regression procedures-that they do not 
necessarily lead to parameter estimators 
with optimal statistical properties- is not 
applicable to MAM;Judge[5]. 

State of the art spacecraft position 
determination systems utilize a Kalman 
Filter ;Chui[lj to blend position 
measurement data with angular outputs. 
Since the Kalman Filter presumes linear 
measurement equations, it should be 
appropriately initialized to avoid processing 
new measurements when errors are "large". 
Otherwise, the convergence of its error 
estimates may not be consistent with its 
error covariance predictions. In fact, its 
estimates may converge to bias errors which 
can be quite large with respect to the 
predicted bounds embedded in the 
covariance matrix. In this paper, 
modifications to the conventional Kalman 
Filter formulation which may improve its 
convergence properties are investigated. 
That is, reducing initial errors using the 
MAM approach in conjunction with a 
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nonlinear estimation technique, such as the 
Extended Kalman Filter can provide 
significant improvement in convergence 
time and precision. 

MULTICRITERIA ASSOCIATIVE 
MEMORY SOLUTION METHODS 

Let the solution to a basic differential 
equation be denoted by 

(1) k(t) = H(t;,8,;,6), t~0 

A classical approach to the parameter 
estimation problem for the model 
represented by the differential equation 
above would be to pose it as a nonlinear 
least squares problem in which the sum of 
squared deviations 

(2) 

is to be minimized with respect to ({3, ,, 6). 
For each different trajectory of observations 

(k*(t1),k*(t2), ... k*(tm)), a different s11m (2) 
would have to be minimized, typically by 
means of a successive approximation 
scheme. A major drawback of many 
successive approximation schemes, 
however, is the need to have a good initial 
estimate for the true parameter vector. 

Once the possibility of imprecise 
calculations and observations is recognized, 
keeping the elements of the memory matrix 
small becomes an important criterion (in 
addition to the basic criterion of obtaining 
good training case associations). Two basic 
costs are associated with each possible 
memory matrix M: an association cost 
Ca(M) measuring the extent to which M 
fails to associate each training output vector 
Si with its corresponding training parameter 
vector Ii and a size cost Cz(M) measuring 
the extent to which the elements of M differ 
from zero. 

On the basis of both tractability and 
general intuitive appeal, the costs Ca(M) 
and Cz(M) are each expressed as sums of 
squared discrepancy terms. Specifically, the 
association cost entailed by Mis taken to be 

44 

(3) Ca(M)=IIMS-Rll 2 

and the size cost entailed by M is taken to 
be 

(4) Cz(M)=IIMll 2 

For any _given training set 
{(r1,s1),(r2,s2), ... ,lrq,sq)}, a family of 
memory matrices is constructed, each 
having the following efficiency property: No 
other memory matrix achieves lower cost 
with respect to both the association and the 
size criteria. Such matrices are referred to as 
MAM matrices, and their associated cost 
vectors (Ca, Cz) are said to constitute the 
MAM frontier. By construction, the MAM 
frontier is a downward sloping strictly 
convex curve in the two-dimensional 
(Ca, Cz) cost plane. At one extreme of the 
MAM frontier is the cost vector incurred 
when the association cost Ca(M) is 
minimized with no regard for the size cost 
Cz(M). One memory matrix which 

~ + 
minimizes the association cost is M=RS , 
the memory matrix determined using the 
standard linear associative memory 
approach. Among all memory matrices 
which achieve the minimum association 

cost, the memory matrix Mis the one that 
has the smallest norm. At the other extreme 
of the MAM frontier is the cost vector 
incurred when the size cost Cz(M) is 
minimized with no regard for the 
association cost Ca(M). The memory 
matrix that uniquely solves this 
minimization problem is the zero matrix. 

In view of the strict convexity of the 
MAM frontier, each point on this frontier 
solves a problem of the form "minimize Cz 
subject to Ca =constant." Consequently, 
each MAM matrix can be generated as the 
solution to a problem of the form 

(5) rninM [ aCa(M) + ( 1-a)Cz(M)] 

where a is a suitably chosen Lagrange 
multiplier lying between O and 1. The slope 
of the MAM frontier at the solution point 
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for (5) is given by -( a/[1-a]). Thus, a 
parameterizes the attainable trade-offs 
between association cost and size cost along 
the MAM frontier. 

Given any nonlinear least squares 
problem such as (2), the MAM procedure 
can be used to generate a range of MAM 

estimates i( a) for the underlying system 
parameter vector. The weight ~actor a is a 
tuning device which can be adJusted up or 
down to control for noise in the observation 
vectors as well as for noise due to round-off 
errors. The objective is to determine, 
through the training process,a range of 
values for a which result in one or more 
usable initial parameter estimates for the 
solution of the nonlinear least squares 
problem· by a successive approximation 
scheme. 

KALMAN FILTER FORMULATION 
BASED ON MAM ESTIMATES 

Kalman Filtering is an optimal state 
estimation process applied to a dyn~mic 
system that involves random pert~rbati_ons. 
More precisely, the K~man_ Filter. 1s _a 
method for system ident1ficat10n, which 1s 
identifying the properties of an unknown 
system from observations, to predict the 
system's future behavior.The estimates 
generated by the Kalma?- Fi~ter fro1!1 noisy 
data taken at discrete pomts m real time are 
linear unbiased, and have minimum error 
varia~ce. It has been widely used in many 
areas of industrial & government 
applications such as vi~eo an~ l~ser 
tracking systems, s~telhte na~1gat~on, 
ballistic missile traJectory • estimat10n, 
radar and fire control. With the recent 
develbpment of high-speed computers, the 
Kalman Filter has become more useful even 
for very complicated real time applic~tio_ns. 
For nonlinear models, a lmeanzat10n 
procedure based on a Taylor series 
approximation is performed. The Kalman 
Filter so obtained will be called the 
Extended Kalman Filter 

The Kalman formulation of the filtering 
problem assumes complete a priori 
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knowledge of the process an~ mea_sure1?-ent 
noise statistics. In most practical s1tuat10ns, 
these statistics are inexactly known. The 
use of wrong a priori statistics in the design 
of a Kalman filter can lead to large 
estimation errors or even to a divergence of 
errors. The purpose of initializing the 
Kalman Filter with MAM estimates is to 
reduce or bound these errors by adapting 
the Kalman Filter to the real data sampled 
by the training sets . to get the ~AM 
estimates. The estimat10n method rehes on 
providing sufficient 'training'(i.~. exposure 
to different input-response paus) for an 
adequate knowledge base to be acquired. 
Thus when the estimation scheme is later 
presented with a given input(o~tput), it can 
then estimate the output(mput) that 
corresponds to it. By starting out with just 
a few training pairs of i~puts and resp~n~s~s, 
one can obtain reliably good m1tial 
estimates for the parameter vector to be 
estimated. Numerical results are shown for 
a nonlinear, growth of an economy at the 
macro level. 

An illustrative Economic Growth Problem 

Consider an economy which produces a 
national product Y( t) at each time t ~ 0 
using capital and labor inputs K( t) and 
L(t). The production relation for the 
economy is given by 

(6) Y(t)=F(K(t),L(t);O) 

where 8 is a parameter characterizing the 
production process. Denotin~ time t 
consumption by C(t) and time t net 
investment dK(t)/dt by DK(t), ~nd 
assuming that the ~moun~ of capital 
depreciation at each tu~e _t 1s a _constant 
proportion 8 ~ O of the existmg capital _stock 
K(t), supply equals dema~d in the time t 
product market if and only 1f 

(7) Y(t) = C(t) +DK(t) + 8K(t) 

Time t gross savings S(t) = Y(t) - C(t) 
are a constant proportion s of time t 
national product Y(t), where the savings 
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rate s lies between 0 and 1. Thus, 

(8) C(t) = [1-s]Y(t) 

Substituting (8) into the product market 
clearing condition (7), and rearranging 
terms, the growth of the capital stock over 
times t~0 is given by 

(9)DK(t) = sF(K(t),L(t);0)- 8K(t) 

The labor force L(t) grows at a constant 
rate g ~ 0, with 1(0) > 0. Let k(t) = 
K(t)/L(t) and y(t) = Y(t)/L(t) denote the 
time t capital-labor and income-labor 
ratios. Using the constant returns to scale 
assumption for F( •; 0), the production 
relation (6) can be expressed in per capita 
terms as 

(10) y(t) = F(k(t),1;0) = f(k(t);0) 

Also, the time rate of change of the 
capital-labor ratio k(t) satisfies 

(11) Dk(t)/k(t) = DK(t)/K(t)­
DL(t)/L(t) = DK(t)/K(t)-g 

Finally, define ,\ = [~ + 8), and divide 
each side of equation (9) by L(t). Making 
use of relations (10) and (11), it follows 
after some manipulation of terms that the 
time rate of change Dk(t) of the 
capital-labor ratio k( t) satisfies the 
differential equation 

(12) Dk(t) = sf(k(t); 0)-..\k(t), t~0 

where the initial capital-labor ratio k(0) is 
given by some historically determined value 
k0>0. Equation (12) is the basic differential 
equation for the Solow-Swan growth model, 
a well-known macroeconomic model which 
is still very influential. See [8] and (9). 

At each time tj,j=l,2, ... ,m, an 

observation k*(tj) is obtained on the 
capital-labor ratio k(tj) in accordance with 
the measurement relat10n 
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(13) 

k*(t i) 

s* = k*(t2) 

the problem is to estimate the parameters 
(k 0,0,s)) which characterize the underlying 
data-generating process (11). 

MAM Procedure for the Solow-Swan 
Growth Model 

The first step in the MAM procedure is 
the construction of a finite set of training 
cases. Given any training parameter vector 

T . 
Ii= (k 0,0,s)) for the Solow-Swan growth 
model, a corresponding training output 

vector Si = (k(t1),k(t2), ... ,k(tm))1 can be 
generated by numerically integrating the 
basic Solow-Swan differential equation 
(12). A closed-form expression for the 
solution of this differential equation is not 
required. 

For conceptual clarity, however, it is 
useful to focus on a special case in which a 
closed-form expression for the solution of 
(12) can be obtained. Specifically, suppose 
the per-capita production function f( •; 0) 
for the Solow-Swan growth model takes the 
commonly used Cobb-Douglas form 

(14) 
9 

f(k;0) = k 

for some 0 E (0,1). The production 
parameter 0 then gives the capital share of 
the national product at each time t. That is, 
0 = p(t)k(t)/y(t), where the time t capital 
rental rate p(t) is taken to be the time t , 
marginal product of capital f (k( t) ). 

Given (14), the solution to the basic 
Solow-Swan differential equation (12) is 

(15) k(t) = H(t;k0,0,s)) 
k(t)=([(ko)1-9..s/..\Je-< 1-ei >..t+s/J)V< 1-Gl 

Note that (15) is a highly nonlinear function 
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of the four model parameters k0,0,s, and .t 
For each ~iven parameter vector (k0,0,s,,\), 
the solut10n value (15) for the time t 
capital-labor. k( t) ratio converges as t 
approaches mfimty to the stationary 
solution value 

(16) k = (s/ ,\)V< lil> 

General Experimental Set-up 

The MAM procedure can be 
irr1;Pl~mented even if nothing is known ~ 
pnon about the nonlinear least squares 
solution for the parameter vector. However 
if a priori information is availabl~ 
concerning plausible values for this solution 
the training parameter set should 
presumably be designed to encompass these 
values. 

To demonstrate the MAM procedure for 
the Solow-Swan growth model over a 
plausible training grid, the training 
parameter sets {r1,r2, ... rq} for all of the 
numerical reported below were constructed 
on the basis of the following guideline 
parameter values: 

(17) ko ~ 5.0; 0 ~ .29; s ~ .15; 
-\= [g + 8] ~ [.03+.07]= .10 

The guideline values for the capital share 0 
the gross savings rate s, the effective labo: 
$rowth rate g, and the depreciation rate 8 in 
( 17) w_ere co~structed usi~g empirically 
determmed r~t1os and ma$mtudes given in 
[3]. As noted m [10, p. 150j, the meaning of 
the "capital stock" K(t), and hence the 
capital-labor ratio k(t) is a source of much 
controversy in growth theory. The guideline 
value for ko in (17) is for illustrative 
purposes only. 

To simplify graphical depictions and 
comparisons, the training parameter set for 
each experiment consisted of 49 
two-dimensional parameter vectors ri with 
constant guideline values set fo; the 
remaining two parameters. One series of 
experiments ("Series I") was run for 
training parameter vectors of the form ri = 
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(ko,Ol and_a~other series ("Series II") was 
run for trammg parameter vectors of the 

form ri = (s,o?. 
In each experiment, seven different 

values were considered for each of the two 
training parameters, and these values were 
centered_ around the parameters' guideline 
values m (17). Consequently, in each 
experiment the "training parameter grid" 
consis~ed ?f a 7 x 7 square of 
two-d.1~ens10nal parameter points 
approximately centered at a guideline point 
as determined from (17). 

Each experiment in each series consisted 
of four basic steps. 

• First, for each considered training 
par_a1;1eter set {r1,r2, ... ,r49}, a corresponding 
trammg output set { s1,s2 ... ,s49} was 
generated usmg the Adams integration 
alg?r~thm for equation (12). Each 15 x 1 
trammg output vector Si consisted of fifteen 
capital-labor ratios k(tj), j=l,2, ... ,15, 
calculated for the "observation times" t 1 = 
0.0,t2 = l.0, ... t15 = 14. These training 
vectors were used to form training response 
and stimulus matrices. 

• Second, MAM matrices M( a) are 
constructed, with a ranging from 0.10 to 1.0 

• Third, the components of the training 
output vectors Si were corrupted with 
additive noise, resulting in a set of noisy 

"observation vectors" of the form s't =Si+ 
Ili, 

• Fourth, tests were conducted to 
determine the extent to which each MAM 

matrix M( a) is successfully able to recover 
the training parameter vector fi when 
post-multiplied by the noisy observation 

vecto~ s't, i=l,2, ... ,49. For each training 
case 1, the measured used to judge the 
success of the recovery is the discrepancy, in 
percentage terms, between the jth 

component rij( a) of the MAM estimate 

i( a)= M( a)s't and the jth component rij of 
the actual training parameter vector ri 
j=l,2: ' 
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In each series of experiments, the effect of 
observation noise on the accuracy of the 
resulting parameter estimates is 
investigated 

Suppose the observation vectors st are 
taken to be the training output vectors Si 
corrupted by additive gaussian noise with 
mean O and variance u2. In this case, to 
achieve the minimum mse recovery of the 
training parameter vectors over the training 
grid, it follows from (13) that the penalty 
weight a in (16) should be set equal to 

(19) ao = 1/[1 + qu2) 

In particular, for any given number of 
training cases q, the penalty weight a 
should be set close to 1.0 when observation 
noise is minimal ( u2 ~ 0) and close to O when 
observation noise is extensive ( u2 » 0). 

A variety of numerical experiments were 
run for the Solow-Swan growth model with 

observation vectors st taken to be the 
training output vectors Si with components 
corrupted by additive gaussian noise 
generated by means of a N(0,u2) 
pseudorandom number generator. 

The MAM estimates ii( a) determined 
in these experiments were reasonably 
accurate a was set equal to a value in 
[.10,.99) which was roughly nearby the 
minimum mse value (19), e.g., a distance 
apart of .20 or less. Overall, high accuracy 
levels ( discrepancies around one percent or 
less) were attained for the initial 
capital-labor ratio k0, good accuracy levels 
( discrepancies around ten percent or less) 
were obtained for the gross savings rate s, 
and reasonably good accuracy levels 
( discrepancies around twenty percent or 
less) were obtained for the capital share 0. 
Moreover ,recovery accuracy was generally 
good for all training parameter vectors lying 
near the center of the training parameter 
grids. 
Some of these experiments will now be 
reported in more detail. 
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Consider, first, the case in which the 
observation vectors are noise free (IT= 0), so 

that the ith observation vector st coincides 
with the ith training output vector Si. The 
minimum mse value for a in this case is ao 
= 1.0. To what extent are the MAM 

matrices M( a) able to recover the training 
parameter vectors Ii when post-multiplied 
by the training output vectors Si? 

Several interesting observations can be 
made. First, even when a takes on the value 
.10, and is thus very far from its minimum 
mse value 1.0, highly accurate estimates are 
obtained for the initial capital-labor ratio 
k0, especially along the reverse diagonal. 
Moreover, the corresponding estimates for 
the capital share O are highly accurate 
toward the center of the training grid, and 
reasonably accurate (less than twenty two 
percent) elsewhere with the exception of the 
column where O takes on its smallest 
training value .20. Estimation accuracy 
improves with increases in a as long as a 
remains below 1.0. 
Qualitatively similar results were obtained 
for Series II experiments with IT = 0. The 
discrepancies obtained for the gross savings 
rate s tended to be higher than those 
obtained for k0, and the discrepancies 
obtained for 0 tended to be significantly 
higher. 
What happens in the noisy observation case 
IT> 0? 

For the MAM estimates of k0 in the 
Series I experiments, the answer is "not 
much." The percentage discrepancies for k0 
for the most part remained well below ten 
percent all along the MAM frontier for each 
IT in the tested range 0.05 to 0.40. 
Occasionally along the boundary of the 
training parameter grid the percentage 
discrepancies rose above ten percent, but 
only by a few percentage points. The 
corresponding MAM estimates for 0 were 
reasonably accurate ( discrepancies around 
twenty percent or less) over the interior of 
the training parameter grid for each tested IT 

value when the value of a was set roughly in 
the neighborhood of aO, e.g., a distance 
apart of about .20 or less. • 
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In the Series II experiments, reasonably 
accurate estimates( discrepancies around 
twenty percent or less) were obtained for 
both s and O over the interior of the training 
parameter grid for each tested u value when 
the value of a was set roughly near ao ,e.g., a 
distance apart of about .20 or less. 

TheSolow-Swan growth model with the 
guideline parameter values listed in (17) is 
the basis for trying to answer the following 
questions: 

• First, How many training cases are 
necessary to gain a good and reliable MAM 
estimate for the system studied ? Does a 
need for a huge number of training cases 
guarantee convergence to a solution ? 

• Second, Does spacing of training 
parameters over a grid of possible values 
have any effect on convergence to correct 
solution? 

• Third, How many measurements are 
needed for sufficient convergence with 
respect to discrepancy values? 

• Fourth, What should time spacing be 
between measurements ? 

The results show that for 25 training 
cases, the convergence to the discrepancy 
values that are generated for 49 training 
cases is comparable (within 2 %). Closer the 
training points are taken within the training 
grid, the more reliable the MAM estimates 
are. A reduction in separation distance 
between data points with an increase in 
training cases produces the most accurate 
MAM estimates. Increasing the number of 
training cases with a fixed spacing results in 
a degradation of estimation accuracy. An 
increase in spacing with fixed number of 
training cases, also increases inaccuracies. 
For 1 second spacing between observations, 
the more observations utilized to generate 
the MAM estimates, the better the 
estimates. After 7 measurements, no 
significant improvement occurs. For the 
Solow-Swan model, taking two 
measurements, 5 seconds • apart generates 
estimates that are as accurate as 5 
measurements, 2 seconds apart and 10 
measurements that are 1 second apart. This 
statement holds for the Series I and Series II 
experiments due to the relatively linear 
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form that the Capital-labor ratios take as a 
function of time. 

Implementation of the Extended Kalman 
Filter to the Solow-Swan Model 

Consideration to the Solow-Swan model 
whose dynamics are known in structure is 
given in this section. The Extended Kalman 
Filter is utilized for identification of a 
nonlinear system. The identification 
method relies on providing sufficient 
'training' (i.e., exposure to different 
input-response pairs) for an adequate 
knowledge base to be acquired . The MAM 
matrix is adduced which optimally 
associates the inputs with the outputs. Thus 
when the identification scheme is later 
presented with a given output, it can then 
estimate the inputs that correspond to it. 

Given the Solow-Swan nonlinear 
differential equation with the 
Cobb-Douglas per-capita production 
function form: 

(20) Dk(t)=sk(t/-,\k(t) t~0 

the Extended Kalman Filter equivalent 
formulation using the transformation 

( = k1-
8 is derived as follows: 

. 
(21) (=(1-0)s-(1-0),\( t~0 

Let the state vector x = [(,O,,\,s]T, equation 
21 becomes: 

(22r i= 
l { 1-x(2) }x( 4 Tl-x(2) }x( 3)x(l )] 

The nonlinear discretized system model 
which is generated by replacing x by Xi and 

i by (xi+i-xi)dt-1 where dt>O denotes the 
sampling time, is as follows: Xi+l = fixi, 
where 
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dt{xi(3)xi(l)-xi( 4)} 
1 
0 
0 

-drl) d~l 

The measurement model based on k(t) 
being the observations is derived as follows: 

9 9 9 -1 
If ( = k< 1- >: then k = (' 1....-1- > = (' 1- > = 

-1 
( 1-x( 2)) 

x( 1) , therefore, 

where Vi is the measurement noise, usually a 
Gaussian white noise process. This noise 
component is the equivalent to the additive 
noise with mean O and variance tr2 that is 
added to the training output vector Si for 
the MAM experiments. The Extended 
Kalman Filter is propagated through the 
following equations, 
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(25) State Estimate Propagation 

Equation Xi+1....-i = fi.i:i,..,i 

(26) Error Covariance Propagation 

Equation Pi+1....-i = ;iPt .... iL 
where ;i = [Mi/8xi(.i:i,..,i)] 

(27) Gain Matrix 

Ki=Pi....-i-1HT(HPi,..,i-1HT +R)-1, 

where H=[Bhi/ 8xi(:x:i....-H)] 

(28) State Estimate Update Equation 

ii,..,i = ii....-i-1 + Ki(zi-hii....-i-1) 

(29) Error Covariance Update Equation 
Pi,..,i = (I-KH)Pi....-i-1 

where I is the identity matrix. 

Extended Kalman Filter Results 

Series II experiments for the (s,0) 
training grid when a= 0.9 in the noise free 
case results in discrepancy factors for 0 
when s=0.15 range from -10 to 10 % and -9 
to 7 % for s when 0=0.29. The initial 
conditions for filter initialization are: 

True State vector x = [5· 71,.29,.10,.15] 

State Estimate vector 

io,..,o = [5" 71,.29± 10 %,.10,.15-9%] 

State Covariance Matrix 

Po,..,o = cov[x-io,..,o,x-io,..,o] 

Series I experiments produce discrepancy 
values of O for all k, 

io,..,o(l)=x(1)=5· 71 = 3.135. 

A small iaussian white noise with 0 
mean and a t.025) 2 variance was added to 
the observations in order to insure against 
underflow errors in the covariance matrix 
entries. Assuming no MAM estimates are 
considered for a priori information for the 
Eextended Kalman Filter, then the initial 
filter initialization is as follows: 

io,..,o = [7.0" 8,.20,.10,.09] 

xo,..,o = [5.0· 11,.29,.10,.15] 

Table la 
Discrepancy Percentages with and without 

MAM Estimates 
Minimal Noise case, 100 data points 

True State 
values 
1.50 
0.29 
0.10 
0.15 

% Error 
MAM 
0.00 
0.36 
0.00 
0.09 

% Error 
NO MAM 
4.00 
21.00 
0.00 
4.00 
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Table lb Large Noise case, 100 data points 

True State 
values 
1.50 
0.29 
0.10 
0.15 

% Error 
MAM 
2.00 
7.50 
0.00 
2.00 

% Error 
NO MAM 
10.30 
50.00 
0.00 
37.00 

The results above show the 
improvement in convergence when a priori 
information is available. A priori 
information is generated through the 
enumeration of different training cases to 
generate a MAM estimate. As with MAM 
estimates, when observations are corrupted 
with noise, the resulting state estimates are 
not quite as accurate. This is also true due 
to the covariance matrix entries being 
corrupted by noise. Of primary significance 
is how lu value for the small noise case 
converges to zero. This indicates that the 
corresponding state estimates are highly 
accurate. The small error of the initial 
estimates of the filter from the true value 
allow the Extended Kalman Filter to be 
more robust to noise, even in the presence of 
nonlinearities. This robustness allows the lu 
error to converge towards zero, rather than 
reaching steady-state at a non-zero value. 
In the presence of a very small noise term, 
with accurate initial estimates (MAM 
A-Priori), the lu values converge to zero at 
a significantly faster rate. 

CONCLUSIONS 

Successful implementation of successive 
approximation procedures for nonlinear 
least squares problems typically require 
initial estimates for the parameter vector 
which are within ten to 30 percent of the 
actual solution vector. Experimental results 
reported in this paper suggest that one or 
more usable initial estimates for the 
parameter vector might be found by 
considering the MAM parameter vector 
estimates corresponding to a rough sample 
of a-points along the MAM frontier. 

Specifically, in each experiment with 
observation noise, reasonably accurate 
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MAM parameter estimates were obtained 
over the interior of the training parameter 
grid for a-values in [.10,.99] lying even 
roughly nearby the (generally unknown) 
"optimal" alpha values.That is, the 
discrepancies between these estimates and 
the true parameter values were around 
twenty percent or less. On the other hand, 
even in the absence of observation noise, 
highly inaccurate parameter estimates were 
obtained when a was set equal to 1.0, i.e., 
when the standard linear associative 
memory procedure was used. 

Reduction of spacing between the 
training parameters together with 
increasing the number of training cases, 
encompassing a grid of values around the 
guideline parameter values, tended to 
generate low discrepancy values. Only a few 
data points with maximum separation 
between observation times are needed for 
the MAM approach to work. The above 
findings are also applicable to the noisy 
observation case. The MAM approach, 
thus, is quite robust to corruption of 
measurements by noise. 

A priori information is essential for 
minimizing the initial error when 
implementing an Extended Kalman Filter 
as an estimator for a nonlinear dynamical 
system. Otherwise, the convergence of its 
error estimates may not be consistent with 
its error covariance predictions. In fact, its 
estimates may converge to bias errors which 
can be quite large with respect to the 
predicted bounds embedded in the 
covariance matrix. In the two examples 
implemented , it has been shown the 
significant improvement in the convergence 
of the error to zero, when the MAM 
estimate values are used to initialize the 
Extended Kalman Filter. Of particular 
interest, are discrepancy values that are two 
to three orders of magnitude larger for the 
noisy measurement case when no 
a-priori(no-MAM) information is utilized. 
For the low noise case, the convergence of 
the filter is solely based on how reliable the 
initial estimates and initial covariance are. 
The magnitude of the error, in the worst 
case scenario(Solow-Swan Model),is 58 
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times larger for the non-MAM case than the 
MAM-case. Rapid convergence of the filter 
for the MAM case, together with the 
reliability of convergence, brought about by 
having accurate initial estimates with 
bounded initial covariance errors, provides 
a very powerful tool in terms of precision 
and speed in the nonlinear dynamic model 
estimation area. 
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ABSTRACT 

This work provides an evaluation of the use of neural 
networks as a technique for forecasting currency 
exchange rates. Recently, successful attempts at 
forecasting exchange rates such as the US$ - DM 
and US$ - SF have been reported in the literature (i.e. 
Refenes et al (1993, Weigend et al (1992))) but their 
methodologies have been less than stringent leaving 
them open to accusations of da,ta mining. The work 
presented here will attempt to replicate some of this 
previous work and then subjugate the resulting neural 
network forecasts to a more stringent level of 
analysis. More specifically, standa,rd backpropagated 
feedforward networks will be used to forecast the US$ 
- DM exchange rate 1, 5, and 20 trading days into the 
future with the resulting peiformances compared to 
the random walk forecasting model and to an 
autoregressve forecasting model. The experimental 
techniques used here are also proposed as a general 
framework which should be followed when making 
claims of the successful application of neural 
networks to .financial time series generally seen as 
unforecastable. 

INTRODUCTION 

One of the more difficult problems in economics is 
the forecasting of financial marl<:ets. Traditional 
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quantitative methods used to forecast the behaviour of 
financial markets often produce unsatisfaLtory if not 
dismal results given the complex inter-JLtions between 
a given marl<:et's behaviour and other ea:momic 
phenomena Part of the problem lies in the faLt that 
the relationships existing between financial marl<:ets 
and the economy as a whole are often poorly 
understocxl. On top of this there are also a variety of 
political and psychological factors influencing the 
dynamics of the marl<:ets over time. Neurnl networks 
may provide some hope of producing a suitable 
methodology for overcoming some of these 
difficulties. 

A number of successful claims of using neurnl 
netwolk based marl<:et forecasting systems have been 
published. Unfortunately, much of this wolk suffers 
from inadequate documentation regarding 
methodology (Binks and Allinson (1991), Collard 
(1991), Lee and Paik, (1992)) or claims of positive 
results not backed up by comparisons with other 
relevant forecasting techniques (Binks and Allinson 
(1991), Lee and Paik, (1992), Collard (1991) 
Weigencl et al (1992)). This makes it clifficult to both 
replicate previous wolk and obtain an accurate 
assessment of just how well connectionist techniques 
really perform in comparison to other forecasting 
techniques. What previou-; wolk has been clone using 
connectionist approaches to marl<:et forecasting can be 
roughly categorised based on how a forecast is being 
extraLted from the input data with the neural network 
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mcx:lel. Mo~t have attempted to extrapolate the future 
behaviour of a market with a neural network based 
times series analysis by having the network output 
some value representing the future behaviour of the 
market (i.e. forecasting the price, expecied return or 
degree of change etc ... ). This is usually done by giving 
the network information about the market's past 
behaviour (Refenes et al (1993)) or information about 
its past behaviour in conjunction with the dynamics of 
a variety of other economic variables used as 
adclitional input (Weigend et al (1992), Lee and Park 
(1992) and Hutchinson (1994)). Others have tried to 
trJin the network to recognise known market patterns 
(Binks and Allinson, (1991)) or attempt to tr-Jin the 
network to learn an optimised tracling strategy 
(Collani (1991) and Kimoto et al (1990)). 

1lris report will attempt to apply a connectionist 
approach to the forecasting of a notoriously 
"unpreclictable" financial market - currency exchange 
rates. Some relatively straight foreworcl methocls of 
using stanclarcl backpropagated feedforwarcl neurnl 
networks to forecast the US$ - DM exchange rate will 
be analysed and compared with other forecasting 
mcx:lels. These experiments will include univariate 
forecasting of the exchange rate at 1, 5 and 20 clays in 
aclvance and multivariate forecasts at 1 and 5 clays in 
advance. 

In acldition, a methcx:lological framework is also 
proposed for the use of neural networks in financial 
forecasting. The framework is quite simple and 
consists of two basic techniques. First, the 
performance of neurnl networks should be compared 
with other relevant forecasting mcx:lels. Simply 
demonstrating that neural network based methods 
"work" is not enough as this does not shed any light 
on their relative performance to potentially simpler 
and more accurate forecasting methocls. For this work, 
the random walk forecasting mcx:lel will be use as the 
primary comparison mcx:lel as currency exchange rates 
are widely viewed to be best explained as rnnclom 
walks (Diebold and Nason, (1990)). The rnnclom walk 
mcx:lel simply states that clue to market efficiency, 
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current price changes are independent of past price 
changes. In other worcls, univariate forecasting should 
be impossible as past price changes clo not offer any 
clues to what form the future behaviour of prices 
might take. Since price changes in efficient markets 
such as exchange rates are assumed to be a rnnclom 
clistribution with 0 mean (see Pinclyck and Rubinfelcl 
(1991)) the best forecast one can make for any amount 
of time in the future is to assume the future price will 
be the same as toclay's price. As previous claims of 
success with univariate forecasting of the US$ - DM 
exchange rate cont:raclict the rnnclom walk mcx:lel, the 
rnnclom walk mcx:lel is the most appropriate to base a 
comparison with neural networks with1 in this 
instance. 

Second, when claiming positive results steps should 
be taken to guarcl against accusations of clata mining. 
It will be shown here that spurious results are not 
clifficult to obtain in some instances. To help 
circumvent this problem, the approach taken here is 
to run our simulations on multiple portions of the data 
set to guarcl against the possibility of chance results. 

MEIBODS 

This study consists of five main experiments intended 
to examine the relative performance of neural 
networks and the rnnclom walk mcx:lel in forecasting 
the US$ - DM exchange rate. The first experiment 
attempts to use a feeclforwarcl backpropagatecl 
network to forecast the US$ - DM exchange rnte one 
tracling clay in advance using input consisting solely 
of claily US$ - DM clata in much the same way as 
Refenes et al (1993). The second experiment attempts 
to fit the rnnclom walk mcx:lel to the exchange rate data 
to more accurately ascertain the appropriateness of the 
rnndom walk mcx:lel as an explanation for the 
behaviour of the price changes in the exchange rate. 
The thircl experiment will use an identical technique as 

1 Note that the random walk model only refers to univariate or 
"technical" forecasting. It does not state that price changes in 
particular maikets that follow random walks are also operating 
independent of other variables. 
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the first experiment to forecast 5 trading days ( one 
week) and 20 trading days (one month) in advance. 
The fourth experiment will conclude the univariate 
forecasting by taking a multistep approach to 
forecasting. In multistep forecasting the output from 
the netwolk after presentation of the final training 
pattern is taken as input to the netwolk for the next 
forecast step. This process is then repeated for the 
entire length of the fo~ lead pericxi Finally, the 
last experiment will attempt one and five trading day 
forecasts using multivariate input ·incorporating 
interest rates and other currencies. 

In all the experiments, the netwolks consisted of 
standard feedforward netwolks with full connectivity 
between layers. Connections between units were 
restricted to being from one layer to the next Leaming 
was conducted with the standard backpropagation 
algorithm with momentum tetm and utilised the 
standard sum squared error cost function: 

N 

E=0.5L(Ap-Dp)2 

p=l 

where A is the netwolk output for output pattern p, D 
is the desired output for pattern p and N is the number 
of patterns. The results of the neural netwolk model 
were then analysed with respect to random walk 
forecasting model. The random walk forecasting 
mcx:lel was defined as today's price being the best 
forecast for any point in the future. More formally, y(t 
+ N) = y(t- 1) + £ (t) where y(t + N) is any point in 
the future and £ (t) is an error tetm2. The relative 
perfotmances of the models used in this wolk was 
analysed by comparing the mean squared errors of the 
mcx:lels over the test sets. All currency and interest rate 
clata used was daily data from the period beginning 
Jan. I, 1990anclendingMay31, 1994. 

20ther definitions of the random walk model exist which also 
accommodate systematic "drift" in the data. As no such long term 
drift was found, the simpler version was used here. 
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Fig. 1: Results of univariate single day forecasts. 

RESULTS 

Experiment 1: Single day univariate forecasting 

In this first experiment the notion that a_ previous 
sequence of the US$ - DM exchange rate W1 = 
y(t), y(t - 1), ... , y(t - n) can be used to forecast the 
value of the exchange rate one clay in advance Wo = 
y(t + 1) with a neural netwolk was examined. The 
training data used consisted of. the first 850 trading 
days of the exchange rate data ancl the test data 
consisted of the following 50 days. Various sizes of 
wi were tried, ranging from 2 to 20 trading days, of 
which none provided satisfactory results. Increasing 
the number of hidclen units did not produce any 
improvement either. 

The results are shown in fig. 1 which compares the 
results from the random walk model, an 
autoregressive mcx:lel, amultilayerperceptron with 10 
inputs and 5 hidden units and a single layer 
perceptron with 10 inputs. The netwolk results 
displayed were typical of that found in this experiment 
regardless of the hidden or input layer size. Oearly, 
the random walk mcx:lel is producing more acc'Urate 
forecasts. An autoregressive process used to fit the 
training data produced a second order linear mcx:lel of 
the fotm: 

y(t) = l.0426y(t- 1) - 0.053y(t - 2) + £ (t) 
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where y(t) is the value of the US$ - DM at time t 
indicating that the value at time t is almost entirely 
dependant on the value at time t - 1. Although the 
netwo:tks did slightly better than the AR(2), none 
outperformed the random walk mcx1el. Even further, 
the best performing netwo:tks seemed to be 
implementing something approaching a random walk 
as can be seen in fig. 2. The top of fig. 2 displays the 
random walk forecast along with the test set while the 
bottom displays the output of the 10 - 5 - 1 netwmk 
on the test data Oearly, the network is simply using 
the previous value of the exchange rate as a forecast 
for the next day - a random walk. 

0.53 
a5 0.51 
'5 0.49 
E 0.47 
g 0.45 

....., 0.43 
~ 0.41 
0 0.39 
~ 0.37 

Singe d:::ty rmctm Vvdk 

0. 35 +H-1-+H<H-++-H-++-H++++++++-H++-H-+++<H-++-H-++-++++++-H 

0.55 u· 
© 
N 

0 0.5 
~ 
0 
.S 0.45 
~ 
0 
0 0.4 
<f) 
:::> 

-0 -0 ~ -0 ~ -0 -0 
~NN<'?<'?'1""1" 

T I ME ( d:::tys) 

Univaidesingle d:::ty forea:st 

-0 -0 ~ -0 ~ -0 -0 
~NN<'?<'?"1""1" 

T I ME ( d:::tys ) 

Fig. 2: Random walk (top) and neural network (bottom) 
single day forecasts. The thick lines are the actual exchange rate 
and the thin lines represent the forecasts. 
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Experiment 2: Fitting the random walk model 

The superior performance of the random walk model 
in the previous experiment necessitates 
investigating more formally how well the random 
walk model can explain the prince changes in the US$ 
- DM exchange rate. If the price changes in the US$ -
DM exchange rate do in fact follow a random walk, 
the differences between one day's r-dte and the next 
should be random. In more precise terms, if the daily 
changes in the exchange rate can be explained by the 
random walk model, the residuals left over from 
fitting the random walk model should be random 
noise. The residuals are defined as Y(t) - M(t) where 
Y(t) is the aciual value of the time series at time t and 
M(t) is the value at time t given by the model. 

In this experiment, the random walk model is used to 
fit the US$ - DM exchange rate. AB mentioned before, 
this model assumes that a value at a given time t + N 
is equal to the value at time t plus some noise. 1f this is 
true, then the k - day differenced US$ - DM exchange 
rate series should be random noise as these values 
would simply be the random series left over from 
fitting the random walk model to the k - day price 
changes. It is also good practice to look at the squares 
of the differenced series as this helps prevent any 
cyclic component of the series from cancelling out and 
making the series appear random when in fact it is not. 

Two tests for randomness were run to test the fit of 
random walk model on the differenced and 
differenced squared US$ - DM exchange r-dte data 
These tests consisted of the difference-sign test and a 
serial correlation test. The difference sign test simply 
looks at the differenced series and counts the number 
of times a positive change is found in the series. It can 
be shown (see Kendall and Stuart (1968)) that a truly 
random series will have (n - 1)/2 positive changes in 
value and a variance of (n + 1)/12 with the resulting 
distribution tending rapidly towards normality 
(Moore and Wallis (1943)). The serial correlation test 
simply tries to find a correlation between successive 
values. 1f a given series has structure beyond random 
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fluctuations, there will be some degree of oorrelation 
between one value and the next (Kendall and Stuart 
(1968)). 

RANDOM WALK MODEL RESIDUAI,S 

LJJgTnn:s 

]Day 

DIFFERENCE SIGN 

expp.d. 515.0 
exps.d. 9.80 

cliff 559, 

p= 0.10 
cliff sq. 544, 
p= 0.002 

SERIAL CORRELATION 

cliff 0.030 
cliffsq. 0.Q63 

Lg @ 
0.059 

095%j 

2Day 3Day 

1.88.0 192D 
6.94 5.51 

278, 185, 
0.15 0.22 
298, 194, 
0.15 0:73 

0.005 -O.Q36 

0.112 0.200 
0.Q83 0.102 

Table 1: Random walk model residuals. 

4Day 5Day 

144.0 115.0 
492 4AO 

144, 116, 
].Q 0.82 
141, 117, 
0.54 8.82 

-0.049 -0.056 
-0.005 0.183 
0.118 0.132 

In this experiment the entire data set used in this wmk 
was 1Ul1 through these tests at time lags of 1, 2, 3, 4, 
and 5 days. In other words, the adequacy of the 
rdl1dom walk model is being tested for the changes in 
the US$ - DM exchange rate for periods of 1 to 5 
days. It should be noted that when testing at time lags 
greater than 1 day the series must be differenced such 
that d0 = Ytk - Y(t _ l)k where dis the differenced value 
and k is the lag. The reason for this is that if one were 
to simply difference every value in the series from the 
value k time steps in the past, one would artificially 
induce oorrelation in the series that did not initially 
exist as the various values resulting from the 
subtraction process would oontain oommon terms. 
Therefore, a series of N values will produce a 
differenced series of size N/k. For this reason, only 
lags of up to 5 days were tested for the random walk 
model as lags of more than 5 would produce too small 
of samples. The results are displayed in table l. 

3Tiris is the probability that the correlation found is significantly 
different from O using tl1e general heuristic of 2/✓N to detennine 
95% certainty (Chatfield, (1975)). 
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Looking first at the difference-sign test, the top part of 
table gives the expected number of turning points and 
the expected stanclan:l deviation for each lag time. The 
next four rows give the results of the differenced and 
differenced squared exchange rates along with p 
which indicates the probability that the number of 
positive sign changes found in the exchange rate is 
indicative of it being a random series using a simple z 
test 
In short, these results are quite marginal except in two 
cases. A 1 day lag it can be said with greater than 95% 
certainty (p = 0.002) that the difference squared series 
in not random. Conversely, at 4 days it can be said 
that the differenced series is random with greater than 
95% certainty (p = 1.0). The rest of the results fail the 
95% percent certainty criteria for either accepting or 
rejecting that the exchange rate is random. In these 
cases the probability that the number of positive 
changes obseived indicate that the exchange rate is 
random ranged from 0.10% (p = 0.1) and 82% (p = 
0.82). A less stringent criteria for accepting the 
hypothesis that the changes in the US$ - DM are 
random oould be adopted in which any number of 
positive changes found within one stanclan:l deviation 
(i.e. p <= 68%) of the expected number of positive 
changes would be accepted as indicative of 
randomness. In this case, the results are still mixed 
with the differences series indicating non rdl1domness 
at lags of 1 (p = 0.01), 2 (p = 0.15) and 3 (p = 0.22) 
and the differenced squared series indicating non 
randomness at lags of 1 (p = 0.002), 2 (p = 0.15) and 4 
(p= 0.54). 

The serial oorrelation test resulted in slightly more 
oonsistent results. For the differenced series, all five 
time lags indicated randomness p >= 95% while the 
differenced squared series indicated significant non 
randmnness at 95% certainty at all lags except 4. 

As much as these results are mixed, they do seem to 
indicate that the US$ - DM exchange mte is not 
strictly random. In other words, there is some structure 
to be found in the 1 - 5 day price changes albeit ~mall 
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and probably very subtle. The random walk mcxlel 
can probably be rejected as the most appropriate 
mcxlel explaining the changes in the US$ - DM 
exchange rate. Nonetheless, because the structure that 
exists in the changes is so small (and possibly 
complex) forecasting these changes will most 
probably be anything but trivial. 

0.014 

0.012 

g 0.01 
w 
& 0.008 
tJ) 

c: 0.006 
0 

~ 0.004 R.W.(5) MLP(5) 

0.002 - -
0 

R.W.(20) 

Fig. 3: Results of the 5 and 20 day forecasts. 
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-0 

T I ME ( d:::ty's) 

Fig. 4: The 5 day univariate forecast The thick line is the actual 
US$ - DM and the thin line is the forecast. 

Experiment 3: 5 and 20 day univariate forecasting 

The previous experiment attempted to forecast the 
US$ - DM exchange rate at time t + 1 with a moving 
window of univariate data up to and including the rate 
at time t Given the results of experiment 2 which 
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demonstrated that there may be some subltle structure 
in the US$ - DM exchange rate, this next experiment 
attempted to use a network to find a relationship 
between a segment of the time series consisting of 
data up to and including the rate at time t and the 
value of the exchange rate at time t + 5 and t + 20 that 
can be used for a forecast 

In regards to the 5 day forecasts, various sizes of input 
window were attempted. An input window size of 20 
trading days wi = y(l), y(t - 1) ... y(t - 20) is 
displayed in the results here as originally it was 
thought that a month's worth of trading days would be 
sufficient for the netwmk to derive a weekly forecast 
Other window sizes did not yield any better results. 
The number of hidden units was also varied from 1 -
30 none of which lead to an improved perfonnance. 
The results for the 5 day forecast are displayed in fig. 
3. 

Again, the random walk mcxlel is. producing the 
lowest error perfonnance. As with the one day 
forecasts, the networks seem to be implementing a 
random walk type of forecast which can be seen in 
fig. 4. Again, none of the networks have improved on 
the mean error perfonnance of the random walk 
mcxlel. Also, looking at the graphs of the ac1ual output 
of the networks (fig. 5) it can be seen that the 
networks forecasting 20 days in advance are simply 
outputting previous input. 

Fig. 3 also gives the results of the 20 day forecasts in 
which a 60 trading day (3 month) input window was 
used. Fig. 5 displays a typical result from the 
networks. Clearly, the networks are simply giving the 
last seen input value (albeit somewhat degracled) as a 
forecast of the future course of the exchange rdte. As 
with the 5 day forecasts, the number of hiclclen units 
was systematically varied. Due to long learning times, 
though, the input window size was pegged at a value 
of 60 tracling days. 
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20 c:by rmc:bm \i\dk foreo::5t 
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Fig. 5: 20 day random walk forecast and the univariate 20 day 
forecast 

Experiment 4: Mult:istep forecasting 

An attempt was also made to look at the multistep 
predictive abilities of the networks used in experiment 
1. Initially the results looked swprisingly promising 
given the previous results. Fig. 6 shows the results of 
the single day multistep forecast made over the same 
part of the data set as was used before. The netwolk 
does seem to have forecast three of the major turning 
points. Attempts to replicate this on other parts of the 
data set were unsuccessful though. Generally, these 
other attempts produced results such as can be seen in 
fig. 7 which displays a single day multistep forecast 
using 550 days training staring after the first 200 days 
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and the next 50 days as a test set Apparently, the 
netwmks are modelling the data as being cyclical in 
nature whose dynamics are largely detennined by the 
in the previous input although what exactly the 
netwmks are modelling in the data is unclear. All that 
can be said, though, is that the initial "positive" results 
in fig. 6 were probably spurious. It should also be 
noted that a similar result was found on the 20 day 
forecasting where a single positive result could not be 
replicated on other parts of the data set Nonetheless, 
these results underscore the need for more care to be 
taken when analysing results to ensure they are not 
spurious. 
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Fig. 6: Multistep forecast using first 850 clays as training. 
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Fig. 7: Multistep forecast using clays 200 - 750 as training. 

Experiment 5: Multivariate forecasting 
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In this experiment, the data used to forecast the US$ -
DM one and five days in advance was expanded to 
include the US$- DM exchange rate, the US$- Brit. 
Pound exchange rate and the US$ - Yen exchange 
rate. In addition, one month and one year 
Eurocurrency interest rates for each of the above 
cwrencies were also given as input to the networks 
along with the one month and one year London 
Interbank interest rates. 

For the single day forecasts the networks were given 
10 days of each of the above variables. Thus the 
networks had a total of 130 input units with the 
hidden units being varied from 0 to 30. The networks 
were trained on the first 850 days of the data set and 
tested on the following l 00. The results of the single 
clay multivariate forecasts with a 5 hidden unit 
network are displayed in fig. 8. 

M.!11\.aidesingecby'fae:x:i;t 

TIME (cb,'s) 

---Aclud U D$;DM ---Fae:x:i;t 

Fig:8: Multivariate single day forecast. 

The results here are similar to the univariate l day 
forecasts. Increasing the number of hidden units did 
not lead to improved petformance. As can be seen the 
networks have not been able to outpetform the 
random walk model. Similar to the univariate one day 
forecasts, the networks here were very roughly 
approximating a random walk type petformance. 
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For the 5 clay multivariate forecasts the networks were 
given identical information as before except that a 20 
day window of each variable was used giving a total 
of 260 inputs to the networks. The first 850 days were 
used for training and the following 100 days for 
testing. The results are displayed in fig. 9. 
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---Aclud US$;DM --- F ae:x:i;t 

Fig. 9: 5 day multivariate forecast 

The best petformance was found with the 20 hidden 
unit l\1LP although none of the networks used were 
able to outpetform the random walk model in terms of 
mean squared error. Nonetheless, the network is not 
strictly outputting previous input and in faci does to 
be picking up some degree of the general direction of 
change (fig. 9). Similar results were found on other 
parts of the data set 

DISCUSSION 

Although the US$ - DM price changes where shown 
to be not strictly random in a statistical sense, from a 
forecasting point of view what little structure actually 
is present may well be too negligible to be of much 
use. Given the petformance of the network models in 
univariate portion of this study, the random walk 
model appears to be the more accurate for daily, 
weekly and monthly forecasting of the US$ - DM 
exchange rate. Does this mean that the random walk 
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mcx.1el is the optimal technical forecasting technique 
for the US$ - DM exchange rate? Certainly not 
However, in forecasting the US$ - DM exchange rate 
using only daily US$ - DM data, the random walk 
model has been the most effective of the models 
examined here at all three forecast lead times. 

This has some implications regarding the work of 
Refenes et al (1993). Essentially, the only difference 
between their study of single day forecasting and the 
univariate experiments conducied here, is that they 
used hourly data. It seems reasonable to argue that if 
their model was truly robust, the use of daily data 
should have worked just as well. If anything, the 
hourly data would have been even more noisy than 
the daily data thus making forecasting even more 
difficult Refenes et al also looked at multistep 
forecasting which was also attempted here. The initial 
IX>Sitive results we found with multistep forecasting in 
this work turned out to be spurious. fu future work, the 
use of hourly data will be investigated to see if the 
dynamics of hourly price changes are more conducive 
to univariate forecasting than daily changes. 

The multivariate I day experiment was not much 
different than the univariate single day forecasting. 
Why this is so is unclear but perllaps the use of 
additional currency and interest rate data here was not 
sufficient to capture the dynamics of the daily price 
changes. 

The 5 day forecast were a bit more interesting if only 
because the networks did seem to pick up on some of 
the general trend infonnation. Future work will 
explore the use of a larger variety of input variables 
and network architectures. 

CONCLUSIONS 

The conclusions of this work are three fold: First, 
previous work claiming good forecasting perfonnance 
of the US$ - DM using univariate hourly input to 
feedforward networks could not be replicated with 
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daily data. This suggests that either the results of 
previous work require some reevaluation or that there 
is something special about the nature of hourly 
changes in the US$ - DM prices changes that can be 
exploited for forecasting that cannot be found in the 
daily changes. Second, more research could be 
conducted examining the use of additional types of 
input and architectures in neural network based 
financial market forecasting systems. Finally, given 
the lack of cross model comparisons in previous 
research, more work needs to be done examining the 
relative forecasting abilities of connectionist and more 
standard financial modelling techniques. An 
experimental framework incorporating cross 
comparisons between different forecasting models 
combined with multiple simulation runs is 
recommended in research claiming the superiority of 
neural networks in financial forecasting. This will 
ensure that the advantages of connectionist forecasting 
methods cannot be simply written off as data mining. 
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Abstract 

Neural networks have found an important niche 
in financial applications. We apply neural 
networks to Standard and Poor's (S&P) 500 
stock index futures trading to predict the 
futures market behavior. The results through 
experiments with a commercial neural 
network software do support future use of 
neural networks in S&P 500 stock index 
futures trading. 

1. Introduction 

The value of applying a new 
modeling technique to the prediction of stock 
prices and thus using it for abnormal profits 
has long been hotly debated in finance. The 
efficient market hypothesis [2] argues that 
stock markets are so competitive that no one 
could beat the market systematically with 
publicly available information. Although 
this hypothesis is very compelling in theory 
and has in fact shaped the way the fmance 
subject has been taught in classroom for 
years, a series of recent empirical studies 
employing sophisticated methods [7] 
evidence that stock prices can be predicted. 
In light of this new evidence, we re­
investigate the possibility of making 
abnormal profits using a neural network, a 
new and superior technology capable of 
detecting regularities existing in historical 
fmancial data. In this paper, neural network 
models are developed for Standard & Poor's 
(S&P) 500 stock index futures contracts. 

The reasons for the selection of the 
futures markets in general and of the S&P 
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500 stock index futures in particular are 
multi-fold. One is that the futures market 
requires a substantially smaller margin and 
as a result is conducive to larger profit 
making opportunities. Another reason is that 
futures exchanges have been known to play a 
price discovery role, which makes any 
apprehensible price regularities even less 
likely. In other words, one could make a 
very strong case against the efficient market 
hypothesis with evidence for arbitrage 
opportunities in futures markets. Lastly, 
stock index futures seems to be a good choice 
to start with among futures contracts 
considering a recent controversial issue of 
program trading. The S&P 500 index 
futures contract is the most popular stock 
index futures. 

As conventional analytic techniques 
reach their limit in recognizing data patterns, 
financial firms and institutions find neural 
network techniques to solve this complex task. 
Neural networks have found an important niche 
in financial applications and have recently 
been applied to finance and investment 
domain issues [12]. To date, however, only 
one published work by [ 11] has attempted to 
aid traders in stock index futures trading. 
We are in the process of developing an 
intelligent futures trading system. Among 
other components of the system, neural 
network models of the system are discussed 
in this paper. 

The rest of this paper is organized as 
follows. Section 2 introduces the 
fundamental concepts of neural networks. 
Section 3 describes the process of developing 
neural network models to predict the market 
behavior of S&P 500 stock index futures 
trading. Results of simulated trading with the 
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neural network model are summarized in 
Section 4. A brief discussion of the 
intelligent futures trading system is given in 
Section 5. Conclusions and future research 
issues are discussed in Section 6. 

2. Neural Networks 

A neural network is a knowledge 
induction technique in which knowledge is 
constructed from learning cases and represented 
over the multilayer network. The field of neural 
network is inspired by studies of the brain and 
nervous system Many neural network 
algorithms have been developed for different 
applications [4, 6]. Although the algorithms 
and networks built from them differ both 
structurally and mathematically, neural 
networks are usually specified in terms of the 
(neuron) node characteristics, network 
topology, and a learning algorithm For 
simplicity, a common three layer neural 
network is selected and discussed as a 
representative model in this section. 

A neural network consists of a set of 
interconnected processing nodes. Each node, 
arranged in layers, is a computational unit that 
acts on input and produces a result. In addition 
to the input and output layer, one or more 
hidden layers are introduced to enhance the 
network's ability to model complex functions. 
Nodes are connected to the nodes in the 
preceding layer for input and the next layer for 
output. Each connection between nodes has an 
associated weight. Data enters the network 
through nodes in the input layer (called input 
nodes). Input nodes simply pass input data to 
nodes in the next layer. Nodes in the hidden and 
output layers receive all input and process 
them Figure 1 shows a three layer network 
architecture and the behavior of a node. 

Nodes in the hidden and output layer 
process their inputs in two steps. First, each 
node multiplies every input value by its weight, 
calculates the total of the products, and then 
passes the sum through a function to produce 
its output. For example, in Figure 1 a node j in 
the hidden layer, shown in the box, receives 
input values from input nodes, aggregates these 

values based on an activation function, nj (t), 
and converts to the corresponding output value 
by a transfer function, Yj(t). A commonly used 
nonlinear transfer function is the Sigmoid 
function, which generates an output value 
between O and 1. The activation and transfer 
functions are mathematically represented as 
follows: 

where 

nj (t) = L wiixi(t) + Bj and 

1 
~;(t) = _n-(t) ' 

1 + e 1 

nj (t) = aggregate input of node j at 
time t, 

x;(t) = input value from node i at 
time t, 

wii = weight for connection between 
node i andj, 

. Bj = bias of node j, 
and Yj (t) = output of node j at time 

t. 

Network topology refers to the 
configuration of a neural network. The number 
of possible interconnecting and grouping nodes 
into layers is enormous. Although network 
topology and node behavior are independent, 
learning algorithms are often tied to specific 
network architectures. A number of different 
learning algorithms have been developed. 
Figure 1 is layered with feedforward 
connections from the input layer, the hidden 
layer, to the output layer. This neural network 
topology, called feedforward-backpropogation 
(abbreviated as backpropogation), is the most 
important and most widely used algorithm [3, 
10]. Feedforward-backpropagation stands for 
output feedforward and error backpropogation. 
A neural network learns through this error 
backpropagation. The key to a neural network 
is its learning algorithm 

The neural network is trained with 
sample cases. Sample cases are presented 
repeatedly and errors are corrected by adjusting 
the weights after each erroneous output. In a 
backpropagation neural network, the output 
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layer errors are detennined by subtracting the 
actual result from the target result. Then, the 
derivatives of the output layer errors are passed 
back to the hidden layer. After each node in the 
output layer and the hidden layer finds its error 
value, the node adjusts its weights to reduce its 
error. The weights are adjusted after the 
presentation of each case. The goal of 
minimizing the sum of the network's squared 
errors is achieved by applying the gradient 
descent method that minimizes the mean 
squared error of the system by moving down 
the gradient of the error curve. The error 
surface is multidimensional and may contain 
many local minimas the backpropogation 
algorithm may not escape. Practical training of 
backpropogation neural network involves with 
finding a set of weights that process data 
accurately enough for the given application 
rather than finding a global minimum of the 
error curve. The process of developing 
neural networks consists of trying several 
configurations to see which has the least error. 
Backpropagation neural networks are trained 
by selecting training parameters, including the 
learning rate and momentum, to adjust 
connection weights in the learning process so 
that the sum of the squared errors can be 
reduced. Learning rate and momentum are 
coefficients that detennine the portions of the 
current and previous discrepancies between 
actual outputs and desired outputs that are to be 
compensated (0 for no compensation and 1 for 
full compensation), respectively. High learning 
rate means that the adjustment of the weights is 
primarily detennined by the current 
discrepancy. High momentum means that the 
adjustment of the connection weights is 
primarily detennined by the previous 
discrepancy. Learning is complete when no 
further reduction in the sum of squared errors is 
possible. The resulting neural network can be 
used as a decision tool when new cases occur. 

3. A Neural Network Model for S&P 
Stock Index Futures Trading 

3.1 Selection of Variables 
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Inputs to the network are price 
information, technical and statistics derived 
from price information, and one subjective 
market indicator. Price information includes 
Open, High, Low, Close price data. 
Statistical indicators include Moving 
Average (MA), Rate Of Change (ROC), and 
Relative Strength Index (RSI) which are 
derived from the past price information for 
the one or two week period prior to the 
trading day. We also include the Market 
Breakdown (MB) which classifies the trading 
day's market into one of three categories. A 
limited selection of the variables makes 
possible to compare the performance of our 
model against others which use a similar set 
of variables. 

Neural networks typically work with 
inputs in the range O to 1 or -1 to + 1. When 
input data are loaded into a neural network, it 
must be scaled into a numeric range that is 
comparable with the neural network algorithm. 
In this study, the input data scaling is performed 
via the linear scaling function which converts a 
range of values into [-1, 1 ]. The neural network 
then produces an output of value between 0 
and 1. 

To validate the learning model, the 
four year data of 1,013 trading days is divided 
into a learning ( original) and test (holdout) 
sample. The data for the year 1991 through 
1993 is used as a learning sample to construct 
neural network models. The test sample, the 
data for the year 1994, is used for validation of 
the neural network. 

3.2 Configuring Network 

For this complex and noisy problem 
an experiment with three-layer backpropagation 
networks is performed to identify the network 
architecture. The Sigmoid logistic function 
described earlier is used as the transfer function 
for each node since it is known that this 
function is particularly effective when the 
outputs are categories [9]. For a three-layer 
network, it is suggested to start with the number 
of hidden neurons by computing the following 
formula in [9]: 
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# of Hidden neurons = 1/2 (Inputs + 
Outputs) + Sqrt ( # of Patterns). 

After experimenting with different 
numbers of hidden neurons, a three-layer 
network with 8 input nodes, 8 hidden nodes and 
one output node was selected. Figure 2 shows 
the topology of the neural network used in the 
study. 

3.3Leaming 

Learning consists of presenting the 
learning data set to the network so that the 
weights can be adjusted to produce the desired 
output for each input data set. Weights are 
adjusted by the backpropogation algorithm after 
each input vector is presented. Typically, a 
large number of iterations of the learning data 
are required to produce a stable set of weights 
that can properly categorize the learning 
sample. In this study, the neural network was 
trained over 760 trading days from 1991 to 
1993 for S&P500 futures market. 

The proper setting of the learning 
parameters is part of the art of neural networks. 
Learning ceases to make any progress if the 
learning rate and momentum are too high or the 
network has too few hidden nodes. A neural 
network continually works to improve the 
learning model's categorization of the learning 
sample inputs. Generally, learning improvement 
is continuous, but eventually there will be a 
point where the forward progress is too slow to 
be practical or observable. The experiment 
examined each neural network architecture with 
different values for these parameters and 
stopped with the learning rate and momentum 
factors of 0.1 and 0.1 respectively. 

3.4 Testing the Model 

Once the neural network is trained by 
the learning sample, the learned weights on the 
connections between nodes are kept constant 
during the testing phase. The neural network is 
tested with 240 trading events of the year 1994. 
The predicted outcome of each trading day has 

been examined to find a cutting point for 
classifying either Long(buy) or Short(sell). 
The final decision rule for the output is set to 
0.57 and can be stated as: 

output unit> 0.57 ➔ Long(buy) 
output unit :5: 0.57 ➔ Short(sell). 

The accuracy of the trained network 
came out to be 62.5%, which made 158 right 
out of 253 trading decisions in the test data 
set at 0.57 cut-off point. However, the 
network generated 58.5% of accuracy at 0.50 
cut-off point. With the learning data set the 
trained network has 63.8% of accuracy (485 
out of 760 trading decisions) at 0.57 cut-off 
point. At 0.50 cut-off point it generated 
61.2%. 

4. Simulated Trading Results 

A simulated futures trading is 
designed such that the buy order is issued if 
the closing price of each trading day is 
expected to be greater than the open price. 
And the opposite is the case when the 
relationships of the two prices are reversed. 
Trading each day is set to take place in the 
morning immediately after observing the 
open price. The ex post near optimized 
network generated the simulation 
performance as in Panel A of Exhibit 1. The 
cut-off value of 0.57 was chosen for ex ante 
simulation. The trained neural network model 
has been checked over the test period which 
covers from January 3, 1994 through 
December 30, 1994. 

Exhibit 2 shows the long/short 
positions for the network for 253 trading 
days in 1994. The top box indicates the 
time to buy and its holding period and the 
bottom box indicates the time to sell and its 
holding period. Exhibit 3 shows the ex ante 
trading performance resulting from these 
positions. The profit step function shows 
strong upward slope very consistently. 

Exhibit 4 shows the trading 
simulation performance based on tested 
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decisions for 1994 S&P500 futures market. 
It was assumed that order placement be 
executed at market closing time and the 
slippage will be 1 tick (5 points) for each 
transaction. The commission was assumed 
to be $5 .50 per side. As indicated in Exhibit 
4, its ex ante performance shows a 
cumulative profit of $63,308, maximum 
drawdown of $7,375, and the reward/risk 
ratio was 8.5. For the seventy-eight days that 
trading took place, there were gains on fifty­
two days, or 67.5% of the time. The average 
gain was $2,027.5 and the average loss was 
$1,653.2. 

The neural network model 
performance has been compared with the 
perfect hindsight information, and five-day 
and ten-day moving average system. Panel 
B of Exhibit 2 shows the performance 
comparison. 

5. The Intelligent Futures Trading System 

Financial markets are interrelated in 
increasingly complex ways and operating 24 
hours a day throughout the world. 
Telecommunications and computer networks 
tie together markets in the form of electronic 
entities. Financial practitioners are inundated 
with an ever larger stream of data, produced 
by the rise of sophisticated database 
technologies, on the rising number of market 
instruments. To cope with this information 
explosion, intelligent systems with 
quantitative analyses are considered to be the 
best tool for financial professionals and 
traders. 

The information sources for financial 
professionals and traders include current 
market data, historical information, financial 
reports, bond analyses, quantitative models, 
technical indicators, etc. The intelligent 
system should employ techniques to integrate 
various information from different sources 
and provide quick recommendation to the 
decision maker. Each information source 
may be a subsystem of the intelligent system. 
The subsystem may be a conventional 
program or a modeling system. The best way 
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to connect and integrate individual systems 
in the intelligent system is through the 
knowledge-based systems approach. 

To provide such an intelligent system 
for the futures trading market, we are in the 
process of developing an intelligent futures 
trading system. The system integrates market 
data with modeling and analytical tools to 
support trader strategies. Modeling and 
analytical tools include simple analytical 
techniques, statistical models and neural 
network models. The integration will be 
implemente,d through the rule-based expert 
system approach with the object technology. 
Neural network models of the system are 
discussed in the current paper. 

6. Conclusions and Future Research 

This article describes the 
development and performance of neural 
networks in trading S&P 500 stock index 
futures contracts. This model outperforms 
conventional technical trading systems such 
as oscillator of moving average systems, 
which was also one of the input in the neural 
network. As a point of reference, the best 
network in [1] produced a gain of $10,301 
over a year of trading, and the best network 
in [11] produced an annualized gain of 
$60,000 per contract. However, our best 
network achieved a gain of $63,308 over 
1994 trading period per contract. 

The current work has some 
limitations and lays ground for future 
extensions. More extensive input data 
including fundamental information are to be 
used to examine the possibility of 
performance improvements, to show how 
much improvement can be made with other 
variables, and to find out major dominant 
information affecting the stock index futures 
market. The robustness of the performance 
of our model could also be checked by 
splitting up the data sample into many 
different training and testing periods. For 
example, a moving simulation approach [5] 
is performed at various lengths of periods. 
This is the approach requiring multiple 
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repetitive simulations of learning and 
prediction exercises as time advances. 
Training and testing periods can even be 
switched to assess the degree of the 
stationarity of the index futures prices. 

More realistic assumption and 
strategies of trading simulation should be 
devised for testing system performance and 
designing real-time trading systems. We plan 
to look into the possibility of a pseudo­
arbitrage opportunity in the stock index 
futures. It is well known in the finance 
literature that arbitrage profits are possible 
when the actual stock index futures prices 
differ from the so-called cost-of-carry fair 
prices by more than transactions costs. We 
could feed in the fair prices to the neural 
network system and conduct this experiment. 
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Exhibit 1 

Panel A : Performance of trained Network for 0.50 and 0.57 of cut-off point 

Cut-off Cumulative % Max. 
Point Profit Gain' Drawdown 
---------------- -------------
0.50 40558 69 2003 
0.57 49280 72 1943 

Panel B : Performance Comparison 
----------------- -------------
TYPE Profit % Max. 

Gain Drawdown 

Profit/ 
Risk 

20.25 
22.79 

Profit/ 
Risk 

Average 
Gain 

432.30 
395.97 

Average 
Gain 

Average 
Loss 
---------------
245.07 
259.08 

-----------------------
Average 
Loss 

------------ ---------------------- --------------------------------------------------
Perfect 58088 98 0.0 
Information 
Neural 12831 78 1475.0 
Network 
Moving -12008 34 12153.0 
Average 
-------------------------------------------------

Figure 1 : A Neural Network 
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Figure 2 : A Neural Network for S&P 
Stock Index Futures 
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5.,p neural net.-ork =ev1ew program 
sp_;.npt.:.t 
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:~c!·.:.Ces - :i:: :i! s!:.;;page. 

:,ate ':'ransaction ?rice ?re~:.: '.'.:-..:.m.profi:. Cormisn Do::ars 
---------- ---------:9S4Cl03 Open 37859 : . :J J.JO S S. 50 -5.SO 
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: ::1940:.:. 7 Buy 33624 -24:.::o 2-:'5. 00 S l l. 00 :347.50 
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Abstract 

The multi-component system proposed in this paper 
is comprised of a preprocessing component, two neu­
ral networks, and a decision rule base. First, the 
preprocessing component determines the most rel­
evant features for stock market prediction. N ezt, 
the two neural networks predict the market's rate of 
return, with one network trained to recognize large 
positive and the other large negative returns. Fi­
nally, the decision rule base takes the return pre­
diction and determines a buy/sell recommendation. 
Various ezperiments using this system to predict 
S&P 500 indez returns were conducted and perfor­
mance measured by computing the annual rate of 
return and the return per trade. Comparing the re­
sults achieved by themulti-network system to that 
of the single neural network shows that in general 
the multi-network system gives a higher return with 
fewer trades. In addition, some multi-network ez­
periments managed to achieve an annual rate of re­
turn greater than that of the buy and hold strategy. 

1 Introduction 

In general, most quantitative methods that attempt 
to predict stock market movements are based on sta­
tistical time series models (1, 8, 10]. These paradigms 
are largely unsuccessful due to the inherent com­
plexity of financial markets in general and the stock 
market in particular. The efficient market hypothe­
ses says that stock prices adjust to new information 
very rapidly, usually by the time the information 
becomes public knowledge, making it impossible for 
statistical paradigms based on this information to 
make accurate predictions [7]. 

While the efficient market hypotheses seems to be 
correct for static and linear relationships between 
stock prices and historical information, it is pos­
sible that dynamic or nonlinear relationships exist 
that traditional statistical time series methods are 
incapable of modeling [7]. If this is true, it may be 
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possible to capture these relationships using a non­
parametric machine learning approach of multilayer 
artificial neural networks (NN). Such NN's are pow­
erful computational systems that can approximate 
any nonlinear continuous function on a compact do­
main to any desired degree of accuracy [4]. In ad­
dition, a NN can account for fundamental changes 
in the underlying function through incremental re­
training using the back-propagation learning algo­
rithm [9]. 

This paper proposes a hybrid multi-component 
nonlinear system for S&P 500 stock market predic­
tions. The system consists of statistical feature se­
lection component for identification of the most rel­
evant data, two specialized NN's for extraction of 
nonlinear relationships from the selected data, and 
high level decision rules for determining buy/ sell 
recommendations. The system goals are to earn a 
higher annual return than the buy and hold strat­
egy and to keep the number of trades low to reduce 
transaction costs. The system details are explained 
in Section 2 followed by results and analysis in Sec­
tion 3, and conclusions in Section 4. 

2 Methodology 

2.1 Feature Selection 

The objective of the feature selection component 
(see Fig. 1) is to identify a small subset of the most 
relevant features from a larger pool for designing the 
system in a manner that preserves as much infor­
mation as possible. This issue is important because 
fewer features per pattern lead to faster computa­
tion and require less training patterns for successful 
generalization. 

For feature selection, the stock market prediction 
problem is considered to be a two-class problem with 
one class corresponding to a positive move in the 
S&P 500 index and the other corresponding to a 
negative move [3]. The feature selection process 
performs a number of feature selection techniques 
utilizing various selection criteria. For each tech­
nique and criteria combination the top s features 
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Feature selection 

DownNN UpNN 

Predicted Rate Predicted Rate 

Figure 1: System Architecture 

are determined and points awarded based on feature 
importance (i.e., s points for the most informative 
feature, s-1 points for the second most informative 
feature, etc.). Then the final scores for the features 
are analyzed and a determination is made concern­
ing which features to include in the final set. Selec­
tion techniques and criteria used in this process are 
shown in Table 1, with each row corresponding to 
a technique/criteria combination. Techniques and 
criteria are explained in [6]. 

2.2 Return Rate Prediction 

The return rate prediction component, shown in 
Fig. 1, consists of two NN's that are trained us­
ing the back-propagation algorithm and an on-line 
learning scheme. The objective is to train the "up 
NN" on patterns with a large positive target return 
and the "down NN" on patterns with a large neg­
ative target return. Once both NN's are trained, 
the test pattern is presented to each of them and 
the corresponding predictions are collected. A deci­
sion rule base is applied to these predictions and a 
buy /sell recommendation made as explained in Sec­
tion 2.3. 

The on-line learning scheme consists of a sequence 
of training/prediction session where the NN's are 
retrained after each session using more resent infor­
mation. This is achieved by training the NN's using 
patterns from a fixed size window covering a con-
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Technique Criteria 

Best Feature Mahalanobis Distance 

Best Feature Estimated Minimal Error 

Best Feature Bhattacharyya Distance 

Best Feature Patrick-Fisher 

Best Feature Euclidean Distance 

Best Feature Univariate Chebychev 

Forward Search Mahalanobis Distance 

Forward Search Estimated Minimal Error 

Forward Search Patrick-Fisher 

Forward Search Bhattacharyya Distance 

Backward Search Mahalanobis Distance 

Backward Search Estimated Minimal Error 

Backward Search Patrick-Fisher 

Backward Search Bhattacharyya Distance 

Table 1: Feature Selection Techniques and Criteria 

tinuous time segment of historic data. The target 
return for the time unit immediately following the 
window is predicted by both NN's and the predic­
tions used by the rule base. Then the training win­
dow is shifted forward one time unit (i.e., one trad­
ing day), the patterns from the new window used 
to retrain the NN's, and a prediction made for the 
next time unit. This process is repeated until the 
data set is exhausted. 

For each training session the target return corre­
sponding to each pattern in the window is compared 
to a threshold value h. If the return is greater than h 
the corresponding pattern is added to the "up NN" 
training set, if the return is less than -h the pat­
tern is added to the "down NN" training set. Any 
pattern with a target return between -h and h is 
discarded. 

For example, suppose that the training window 
size is m and that at time t the test pattern is Pt, 
which means that the training window contains pat­
terns Pt-m through Pt-1• First, the patterns in the 
training window (Pt-m through Pt-1) are separated 
into "up NN" and "down NN" training sets using 
the threshold value has described. Next, both NN's 
are trained using their respective training sets, and 
asked to predict the target return for the test pat­
tern Pt. Once the predictions are collected and sent 
to the rule base, the training window is shifted for­
ward one time unit so that the new test pattern is 
Pt+l and the new training window contains patterns 
Pt-m+l through Pt, and the process repeated. This 
continuous until the end of the ordered data set 1s 
reached. 
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2.3 Decision Rule Base 

The predicted returns from both NN components 
are used as input to the decision rule base compo­
nent (see Fig. 1). This component analyzes the pre­
dicted returns and outputs a buy /sell recommenda­
tion that is used to establish either a long or short 
position in the market. A long position means pur­
chasing an asset for later resale, while a short po­
sition means selling a borrowed asset now and pur­
chasing it later. 

This study examines three different decision rule 
bases. For each rule base the "up NN" prediction ru 
is compared to the "down NN" prediction rd. Each 
rule base recommends a long position in the market 
if ru > 0 and rd ~ 0, and a short position if ru ~ 0 
and rd < 0. Otherwise the rule base computes the 
normalized difference diff as 

diff = max{ru, lrdJ} - min{ru, hi}, 
max{ru, lrdl} 

compares this ratio to a predefined threshold value 
y, and determines a buy /sell recommendation as fol­
lows: 

• Rule Base 1: Maintain Current Position 
Until a Clear Buy /Sell Recommendation 
is Received. 
This rule base specifies that if the system is 
unsure as to what recommendation to make, 
the action is to do nothing and maintain the 
old position. Under these rules, if ru ~ 0 and 
rd ~ 0 the system recommends maintaining the 
current position (i.e., do nothing). If ru > 0, 
rd< 0, and diff > y the rule base recommends 
a long position if ru > Jrdl, and a short position 
if ru < Jrdl- Otherwise diff ~ y and the rec­
ommendation is to maintain the current market 
position. 

• Rule Base 2: Stay Out of the Market Un­
less a Clear Buy /Sell Recommendation is 
Received. 
The difference between rule base one and rule 
base two is the action taken when the system is 
uncertain as to what recommendation to make. 
In case of uncertainty, the rule base two action 
is to exit the market. More precisely, if ru ~ 0 
and rd~ 0 the system recommends exiting the 
market (i.e., if the current position is long then 
sell, if it is short then buy). If ru > 0, rd < 0, 
and diff > y the system recommends a long 
position if ru > lrdl, and a short position ifru < 
Jrdl- Otherwise diff ~ y the recommendation 
is to exit the market. 

• Rule Base 3: Hold a Long Position in the 
Market Unless a Clear Sell Recommen-
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dation is Received. 
This decision rule base takes advantage of the 
common a priori knowledge that over the past 
65 years the market has increased at an average 
annual rate greater than 10%. Stated another 
way, this means that given no other informa­
tion the odds are that the market will increase. 
This is, in fact, the whole premise behind the 
buy and hold strategy. Again, the difference 
between rule base three and the previous rules 
is the actions taken under uncertainty. In this 
instance the action is to take a long position 
in the market. Under these rules, if ru > 0, 
rd < O, diff > y, and Tu < Jrdl, the system 
recommends a short position. Otherwise the 
recommendation is to take a long position. 

2.4 Performance Measures 

The most important criteria when measuring the 
performance of a stock market prediction model is 
whether it will make money and how much. There­
fore the model's annual rate of return (ARR) is com­
puted as follows 

where: 

k n 
ARR= - LTi, 

n i=l 

n is the total number of trading time units for 
the experiment; 
k is the number of trading time units per year 
(i.e., 253 for daily trading); 
Ti is the rate of return for time unit i. 

The sum, I:~=l Ti, is computed by either adding, 
subtracting, or discarding the actual daily returns 
for the S&P 500 index. If the system recommends 
a long position, the actual return is added to the 
sum; if a short position is recommended, the return 
is subtracted; or if the recommendation is to exit 
the market, the return is discarded. 

It is also important to minimize transaction costs 
by controlling excessive trading (i.e., a 10% return 
with 50 trades is more profitable than a 10% return 
with 100 trades). Therefore the break even trans­
action cost (BETC), which may be viewed as the 
return per trade, is computed as follows: 

1 n 
BETC= - Lri, 

m i=l 

where m is the total number of trading transac­
tions, while Ti and n are defined as previously. A 
trade is defined as any action that changes a mar­
ket position. For example, exiting the market con­
stitutes a single trade (i.e., a buy trade to cover a 
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S&P 500 index return 
S&P 500 index return lagged one day 
S&P 500 index return lagged two days 
U .S Treasure Rate lagged 2 months 
U.S Treasure Rate lagged 3 months 
30 Year Government Bond Rate 

Table 2: Selected Features 

short position or a sell trade to cover a long po­
sition), while switching from a short position to a 
long position constitutes two trades (i.e., one buy 
trade to cover the short position and another buy 
to establish the long position). 

3 Results and Analysis 

The system described in Section 2 is used for S&P 
500 stock market buy /sell recommendations. The 
historic data used in this experiment is ordered daily 
financial time series patterns from the period Jan­
uary 1, 1985 to December 31, 1993. Patterns from 
January 1, 1985 to December 31, 1988 comprised 
the initial training window, whereas actual predic­
tions were made for patterns from January 1, 1989 
to December 31, 1993. Each pattern in the initial 
data set contained 24 monthly and 8 daily features. 
The feature selection process described in Section 2 
(with s = 7) showed the 6 features with the highest 
scores clustered together with a significant drop be­
tween the sixth and the seventh feature. Based on 
this, the feature set was reduced from the original 
32 features to the 6 features listed in Table 2. 

The single NN system trained with patterns com­
posed of the six features from the reduced set ob­
tained an ARR and a BETC of 2.86% and 0.01 % 
respectively, using 957 trades. For comparison, the 

Parameter Value 
Activation Function Tangent Hyperbolic 
Network Topology 6-4-1 
Network Topology 32-4-1 

(Single NN, All Features) 
Learning Rate 0.03 

Tolerance 0.00001 
Number of Iterations 5000 

Training Window Size 1000 
Size (Multi NN) 

Training Window Size 250 
Size (Single NN) 

Table 3: System Parameter Values 
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ARR and BETC for a single NN trained using all 
32 of the original features are -2.16% and -0.01 % re­
spectively using 905 trades, which justifies the fea­
ture selection process. The system parameters for 
both single NN's are shown in Table 3. 

Several experiments with the multi-network sys­
tem described in Section 2 were conducted using the 
reduced feature set from Table 2 and the system pa­
rameters from Table 3. Note that the training win­
dow size for the multi-network experiments is larger 
than for the single NN. All patterns in the training 
window for the single NN are used in the training 
process, while the training window for the multi­
network is split into 3 disjoint sets. The first set, 
consisting of all patterns with a target rate greater 
than h, is used to train the "up NN". The second 
set, consisting of all patterns with a target rate less 
than -h, is used to train the "down NN." Finally, the 
third set, consisting of all patterns with a target re­
turn between -h and h, is discarded. Consequently, 
to ensure an adequately sized training set for both 
NN components in the multi-network system, it is 
necessary to have a larger window size. 

For the multi-network system, experiments are 
conducted varying the thresholds h and y. Thresh­
old his varied from 0.5% to 1.25% in increments of 
0.25% and y from 0 to 0.80 in increments of 0.05. 
For decision rule bases one, two, and three the ex­
periments using the fixed values of h resulting in the 
largest ARR are shown in Tables 4, 5, and 6 respec­
tively. The best annual rate of return was 13.35% 

y ARR Trades BETC 
0 -6.75% 330 -0.10% 

0.05 -5.70% 290 -0.10% 
0.10 -1.24% 238 -0.02% 
0.15 -0.01% 198 -0.00% 
0.20 2.76% 178 0.08% 
0.25 1.61% 156 0.05% 
0.30 1.61% 136 0.10% 
0.35 -1.17% 108 -0.05% 
0.40 4.95% 88 0.28% 
0.45 6.56% 64 0.52% 
0.50 7.65% 48 0.80% 
0.55 4.98% 40 0.62% 
0.60 5.70% 36 0.79% 
0.65 5.17% 28 0.93% 
0.70 10.09% 20 2.54% 
0.75 10.09% 20 2.54% 
0.80 10.37% 16 3.26% 

Table 4: Returns for Rule Base 1 with Threshold h 
equal to 0. 75% 
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y ARR Trades BETC 
0 5.40% 391 0.07% 

0.05 6.50% 391 0.08% 
0.10 2.49% 385 0.03% 
0.15 0.17% 383 0.00% 
0.20 1.75% 381 0.02% 
0.25 2.31% 355 0.03% 
0.30 3.23% 319 0.05% 
0.35 3.14% 295 0.05% 
0.40 1.13% 275 0.02% 
0.45 0.88% 243 0.02% 
0.50 -1.17% 217 -0.03% 
0.55 -2.58% 203 -0.06% 
0.60 -2.25% 210 -0.05% 
0.65 -2.54% 188 -0.07% 
0.70 -2.43% 180 -0.07% 
0.75 -1.39% 164 -0.04% 
0.80 -2.23% 150 -0.08% 

Table 5: Returns for Rule Base 2 with Threshold h 
equal to 1.0% 

and was obtained using rule base three with thresh­
olds h = 0.5% and y = 0.80. In comparison, the 
annual rate of return for the buy and hold strategy 
was 11.23% and the best return for the single NN 
was only 2.86%. 

4 Conclusions and Future Re­
search 

The system proposed in this paper is comprised of a 
preprocessing component for feature selection, two 
NN components that use the selected features for 
return predictions, and a decision rule component 
that takes the return predictions and determines a 
buy /sell recommendation. Various experiments us­
ing this system to predict S&P 500 index movements 
were conducted and associated annual rates of re­
turn and returns per transaction computed. 

By comparing the results achieved by the multi­
network system to that of the single NN it can be 
observed that in general the multi-network system 
gives a higher return with fewer trades. In addi­
tion, some multi-network experiments managed to 
achieve an annual rate of return greater than that 
of the buy and hold strategy. 

Although these preliminary results are promising, 
research in progress might lead to further improve­
ments. For instance, the current feature pool is 
quite limited. As a next research step this feature 
pool will be considerably extended by incorporating 
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y ARR Trades BETC 
0 -6.35% 404 -0.08% 

0.05 -10.31% 400 -0.13% 
0.10 -6.93% 404 -0.08% 
0.15 -8.12% 406 -0.10% 
0.20 -0.69% 370 -0.01% 
0.25 1.95% 370 0.03% 
0.30 6.41% 326 0.10% 
0.35 6.46% 248 0.11% 
0.40 6.59% 282 0.12% 
0.45 5.36% 250 0.11% 
0.50 7.98% 246 0.16% 
0.55 8.67% 218 0.20% 
0.60 8.79% 194 0.23% 
0.65 9.61% 166 0.29% 
0.70 11.34% 162 0.35% 
0.75 12.08% 134 0.45% 
0.80 13.35% 126 0.53% 

Table 6: Returns for Rule Base 3 with Threshold h 
equal to 0.5% 

additional features such as daily trading volume and 
inter-day index highs and lows. It is likely that more 
informative features will be selected from a larger 
pool, possibly leading to improved results. In addi­
tion, in this study no attempt was made to optimize 
all the system parameters. It is possible that opti­
mized learning parameters such as the learning rate 
and the number of hidden units may lead to bet­
ter results. Further improvements may be obtained 
by incorporating prior knowledge and constructive 
NN learning [5], or a recurrent network topology [2]. 
Finally, the current rule bases are fairly simplistic. 
Possible improvements include incorporating techni­
cal information like moving averages and exponen­
tial averages into the system. It may also be possible 
to use another NN, an expert system, or some com­
bination of the two to analyze the existing system 
information and determine a market direction. 
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Abstract 

We describe a computer program that can be 
considered an intelligent system for the domain of 
financial time series prediction. The computer 
program is an implementation of a new algorithm for 
discovering mathematical models for financial time 
series prediction, combining artificial intelligence 
methodology with Dynamical Systems Theory, Fractal 
Theory and Statistical methods. Given a financial time 
series for an specific problem, the intelligent system 
develops mathematical models for the problem based 
on the geometry of the data, using three different 
approaches. First, the computer program develops 
regression models for the time series using traditional 
statistical methods, then the program develops non­
linear mathematical models based on Dynamical 
Systems Them:v and Chaos Theory, and finally the 
program develops fractal mathematical models based 
on the theory of Fractal Geometry. The Intelligent 
System then analyzes all of the mathematical models 
obtained before to make a selection of the model that 
will give us the "best" prediction for the financial time 
series. This selection is done by the intelligent system 
using a combination of heuristics and calculations that 
are contained in the knowledge base. An Intelligent 
System that can learn models from financial data 
would be very useful in practice in making the task of 
prediction more easy and less time consuming. 

1. Introduction 

We describe a new algorithm (called IDIMM, 
for Intelligent Discovery of Mathematical Models) 
for financial time series prediction combining 
artificial intelligence methodology with Dynamical 
Systems Theory, Fractal Theory and Statistical 
methods. The idea of using Dynamical Systems 
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Theory and Fractal Theory as alternative 
approaches for prediction can be justified if v,·e 
consider that traditional statistical methods only 
have limited success in real ,vorld financial 
applications, and this is mainly because financial 
problems show very complicated dynamics in time. 
Traditional statistical methods assume that the 
erratic behavior of a time series is mainly due to a 
external random error (that cannot be explained). 
However, a Dynamical Systems approach, using 
non-linear mathematical models, can explain this 
erratic behavior because "chaos" as intrinsic part of 
this type of models. It is a well known fact from 
Dynamical Systems [4] that even very simple non­
linear mathematical models can exhibit the 
behavior known as "chaos" for certain parameter 
values, and therefore are good candidates to use as 
equations for prediction. Fractal Theory also offers 
a way to explain the erratic behavior of a time 
series, but the method is geometrical in the sense 
that the fractal dimension is used to describe the 
complexity of the distribution of the data points. 

We describe a prototype implementation of the 
algorithm IDIMM as a computer program written 
in the programming language PROLOG. This 
computer program can be considered an intelligent 
system for the domain of financial time series 
prediction. Given a financial time series the 
intelligent system develops mathematical models 
based on the geometry of the data. The 
mathematical models are constructed using three 
different approaches: Dynamical Systems Theory, 
Fractal Theory and traditional Statistical Methods. 
First the computer program develops regression 
models for the time series usmg traditional 
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statistical methods, then the program develops non­
linear mathematical models based on Dynamical 
Systems Theory and Chaos Theory, and finally the 
program develops fractal mathematical models 
based on the theory of Fractal Geometry. 

Traditional methods for model discovery 
succeed when the relationships to be discovered are 
easy, that is, when we have small data sets with 
standard structure and variables of one type [7]. 
However, many real-life financial problems are 
more complicated than this and cannot always be 
modeled by traditional techniques. This is the main 
reason why we think that Artificial Intelligence 
techniques can help in making the task of 
developing mathematical models more efficient and 
accurate. The main idea is that an intelligent 
system can use heuristics to limit the 
combinatorially explosive search space of possible 
mathematical models for a given financial problem. 
Also the intelligent system can be flexible enough 
to discover models of varying precision and 
comprehensibility, depending on the user's 
problem-specific goals. 

The intelligent system develops only the kind of 
mathematical models that are more likely to give a 
"good" prediction based on the knowledge that 
human experts have about this matter. This 
knowledge is contained in the knowledge base of 
the intelligent system, and is the main factor in 
limiting the number of models that the system 
explores. The intelligent system also has some 
generalized knowledge about the mathematical 
models that we expect to discover in the financial 
domain. This knowledge is expressed as families of 
parametrized mathematical models. At the end the 
intelligent system analyzes all the mathematical 
models obtained in the first part, to make a decision 
about which one is the "best" model for the given 
problem. This decision is done using a combination 
of statistical calculations and heuristics from 
human experts about this matter. In order to 
developed our intelligent system we needed to the 
knowledge extraction from human financial 
experts. The knowledge acquisition was done by 
one of the authors while working in Economics 
Research Department of a University in Mexico 
with financial and economical experts. 
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2. Discovering Mathematical Models for 
Time Series Prediction 

The problem of discovering mathematical 
models from a given time series can be defined as 
follows: 

Given: A data set (time series) ,vith n data 
points, D = {d1, d2, ... , ~}- Each data point d has 
a real-,valued and continuos "response" (or 
dependent) attribute "y", and P "predictor" ( or 
independent) attributes X = (X 1, X2, ... , Xp), 
where one or more of the Xi's can be the time t. 

Goal: From the data set D, develop a 
mathematical model Mb, that is the "best" model to 
predict "y". 

The above problem is not a simple one, because 
there exists an infinite nui11ber of mathematical 
models that can be build for a given data set. So the 
problem lies in knowing which models to try for a 
data set and then to select the "best" one. More 
formally we can state the problem in the follmYing 
way: 

Let M be the infinite dimensional space of 
mathematical models defined for a given data set 
D. Let MS= {M 1, ... , Mq} be the set of selected 
models that are considered to be appropriate for the 
geometry of the data set D. Let Mb be a model in 
MS that is considered the "best" one for prediction 
for the corresponding time series. We consider 
mathematical models of the following fom1, for the 
statistical methods: 

Y= F(X) + E(O,cr) 

where E(O,cr) represents a 0-mean Gaussian noise­
process with standard deviation cr, this is the 
random error. F(X) is a polynomial equation in X. 
where the predictor variables are contained in the 
vector: X = (X1, X2, ... , Xp). 

We consider mathematical models as 
"dynamical systems" of the following form: 

dY/dt = F(Y) • 
where Y is a vector of variables of the fom1: 
Y = (Y 1, Y 2, ... , Y p) and F(Y) is a non-linear 
function ofY. Note that in this case we have 
deterministic models expressed as differential 
equations. Other kind of mathematical models arc 
the discrete "dynamical systems" of the following 
form: Yt = F(X) 

81 



where X, in this case, is of the form: 
X = (Yt-1, Yt-2, ... , Yt-p) and F(X) is a non-linear 
function of X. Note tfiat in this case we have 
deterministic models expressed as discrete 
difference equations. 

The mathematical models for the statistical 
methods can be linear as well as non-linear 
equations. We show below some sample statistical 
models that the intelligent system explores: 

linear _regression: Yt = a + bt 
quadratic_regression: Yt =a+ bt + ct2 

logarithmic_regression: lnYt =a+ blnt 
first_order_autoregression: Yt =a+ bYt-1 

The mathematical models for continuous 
dynamical systems can be one-dimension, two­
dimensional or three-dimensional. We show below 
some sample models that the intelligent system 
explores: 

logistic_ differential_ equation: 

dY 1/dt = aY 1(1-Y 1) 

lotka volterra two dimensional: - .-

dY1/dt=aY1 -bY1Y2 
dY 2/dt = bY 1Y 2 - cY 2 

lotka volterra three dimensional: - -

dY 1/dt = Y l (1 - Y l - aY 2 - bY 3) 
dY 2/dt = Y 20 - b Y 1 - Y 2 - a Y 3) 
dY 3/dt = Y 3(1 - aY 1 - bY 2 - Y 3) 

lorenz three dimensional: - -

dY 1/dt = aY 2 - aY 1 
dY 2/dt = - y 1 y 3 +by 1 .. y 2 
dY 3/dt = Y l Y 2 - cY 3 

The mathematical models for discrete dynamical 
systems can also be one, two, or three dimensional. 
We show below some sample models that the 
intelligent system explores: 

logistic_ difference_ equation: 
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logistic _two_ dimensional_ difference_ equation: 

lotka volterra two dimensional: - - -

henon _map_ two_ dimensional: 

In all of the above mathematical models a, b 
and c are parameters that need to be estimated 
using the corresponding numerical methods. For 
example, for the regression models we can use the 
least squares method for parameter estimation, but 
for the differential equations we need to use the 
Gauss-Newton method. 

The algorithm for discovering the best 
mathematical model for prediction can be stated as 
follows: 

1.- Read the data set D = {d1, d2, ... , <lu}-
2. - Analyze the data set D to find the components 

of the time series. 
3. - Find the set of selected models: 

MS= {Ml, ... , Mq} 
using the properties of the components of the 
time series. To complete this task the 
knowledge base of the intelligent system makes 
the decision of what models have to be 
developed. For each model do the following: 

a) Determine the parameters of the models based 
on the methods corresponding to the type of 
equation. 

b) Create the corresponding equation F. 
c) Calculate the measures of "goodness" of the 

model. 
4.- Find the "best" mathematical model Mb from 

the set Ms using the measures of "goodness" of 
each of the models of the set Ms. To complete 
this task the knowledge base of the intelligent 
system makes the decision based on the 
heuristics of the experts incorporated in the 
computer program. 
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We call this algorithm IDIMM (for Intelligent 
Discovery of Mathematical Models) and is an 
integration of Artificial Intelligence techniques with 
Dynamical Systems Theory, Fractal Theory; and 
statistical methods, to obtain mathematical models 
for prediction of time series in the financial domain. 

3. Description of the Intelligent System 

3.1 Architecture of the Intelligent System 

In figure 1 we describe the general architecture 
of the system. 

In figure 2 we describe the architecture of 
"Expert Module 2", which does the selection of the 
mathematical models that the intelligent system will 
explore. This module selects the type of statistical 
models more appropriate for the data, then selects 
the dynamical systems more appropriate for the 
data, and finally selects the fractal theory models 

(fractal dimensions) to describe the data. After this 
selection is finish, this expert module calls the 
Numerical Module to do the parameter estimation 
for each corresponding mathematical model. 

3.2 Description of the Knowledge base of the 
Intelligent System 

The knowledge base consists of three parts 
corresponding respectively to the three expert 
modules shown in figure l. The first part contains 
the knowledge to analyze the time series, i.e., the 
knowledge to obtain from the data the components 
of the time series. The second part contains the 
knowledge to select the kind of mathematical 
models more appropriate for the type of data given, 
i.e., given the components of the time series decide 
which models are more likely to give a good 
prediction. The third part contains the knowledge to 
select the "best" mathematical model for prediction. 

Expert Module 2: Expert Module 3: 
ExJ,ert Module I: 

Time Series 
Analysis 

Input 

Time Series 

Time Series 

Coffifonents 

Selection of the 
type of models 
appropriate for 
the data 

Numerical Module: 

Parameter 
Estimation of the 
Mathematical 
Models 

Mathematical 

Models 

Figure 1.- Architecture of the Intelligent System 
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Selection of the 

"Best" Model 

for Prediction 

Output 

"Best" Model 

"Best" Prediction 
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Statistical 
Module 

Input Analysis 
of the 1------Dynamical Systems 1------

Output 

Time series 
Components 

Compon.ents Module 

Fractal 
Module 

Models Mathematical 
Models 

Figure 2.- Architecture of Expert Module 2 

i.e., given the models of the second part, decide 
which one is the "best" to predict the time series. 

To give an idea of the way the knowledge base 
is structured, we show some sample rules of 
"Expert Module 2". Remember that this module 
selects the type of mathematical models more 
appropriate for the data, using as input the 
components of the time series extracted in module 
1. We consider the following types of statistical 
methods to obtain the models [5]: 

1. - Linear regression 
2.- Quadratic regression 
3. - Logarithmic regression 
4.- Trigonometric Least-Squares 
5.- First order autoregression 
6.- Second order autoregression 
7.- Non-linear autoregression 
8. - Brown method 
9.- Weighted exponential moving averages 

We consider the following types of non-linear 
mathematical models as dynamical systems [ 4]: 

1. - Logistic differential equations 
2. - Logistic difference equations 
3. - Lotka Volterra two-dimensional differential 

84 

equations 
4.- Lotka Volterra two-dimensional difference 

equations 
5. - Lorenz three-dimensional differential equations 
6.- Henon two-dimensional difference equations 

We consider the following fractal models 
(dimensions) as measures of the complexity of the 
time series [ 4]: 

1.- Correlation dimension 
2.- Box dimension 

We show in figure 3 some sample rnles for 
deciding, using the properties of the time series, 
which of the above statistical methods is more 
likely to give a good mathematical model for the 
problem. 

We show in figure 4 some sample rnles for 
selecting which of the above dynamical systems is 
more likely to give us a good mathematical model 
for the given time series. 

We also give in figure 5 some sample rnles of 
"Expert Module 3 ". This is the part of the 
knowledge base that decides which is the "best" 
model for prediction using as input the set of 
models generated by Module 2. In this figure we 
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Rule 1: 

Rule 2: 

Rule 3: 

Rule 4: 

Rule 5: 

Rule 6: 

Rule 7: 

Rule 8: 

Rule 9: 

IF 
THEN 

IF 
THEN 

IF 
AND 
THEN 

IF 
AND 
THEN 

IF 
AND 
THEN 

IF 
AND 
THEN 

IF 
AND 
AND 
THEN 

IF 
AND 
THEN 

IF 
AND 
THEN 

Time series = smooth 
Type_ Method = regression 

Time_ series = cyclic 
Type_Method = complex 

Type_Method = regression 
Tendency= linear 
Type_Model = linear_regression 

Type_Method = regression 
Tendency = non _linear 
Type_ Model = quadratic _regression 

Type_Method = regression 
Tendency= exponential 
Type_ Model = logarithmic _regression 

Type _Method = complex 
Seasonal_Part = simple 
Type_ Model = brovm 

Type_ Method = complex 
Seasonal_Part = simple 
Explanation = ad_ hoc 
Type_Model = trigonometric_least_squares 

Type_ Method = complex 
Seasonal_Part = regular 
Type_ Model = pmep 

Type_ Method = complex 
Seasonal Part = difficult 
Type _Model = autoregression 

Figure 3.- Sample rules for the selection of the statistical mathematical models 
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Rule 1: 
IF Time series= smooth all THEN Type_Method = continuous_one_dim - -

Rule 2: 
IF Time_series = cyclic_part THEN Type_ Method = discrete_ one_ dim 

Rule 3: 
IF Time_ series = cyclic_ all THEN Type_Method = continuous_two_dim 

Rule 4: 
IF 

Rule 5: 
IF 

Rule 6: 
IF 

Rule 7: 
IF 

Rule 8: 
IF 
AND 

Rule 9: 
IF 
AND 

Rule 10: 
IF 
AND 

Rule 11: 
IF 
AND 

Rule 12: 
IF 
AND 

Time _series = cyclic_ chaotic AND Number variables = three 
THEN Type_ Method = continuous _three_ dim 

Time_series = cyclic_chaotic AND Number variables= two 
THEN Type_Method = discrete_two_dim 

Time_series = cyclic_chaotic AND Number variables= one 
THEN Type_ Method = discrete_ one_ dim 

Type_Method = continuous.:::_one_dim AND Tendency= non_linear 
THEN Type_Model = logistic_differential_equation 

Type_Method = discrete_one_dim AND Tendency= non_linear 
Seasonal_part = simple THEN Type_Model = logistic_difference_equation 

Type_Method = continuous_two_dim AND Tendency= non_linear 
Seasonal _part = simple THEN Type_ Model = lotka _ volterra_ differential_ eq 

Type_Method = discrete_two_dim AND Tendency= non_linear 
Seasonal_part = simple THEN Type_ Model = logistic_ delay_ difference_ eq 

Type_Method = discrete_two_dim AND Tendency= non_linear 
Seasonal_part = regular THEN Type_Model = lotka_volterra_difference_eq 

Type_Method = continuous_three_dim AND Tendency= non_linear 
Seasonal_part = regular THEN Type_Model = lorenz_differential_equation 

Figure 4.- Sample rules for the selection of the dynamical systems mathematical models 
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Rule 1; 
IF r2>r2 2 I AND tb2 2". ta, AND tc2 2". ta 

THEN Result= M2 

Rule 2; 
IF r 2 > r 2 1 2 AND tbl 2". ta, 

THEN Result= M 1 

Rule 3; 
IF r2>r2 3 2 AND tb3 2". ta, 

THEN Result= M3 

Where the mathematical models and the statistics are: 

M3: 

r 1
2 = coefficient of regression of M 1 

tb1 = b1/sb1 = t student value ofb1 

ri2 = coefficient ofregression of M2 
tb2 = b2/sb2 = t student value of b2 
tc2 = c2/sc2 = t student value of c2 

r/ = coefficient ofregression of M3 
tb3 = b3/sb3 = t student value of b3 

s = standard deviation 
ta,= critical value of the t student distribution 

Figure 5.- Sample rules of Expert Module 3 for deciding which is the best regression model 

show rules to decide only between regression 
models, but Module 3 has many more rules to 
consider all the kinds of models mentioned above. 

4. Use of the Intelligent System 

We show in figure 6 a sample input/output of 
the use of Expert Module 2 to give an idea of the 
performance of the Intelligent System. In this figure 
we show the result of applying the. new algorithm 
for discovery of the best model, for a particular 
example of a time series of oil prices for Mexico. 
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5. Comparison with Related Work 

There has been some work recently in the area 
of numerical law discovery,. but much of the 
research in Machine Leaming is in other areas such 
as induction [8]. We think that this is mainly 
because "discovery" is a more difficult kind of 
"learning". However, we can state that automated 
mathematical modelling is very important for many 
domains of application for obvious reasons. For 
example in the engineering and financial domains is 
critical to obtain mathematical models for the 
problems, to be able to understand them and also to 
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IDIMM2: AN INTELLIGENT SYSTEM FOR DISCOVERING MATHEMATICAL 
MODELS FOR FINANCIAL TIME SERIES PREDICTION COMBINING 
DYNAMICAL SYSTEMS AND FRACTALS WITH ST A TISTICS 

What is the name of the file containing the time series? 
>oil_prices.txt 
What is the general form of the graph of the time series? 

(s) smooth 
(c) cyclic 
(d) don't know 

>c 

What is the tendency of the graph of the time series? 
(l) linear 

>n 

(n) non-linear 
( e) exponential 
( d) don't know 

Do you consider the seasonal part of the time series? 
(s) simple 
(r) regular 
(f) difficult 
( d) don't know 

>f 

What type of explanation do you want for the model? 
(a) ad_hoc 
(t) theoretical 
( d) don't matter 

>t 
THE BEST MATHEMATICAL MODEL FOR PREDICTION CONSIDERING 
THE CONDITIONS AND PROPERTIES GIVEN AS INPUT IS: 

11 Y(T) = 18.74 + l.03Y(T-l) + 0.28Y(T-1)"'2 11 

THIS IS A FIRST ORDER DIFFERENCE EQUATION THAT CAN BE CONSIDERED A 
NON-LINEAR DYNAMICAL MODEL FOR THE GIVEN PROBLEM 
Do you want an explanation of why this is considered to be the best mathematical model? 

(y) yes 
(n) no 

>n 
Do you want to make another consultation? 

(y) yes 
(n) no 

>n 

Figure 6.- Sample input/output of the use of Expert Module 2 
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be able to predict their future behavior. This is why 
we consider that more research in this area is very 
important. 

Similar work with respect to Machine Leaming 
can be found in a paper by Mou let [ 6], however the 
approach to model discovery is different to ours 
(this can be seen from the heuristic method by 
Moulet). Also in a paper by Rao [7] we can see a 
method for model discovery for engineering 
domains, but also with a different approach to ours 
(his approach is similar to "clustering"). Also, there 
is another very important difference with other 
authors, in the kind of mathematical models that we 
are considering for our intelligent system. We are 
considering non-linear mathematical models from 
the theory of Dynamical Systems and not only 
linear regression models like other authors. In this 
paper we have successfully generalized our 
previous work on this matter [2], by considering 
this type of non-linear models. 

6. Conclusions 

We have developed an intelligent system for the 
domain of financial time series prediction. The 
system discovers mathematical models for a given 
financial time series using a combination of 
techniques from AI, Dynamical Systems, Fractal 
Theory and Statistics. This intelligent system can 
be used to find the best mathematical model for a 
financial time series, and then the model can be 
used to predict future values of the time series. 
Accurate prediction is of great importance in the 
areas of finance, economics, management and 
accounting for obvious reasons. Our intelligent 
system can make more easy the job of 
mathematical modelling and prediction in all of 
these areas. 

The intelligent system can be improved in the 
following ways: 

1. - Build a better user interface so that it can be 
used more easily 

2. - Provide a larger class of mathematical models 
that the system can explore to find the best 
model. 
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We are planning to work along this lines in the 
near future. 
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OPTIMAL MIXTURES OF CLASSIFIERS FOR 
FINANCIAL DISTRESS PREDICTION 

Ignacio Olmeda 

Dpto. de Fundamentos de Economia e 
Historia Econ6mica. 

Universidad de Alcala 

Alcala de Henares 28802 (Madrid) - SPAIN 

Abstract 

In this paper we propose a method for 

combining classifiers in an optimal way. We 

pose . the problem of finding the optimal 
combination as an optimization problem 

(solved by an Evolutionary Programming 

algorithm) in which one desires to minimize 

the expected cost of misclassification. We show 
that the mixtures obtained are superior against 
any of its constituents on the problem of 

bankruptcy prediction. 

1. Introduction. 

Financial agents are increasingly interested 
in the use · of Advanced Computing 

Technologies (ACT's) such as Artificial 

Neural Networks, Genetic Algorithms or 
Machine Learning, for modelling and 
forecasting purposes. The reason for this is 

quite obvious, if these "high-tech" tools were 
truly more powerful, the competitive 

advantage from using them would be decisive, 

at least until these technologies were used by 
any agent so that differential benefits were 

fully arbitraged. The number of reported 
successful applications of these technologies 
has been so high that a "folk-theorem" asserts 
their universality and superiority against any 

other procedures. 

Copyright <!:> I 995 Software Engineering Press 
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Alcala de Henares 28802 (Madrid) - SPAIN 

Comparisons on the forecasting accuracy 

of a particular ACT against alternatives in 

classification problems are relatively common 
in the literature. Most of these comparisons 

consider only a single competing model (for 

example a statistical one) and not the 

combination of two or more of them so that 
their appropriateness in a general forecasting 
context is not resolved. In this paper we 

propose to consider combinations of several 

methods and to formulate the choice of the 
optimal mixture as an optimization problem 

which can be solved by means of appropriate 
algorithms (such as Evolutionary 

Programming). We will also show that 
although a particular technique can be near 

optimal (under a forecasting criterion) when 
compared against the others, a combination of 

them generally provides better results. 

2. Method proposed. 

From a Decision Support Systems (DSS) 
perspective an optimal system may not be an 

individual model but the combination of 

several of them. In fact, this is the usual way 
to proceed in order to evaluate projects in 
many financial contexts: the opinions of a 
comitee of human experts ( each of them 
representing a particular and relevant aspect of 
the problem) are aggregated to give an optimal 
decision. As humans, different quantitative 
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models are more sensitive to specific aspects 

of information, and the problem is to exploit 
these asymmetries in an optimal manner. 

A simple way to combine forecasts is to 

take the opinion of the majority, for example 

predicting bankruptcy if three out of five 

models do. Though useful in certain settings 
(see Fernandez and Olmeda, 1995) this method 

has several drawbacks. For example, if the 

mixture is composed of too many inefficient 

and uncorrelated methods, it would perform 

worse than any single method. Also, it does 

not account for the different expected 

performance of the techniques when employed 

in particular circumstances (such as the 
plausibility of outliers). Finally, this method 

can not be used when the classes are 

continous. For these reasons, an additive 

procedure that permits a continous aggregation 

of forecasts should be preferred. Here we 

propose the basic framework for such a 

method. It can be extended in a number of 

ways but for reasons of brevity we only 

provide a general description. 

Let us suppose that we have n examples 

E; = (au, a;2, ... , aw c;) completely 

characterised by the values of their k attributes 

and which belong to class C;. Also, suppose 

that we have m classifiers and let Pii be the 

prediction that classifier j makes of example i. 
Whithout loss of generality we can assume 
only two classes (failed and non-failed banks) 

so that c;, Pii E {0,1} for all i,j. Let P; = 
J(Emi=P•i Pii - 0) be the combined prediction of 

example i, where ai is the weight assigned to 

method j, 0 is a confidence level and I is the 

Heaviside function. Let o; be the associated 

cost of prediction: 

e1 if P; > C; 

o; = e2 if c; > P; 
0 othenvise 
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where e, and e2 can be considered the costs of 
Type I and II errors, respectively (here we 

will suppose e1=e2=l). The problem of 
finding an optimal mixture of classifiers can be 

formulated as finding the optimal combination 

of weigths ai that minimizes the total costs of 

misclassification. Obviously, since this 

combination should be established ex-ante, the 

most we can do is to find an optimal mixture 
which minimizes the expected costs of 

misclassification. A very convenient way to 

estimate the expected performance of any 

particular method consists on dividing the 

training data (N) into v equal subsamples of 

size N, estimating the model using N-nv 

examples and predicting the remaining Ilv ones 

(vjold cross validation) [Stone, 1974]. This 

procedure is repeated for each of the v 

subsamples, and the mean prediction error is 
computed. Instead of using the cross validated 

error as a proxy to the expected error, we 

propose to consider the total error along the 

whole cross-validated set (N·v examples), 

since this assures not only an adecuate 

generalization but also an a,cceptable learning. 

For this reason, the mixture model could be 

suboptimal for some of the cross validated 
subsets though its performance should be 

globally optimal. With the above notation the 

problem becomes: 

min" o = E";=I D; 
s.t. P; = l(Emj=Iaj Pij - 0), i=l,2, ... N-v [1] 

Other extensions (for example, a subjective 

measure of confidence) can be easily 
introduced in [1] as restrictions, leading to the 

minimization of the cost function with a 

penalty term for violation of the constraints. 

Since Pi is a nonlinear (threshold) function, 

it is expected that gradient based methods may 

have some problems. There are many different 
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ways to solve [l] but in this paper we propose 
to employ a classical Evolutionary 
Programming (EP) algorithm (see Fogel, 1992 
and references therein). 

Specifically, let a = (a1,a2, ... ,am) be a 
vector of weigths, a standard EP algorithm 

follows the steps: 

1.- Take an initial population of s vectors ak 

randomly taken on an interval [a,b]m. 

2.- Evaluate the fitness of each of these 

individuals (oJ. 

3.- Add a multivariate gaussian vector ii -
N(0,G(oJ) to each ak, being G(oJ 

proportional to oi. The vector ak+s = 
a~+ Ii is called an offspring of individual 

ak. 
4.- Evaluate the fitness of each offspring. 

5.- For every ak, k = 1, 2 , ... , 2s, select 
randomly h competitors from the 

population and compare their fitness. If the 

fitness of ak is smaller than its 
competitor's assign it a win. 

6.- Select the s individuals with more number 
of wins to generate a new population. 

7. - If the termination criteria are not fulfilled 

go to step 3. 

It should be noted that since the a 

coefficients are not bounded it is possible that 

the optimal mixture could be a "corner" 

solution including only a single (best) method. 
Also, the best decision could consist on doing 

the opposite as a particular method dictamines 
(a negative a). In this paper, the search 
process is stopped when the number of 
generations exceeds one hundred (this takes a 

couple of minutes on a 486 66Mhz). 

Resuming, the proposed method follows 
the steps: 
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1.- Construct v samples of the training set.. 
Estimate each of the models on N-nv 
examples and predict the remaining nv 
ones. Select the model that minimizes the 
mean cross-validated error. 

2.- Using the EP algorithm select the optimal 

combination of models that minimizes the 
cost of misclassification along the N·v set 

of examples . 
3.- Re-estimate the models on the whole 

training set. 
4.- Use the weights obtained in 2 to construct 

the combined forecast. 

3. Application to the Bankruptcy Prediction 

problem. 

The problem of bankruptcy prediction is a 
clasical one in the financial literature. Since 
the seminal work of Beaver [1966] many 

different techniques have been used: regresion 

analysis [Meyer and Pifer, 1970], multivariate 

Z-score [Altman, 1968], multivariate logit 
[Martin, 1977], recursive part1t10ning 

[Frydman et al., 1985], etc. Recently, tools 

taken from the Artificial Intelligence area such 

as Artificial Neural Networks [Odom and 
Sharda, 1990] or Machine Learning [Messier 
and Hansen 1988] have been also employed. 

Here we propose to integrate some of the 

mentioned techniques to produce an optimal 
forecast. 

The models considered in this paper 

include a standard feedforward neural network 
with a single hidden layer trained with 
backpropagation (NN), two classical statistical 
techniques: Discriminant Analysis (DA) 
[Fisher, 1936] and Logit (Logit), and two 
recent extensions of the CART algorithm of 
Breiman et al. (1984): Multivariate Adaptive 
Regression Splines (MARS) [Friedman, 1991] 
and C4.5 (C4.5) [Quinlan, 1993]. Though the 
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last two methods are conceptually very similar, 
they differ both in their structure (the MARS 

algorithm uses truncated cubic polynomials as 
basis functions while C4.5 uses step functions) 
as well as in their performance criterion (the 

MARS algorithm minimizes a cross-validated 
error while C4.5 maximizes an information 
criterion), consequently they can provide 
different conclusions. We tried a variety of 
especifications for each of the models (number 
of basis functions for MARS, number of 
leaves for C4.5, number of hidden nodes for 
the NN, etc.), always using all the attributes. 
For reasons of brevity we give only the results 
for the best model found (the one which 
minimizes the mean cross validated error). 

From 1977 to 1985 the Spanish banking 
system suffered the worst crisis of its whole 
history, . affecting 52 % of the 110 banks that 
were operative at the begining of this period. 
The total cost of this crisis has been estimated 
in 12 billion dollars. In our first application 

we employ a database consisting on 66 of 
these banks (see Pina, 1989). We consider 9 
financial and economic ratios (working 
capital/total assets, sales/total assets, etc.) to 
evaluate the financial health. The ratios used 
for the failed banks are from the last financial 
statements issued before bankruptcy was 
declared while the data for non failed banks is 
from the 1982 statements. This database was 
randomly splitted into two sets, the training set 
consisted on 34 banks (15 failed and 19 non­
failed) and the testing set on 32 banks (14 
failed and 18 non-failed). The training set was 
divided into 6 different non-overlapping 
training and testing subsets, consisting on 28 
and 6 banks, respectively. The whole cross­
validated set contains 204 banks and it is used 
to find the optimal mixtures of forecasts. 

In Table 1 we have computed the number 
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of correct predictions, as well as the relative 
percentage of successes of each of the single 
methods and of the mixture model. We also 
indicate when a model is at least as good as 
any other on a particular set by a small 
asterisk <"J. As one can see, the mixture is the 
best model both in terms of in-sample fitting 
and out-of-sample prediction even though, by 
construction, it should only minimize the total 
error (last row). The second best model is 
NN, closely followed by logit and MARS. 

We will now employ all the examples of 
the training set to estimate the models and use 
them to make the predictions. Then, we use 
the optimal a values to combine these 
predictions. The best model (Table 2) is again 
the hybrid one, performing slightly better than 

NN (note that the improvement is obtained on 
the testing set). These models are followed by 
logit, MARS, C4.5 and finally DA. 

Now we will consider the data used in the 
well-known study of Odom and Sharda (1990). 
The training set consists on 74 banks while the 
testing set consists on 55 banks. The training 
set was divided into 9 different non­
overlapping training and testing sets of 66 and 
8 banks, respectively. The whole cross­
validated set contains 666 banks. As above, we 

employ these sets to choose the optimal 
configuration of each of the models as well as 
to find the optimal mixture. As one can see in 
Table 3, the mixture and the NN are the best 
models, exhibiting identical behavior both in­
sample fitting and out-of-sample forecasting. 
This leads to suspect that the method has 
chosen a mixture that only considers the 
predictions of the neural net but, as we shall 
see, this is not the case. 

Using all the examples of the training set 
to construct the models leads to some striking 
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results (Table 4). First of all it is noticeable 

that the expected performance of the models 

( estimated by the cross-validated error) is 
significantly higher (around 8 % for every 

model) than the actual one. This seems to 

indicate that the training and testing sets could 

be different. Second, and more important, this 

bias could have induced to finding suboptimal 

structures for some of the models. For 

example, the results obtained with the NN are 

slightly worse than the ones reported in the 

literature (see Odom and Sharda, 1990). In 

any case, the hybrid model is superior to any 

single method (in particular to the NN) and is 

capable of obtaining identical results as the 

best reported in other studies (Rahimian et al., 

1993). 

Copyright © 1995 Software Engineering Press 

4. Final Remarks. 

The method proposed is quite general and 
flexible enough to accomodate to a variety of 

situations. It is possible, though, that in certain 

situations it can be dominated by a single 

method. For example, when the distribution of 

the values of a certain attribute is different 

along the training, cross-validated and testing 

sets then it is expected that a particular method 

less sensible to that attribute would perform 
better. Other possible situations in which its 

performance can be poor are when there are 

outliers in the data or the testing set is linearly 

separable while the training set is not. Several 

extensions of the method for its application to 

time series prediction are under progress. 
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Table 1 - Cross-validated performance (Spanish Banks) 

I Method 
II 

DA I Logit I MARS I C4.5 I NN (8 hidd) I Hybrid I 
Training 90.00% 95.29% 94.11 % 84.70% 97.05% 97.64%. 

Test 61.76% 76.47% 79.41 % 79.41 % 79.41 % 82.35%. 

Overall 85.29% 9'2.15% 9 l.66% 83.82% 94.11 % 95.10%. 

Table 2 - Performance of alternative models (Sp~nish Banks) 

l Method I DA Logic MARS C4.5 NN (8 hidd) Hybrid 

Training 30 32· 31 29 31 31 

(88.23%) (94.12%) (9l.18%) (85.29%) (91.18%) (91.18%) 

Test 26 28 24 28 29 30· 

(81.25%) (87.50%) (75.00%) (87.50%) (90.62 % ) (93.75%) 

Overall 56 60 55 57 60 61. 

(84.85%) (90.91 %) (83.33%) (86.36%) (90.91 %) (92.42%) 

Table 3 - Cross-validated performance (American Banks) 

I Method II DA. I Logic I MARS I C4.5 I NN (3 hidd) I Hybrid I 
Training 92.39% 100% 98.65% 95.27% 100%. 100%" 

Test 89.19% 94.59% 93.24% 91.89% 97.30%. 91.30%. 

Overall 92.04% 99.39% 98.05% 94.89% 99.70%. 99.70%" 

Table 4 - Performance of alternative models (American Banks) 

I Method II D.A. I Logit I MARS I C4.5 I NN (3 hidd) I Hybrid I 
Training 69 74· 73 70 73 74· 

(93.24%) (100%) (98.64%) (94.59%) (98.64%) (100%) 

Test 40 43 42 43 44 45· 

(72.72 %) (78.18%) (76.36%) (78.18%) (80.00%) (81.81 %) 

Overall 109 117 115 113 117 119" 

(84.49%) (90:69%) (89.14%) (87.59%) (90.69%) (92.24%) 
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Abstract 

The main objective of this paper is to 
investigate how expert system technology can 
be applied to insurance applications to handle 
the knowledge intensive area of risk assessment. 
. We choose ''Adjusting of Marine Insurance 
Underwriting At Claim Point" AMUACP to be 
applied The investigation includes the 
following issue: A methodology to acquire 
knowledge from different sources, a knowledge 
representation, reasoning scheme and 
implementation of this determined scheme. 
During knowledge acquisition phase a model of 
expertise following KADS methodology was 
built to check the consistency and completeness 
of elicited data, and to facilitate the mapping of 
these data of expertise on some structure. In 
order to describe how the conceptual model is 
realised in the underlying hardware and 
software, a design model was built by using the 
structure preserving design method. The system 
is implemented in LPA Prolog running on 
PS/VP under DOS 5. 

1- INTRODUCTION 

Insurance underwriting is a combination of 
business and risk assessment operations. Risk 
assessment in insurance underwriting has long 
been a profession speciality. Some common 
problems affect the insurance industry . in the 
underwriting domain, this problems can be: ( 1) 
Shortage of skilled underwriting staff. (2) More 
numerous guidelines changes in response to 
external pressures and to rapid business cycles. 
(3) Decreasing underwriting expertise in 
different company locations as response to 
decentralisation approach. ( 4) Additional data 
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requirement and increasing underwriting 
complexity. 
Insurance companies have found that expert­
system technology provides very significant 
leverage in building systems to handle the 
knowledge-intensive area of risk assessment [5]. 
Many underwriting expert systems has been 
built. For general insurance underwriting 
[5],[10],[l l]and life insurance[! ],[4],[8]. 
The first section of this paper includes 
introduction. The second section includes the 
domain problem description. In third section 
are described how KADS methodology is 
applied. The fourth section shows how the 
conceptual model is implemented . 

2- PROBLEM DESCRIPTION : 

Marine msurance covers marine 
transportation risks. This high risk affects 
importation of goods. For this reason the marine 
underwriting at claim point was chosen. The 
marine assurance consists of two main 
phases:underwriting phase and claim handling 
phase. 

2.1 Underwriting Phase. 

The underwriter assess the exposure of risks 
for each marine cargo case. The risk assessment 
requires a highly qualified expert to judge the 
accuracy of given information and consider 
default values for missing information, he takes 
into consideration the following factors : 
. The cargo type and its risk of vice inheritance, 
the suitability of packing to cargo type. 
.The vessel building year, flag and its suitability 
to cargo type and cargo packing. 
.Any potential geographic dangereuos area, war 
and strike risks which may arise during the 
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voyage depending on the voyage route. 
. Condition of the policy which includes : applied 
general clause type A or B or C [7],[9] to define 
the covered risks, the additional coverage 
clauses as war, or strike clause, reshipment 
clause, and extension of cover until the 
installation of cargo in case ofmachinary. 

• .Cover limit to define the duration of the policy, it 
can be warehouse to warehouse, warehouse to 
port of destination ,port of shipment to 
warehouse,port of shipment to port of 
destination . 
. The loss ratio of the client and his position. 

Depending on the study of these factors the 
underwriter takes a decision which can be 
accepting risk with normal rate, or accepting isk 
with extra rate or refuse to cover the risk. 

2.2 Claim handling phase. 

If an accident occurs, the client send a claim 
notice to the insurance company, a claim adjuster 
expert examines the accident circumstances, all 
related documents ( port authorities report, vessel 
manifesto, bill of landing, cargo invoices), and 
damage appearance to define the claim direct loss 
cause and write a claim survey report . The claim 
survey report is checked against the policy terms 
and conditions to apply marine assurance norms, 
and define the discrepancies between the policy 
conditions and the circumstances of the accident 
as described in the survey report . These 
discrepancies may be one or more of the 
following: ( 1) Cargo type or Cargo packing or 
both are not identical. (2) Vessel information is 
not identical. (3) The accident place is not in the 
ordinary route of the voyage. (4) The accident 
date is not within the duration of the policy(5) 
Cause of accident is not covered by the policy. 
Depending on this study the claim adjuster take 
one of the following claim decisions : 
. The cause of the accident is covered by the 
policy conditions and the claim must be paid. 
. The cause of the accident is excluded by the 
conditions of marine policy and the claim is 
refused. 
.Pending on the client degree and the 
discrepancies discovered the claim adjuster 
expert may refuse the claim or send the case to 
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the underwriter to adjust the policy information, 
complete any missing information and a new 
cycle of risk assessment is performed. 

In order to acquire this specific knowledge, we 
examine the existing application systems, 
manuals, regulations, policy statements and other 
written material representing compiled expertise 
of the organisation, other knowledge are acquired 
by structured interviews with marine underwriter 
expert. 

3 AMUACP Model of Expertise. 

Model of Expertise of KADS(Knowledge 
Acquisition and Design Structuring [2],[6] 
method is applied . The role of model of expertise 
is defining the functional specification of the 
problem solving part in the construction of 
knowledge base systems, it consists of the 
following layers: Domain knowledge,inference 
knowledge,and task knowledge: 

3.1 Domain knowledge. 

It represent the static knowledge which 
describes a declarative theory on application 
domain, it consists of concepts,properties,and 
relations. Figure (1) represent a part of domain 
kmowledge schema of AMUACP system 

3.1.1 Concepts and properties. 

As a result of the analysis of AMUACP system 
domain, 22 concepts has been identified related 
to risk assessment and claim handling operations. 
Each concept has properties which are defined 
by their names, value types and possible values 
which can be a single value or a list containing 
enumeration of values. These concepts are 
divided into three categories, as follows: 
-Concepts holding data extracted from company 
marine database, such as policy concept, vessel 
concept, voyage concept, client position concept, 
and vessel route table concept. These concepts 
have 43 properties. 
-Concept holding claim data captured by the 
user during consultation session. This concept 
has 23 properties. 
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-Concepts holding some acquired marine 
underwiting knowledge which are used by the 
system to define the decision taken , as war zone 
concept, geographic dagereous areas concept, 
cargo' group concept, cargo concept, cargo 

packing rate concept, vessel-cargo-extra-rate 
and coverage condition concept. These 
concepts have 37 properties. 
-Concepts holding intermediate results generated 
by the system during consultation sesion as 
cargo-pack claim decision concept, duration­
place-cover-claim decision concept, loss-direct­
cause-claim decision concept, client-position­
claim decision concept, adjusted-policy­
information concept and marine-norms 
concept. These concepts have 59 properties. 

3.1.2 Relations : 

In AMUACP system, realtions consists of one 
relation between concepts which relates cargo 
with its cargo group and 12 relations between 
property expressions. Relations between 
expressions are semantically divided into: 

. Comparison relations which compare the 
vessel , cargo , packing , cover limit, terms and 
conditions properties of the policy and voyage 
concepts against claim concept properties in 
order to discover the discrepancies. 
.Adjusting policy information relation by the 
claim information. 
.Specification of underwriting marine norms 
relations to be applied on the adjusted policy 
information properties based on vessel 
properties concept, cargo properties concept, 
route table properties concept and clause 
application properties concept. 

.Final risk assessment decision relation. 

This relation match the norms of marine 
underwriting with properties concept of 
adjusting policy information and policy 
information. The result of this match is one of the 
different available system decision. 

Part of Schema of Domain Knowled2e of AMUCACP system 
Primitive Name Description definition 

1 Concept oolicy main information of oolicy 
2 Concent vessel description of vessel 
3 Concept voyage defintion of voyage of vessel 
4 Concept route table defintion of different paths of the vessel 

timetable 
5 Cconcept war-zones defintion of the war-zone in the world 
6 Concept Geo.-route table defintion of maritime geographic 

dangerous areas in the world 
7 Concept wm route table working concept to hold the alternative 

route paths of the vessel for the voyage 
8 relation cargo is-a-kind-of cargo inherent all properties of cargo 

between cargo group group 
Concept 

9 relation determination of compare cargo packing in policy against 
between claim decision based claim if not equal compare packing in 
expressions on cargo,packing claim properties with properties of cargo 

information and cargo group concepts. 
10 relation determination of compare vessel in policy against claim 

between claim decision based if not equal compare vessel in claim with 
expressions on vessel properties of vessel concepts 

information 
Figure 1 Part of Schema of Domain Knowledge of AMUCACP system 
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3.2 Inference Knowledge: 

Inference Knowledge is defined in terms of 
inference steps and roles.An inference step is 
defined through its name, an input/output 
specification and a reference to the domain 
knowledge that it uses. 
Figure(2) depicts the inferance structure of 
AMUACP system. IT consists of four inference 
steps namely: Compare, change, match and 
specify. The following paragraphes describe the 
function of each inferance steps. 

3.2.1 Compare Inference Step: 

The main function of this inference step is to 
compare between policy information against 
claim information in order to determin 
descripancies. This comparison includes: 
-comparison between policy vessel and claim 
vessel 
-comparison between policy cargo, packing and 
claim cargo pack. 
-comparison of voyage, cover limit policy 
information and claim place of accident,date of 
accident. 
-comparison between the term and condition of 
the policy, inherent vice of policy cargo type 
and the direct cause of the claim. 

POUCYJNr. 

CLAIM DltCIBION 

-Definition of final claim decision depending of 
found discrepancies,policy exclusion and client 

position. 
3.2.2 Change inference step 

The main function of this inference step is to 
adjust the policy information by the detected 
descripances. 

3.2.3 Specify inference step 

The main function of this inference step is to 
specify marine norms for vessel category, cargo 
packing , application clause, coverage condition, 
additional coverage condition to be applied on 
adjusted policy information. 

3.2.4 Match inference step 

The main function of this inference step is to 
match the norm of marine underwrting specified 
with the policy information. The result of this 
match, is one of the following decision refuse 
claim or accept the claim with paying extra 
premium related to determined descripances. 

CLAIM 

FIGURE 2 INFERENCE STRUCTURE OF AMUACP SYSTEM 
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3.3 Task knowledge : 

It contains knowledge about how elementary 
inferences can be combined to achieve a certain 

goal. The tasks knowledge specification of 
AMUACP system is shown in Figure (3). 

Task ADJUST MARINE UNDERWRITING AT CLAIM POINT 

Goal define claim decision , final assessment decision in case of reassessment of risk. 

Control terms claim decision, reassessment final decision 

Task structure 

Obtain claim information. 

if policy <> claim exit 

Generate Wm route 

Compare_entities(policyinf,claim- >discrepancies, claim decision) 

if final_ decision <> 1 and client degree= 1 

then claim decision= reassessment of risk. 

If claim decision <> reassessment of risk 

then display decision 

else 

Adjust_policy(policyinf,claim,discrepancies=> adjusted _policy_ inf) 

Specify_norms(adjusted_policy_inf, marine underwriting system model > 

marine risk assessment norms). 

Match(adjusted_policy inf,marine risk assessment norms ->risk-ass- final decision). 
Figure 3 AMUACP task structure 

4- Implementation of AMUACP expert 
system. 

Conceptual model is transformed to design 
model by using structure preserving design 
method which transform the elements of 
conceptual model to identifiable computational 
constructs. The following subsection map the 
conceptual model to our design model. 

4.1 AMUACP Knowledge base 
representation. 
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Concepts as represented in domain layer are 
mapped to Prolog Database and relations are 
mapped to Prolog rules. 

4.1.1 Concepts: 

The representation of concepts is defined 
depending on the computation requirements of 
the input/output part of the inference step and 
for serving the explanation module. In 
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AMUACP system we have two types of 
representation as follows : 

Static instances: It is used to represent some 
kind of knowledge in a form of table. 
Concept (property 1, property 2, property3, ... , 

propertyn). 
This representation is used for : 

(1) Concepts whose properties should be 
extracted from the company data base, for 
example the policy concept, it is represented as 
follows: 
Policy (Policy_ no, client, cargo, packing,issue _ 
date ,cover_limit, app_coverage, ins_rate, 
ext_ ves _ rate, war_ strike _rate,ext_ rate, 
insured_amount). 
(2) Concept holding some kind of knowledge 
representing marine underwriting norms to be 
used in order to define a certain decision from a 
number of decisions. for example cargo group 
concept is represented as follows : 
Cargo group (group name, inherent vice list, 
suitable packing, unsuitable _packing) ; 

Dynamic instances : This representation is 
used for concepts whose properties are obtained 
from the user or generated by the system and 
asserted in the dynamic data base. These dynamic 
instances have two presentations: 

Presentation 1: Implementation for concepts 
whose its property are obtained from the user. 
Property(Concept name,Value) 

Presentation 2 : for concept generated by the 
system and whose its properties are accessed 
dependently in same time are presented as 
follows: 
Concept (property 1, property2, propert ... 
propertyn) example of concept presented by this 
implementation is vessel_ claim_ decision 
(policy_ no, claim_ dee, ass_ cause, refuse cause, 
accept cause, final) 

4-1-2 Relations. 

Relation between concepts. 
Relation between concepts is implemented in 

Prolog data base as follows: 
Is_a_kind_of (concepl, concept2), which means 
concept! inherits all properties and relations from 
concept2 
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Relation between expressions. 
Relation between expressions are grouped 

according to the semantic of the relation and the 
conclusion part . The conclusion part of a 
relation is the properties of one concept, whereas 
the condition part of a relation may be the 
properties of more than one concepts. This 
grouping of relations between expressions is 
performed in order to establish a clear mapping 
between inference step and the relation between 
expression . Examining AMUACP relations, it 
was found that these relations can be classified 
into two types: 
- the first type of relations is the one in which 
properties of the concepts in the conclusion part 
are instantiatied with defined values. Example of 
this type cargopack _claim_ decision relation. 

The following Prolog coding represents an 
example of this type : 
('Refuse_ claim: 'Unsuitable _packing: 0, 1) :­
cargo _pack(Cargo _ c, Cargo _p, Cgroup _ c, 
Cgroup_p), Cargo_c == Cargo_p, 
\+(Packing_p == Packing_c), 

cargo _group(Cgroup _ c, Grsuitable _p, 
Grunsuitab _p), 
memb(Packing_ c, [Cunsuitab _p ]) ; 
(cargo _group(Cgroup _ c, _, Grsuitable _p, 
Grunuitab _p), 
memb (Packing_ c, [Grunsuitab _p ]) ) ; 
(memb('Other _ Packing: [Grunsuitab _p ]) ), 
\ + (memb(Packing_ c,[Grsuitab _p ]) ). 
-The second type of relations is the one in which 
the properties of the concepts in the conclusion 
part are instantiated with values of properties of 
other concepts . 
The following Prolog coding represents an 
example of this type: 
cargo _packing_ clause _rate (marine_ norms, 
Value):-
cargo _pack_ claim_ decision (P 1,_,_,_, 

Refuse_ cause,_,_), client _pos _claim_ decision 
(PI, _,Final_ as_ cause,_), 
(Refuse_cause == 'different_cargo_sam_grpJ; 
(Refuse_ cause_ =='different _packingJ), 
Fina/_as_cause == 'reasssessment' , 

cargo _pack _spec _rate(Adj_ cargo,Adj_packing, 
App,Cunsuitab _p), 
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I* check adjusted packing not a member of 
unsuitable packing *I 
\+(memb(Adj_packing,[Cunsuitab _p])), 
App==~' -> 

I* Specfy cargo _packing_ clause _rate_ A */ 
cargo _packing_rate(Adj_ cargo,Adj _packing, 
Value,_,_,_), 

4-2 Inference layer implementation. 

The inference layer describes the relation 
between roles and inference steps, for each 
inference step we need : 
-Role to represent the input/output data structure, 
-A representation of domain knowledge, 
-An algorithm embodies the method for realising 
the inference and specifies the control [12]. 

4-2-1 Role implementation. 

Each role is mapped into a subset of the domain 
layer , so they are implemented as a Prolog data 
base corresponding to its domain layer subset . 

4-2-2 Inference step implementation. 

Each inference step is implemented as a Prolog 
procedures which gets data from input role and 
asserts result in the output role . An inference 
step applies a set of relations in order to achieve 
its inference function. 

4-2-3 Task layer implementation 

The task layer is implemented as a Prolog code 
which maps exactly to the task knowledge 
depicted on figure(3). 

4-2-4 AMUACP user interface: 

The user interface of AMUACP system has the 
following characteristics: 
-Ease of use of the system without previous 
computer knowledge. The user starts the 
consultation session by entring the claim 

t description data. This data arranged depending 
on the relative inportance in defining system 
decisions. The user interface is tailored to use the 
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user terminology. Used codes are selected from a 
prompt menu in interactive mode. 
. The system makes logical validation on the claim 
description data to avoid possible errors. If an 
error occurs the system display an error message 
and reaccept the erromeous data. 
. The system operations are made explicit to give 
the field expert the ability to trace the used 
system components. The system user can trace 
the reasoning path of the system. lntermidiate 
results are displayed and the user can redirect the 
path of the system by changing some 
parameters. For example if the system decision is 
reassesment of risk the user can change the client 
degree to change the taken decision. 
.The system has an explanation module. It helps 
the user to know why the system asks such 
questions,and how the system reach this 
conclusion. This happens by displaying a log file 
containing the path of the consultation session. 

5 Conclusion 

During the different phases of the application a 
verification process takes place to demonstrate 
the consistency, completeness and correctness of 
implemented system, this verification is 
established by testing of legal values for data 
entered by the user , verify the system by using 
some hypothetical cases that cover all the 
decision generated by the system and sample of 
data for 100 cargo types classified into twenty 
cargo groups extracted from the company 
database to be used by the system . The system 
proves its feasibility, optimality and success as a 
prototype. The implementation of this system 
proves the impact of applying modelling 
techniques specially for large system 
development process . The reusability of Kads 
interpertation models allow to build this model 
which can be used as an extention to the 
interpretation library for insurance risk 
assessment model elements . 
This expert system can be extended functionally 

to cover other cargo groups and cargo types, 
Enhancement of user interface is required to 
arabise the input screens of the system, displayed 
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conclusion of the claim decision, final assessment 
decision and the explanation given by the system. 

An interface must be established between the 
expert system and the company relational data 
base running on company mainframe in order to 
avoid redundancy and provides to the expert 
system an up to date container of factual data. 
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Abstract 

There is an increasing , need for credit decision 
making systems that can dynamically analyze his­
torical data and learn complex relations among the 
most important attributes for loan evaluation. In 
this paper we propose the application of a new 
machine learning algorithm, QLC, to the credit 
analysis of consumer loans. The algorithm learns 
how to classify a loan by minimizing the expected 
cost due to both credit investigation expenses and 
possible misclassification. QLC is built upon rein­
forcement learning. A dataset of actual consumer 
loans is used for evaluating the algorithm. The 
experiments reported show that QLC performs bet­
ter than other cost-sensitive algorithms on this 
dataset. 

1. Introduction 

According to a recent U.S. Banker survey amongst 
the 113 top U.S. banks [15], the most popular 
approaches for automated decision-making for all 
types of credit products are application scoring and 
on-line credit bureau scoring. These credit-scoring 
procedures refer to the evaluation of each applicant 
by models that are derived from statistical discrim­
inant analysis of the credit history of past appli­
cants [12]. The main drawback of this type of 
evaluation stems from the reliance of discriminant 
analysis on a subjective assignment of scores to the 
credit attributes of an applicant's profile. 

As also came out from this survey, more than 60% 
of the surveyed banks used judgemental - i.e. 
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non-automated - scoring. The most important 
factors in the adoption of credit decision-making 
software by banks are: understanding system 
requirements and understanding credit manage­
ment needs. In addition, a hindering factor in the 
deployment of current credit decision systems is 
their limitation in generating explanations when 
credit decisions are made. In contrast, the genera­
tion of explanations is a relatively easy task when 
judgemental scoring is used. 

Artificial intelligence technologies have been 
employed for the development of credit-scoring 
software systems that can meet the emerging needs 
and requirements [6, 12]. On the one hand, expert 
systems have the advantage of representing and 
reasoning about relations amongst symbolic 
objects. This facilitates the task of generating 
explanations about objects and about inferences on 
the relations amongst objects. The disadvantage of 
expert systems is that the relations embedded in 
their knowledge base are pre-defined and their 
maintenance can become a tedious task. The 
increasing complexity of loan instruments, the vol­
atility of the economic conditions and the impor­
tance of risk management in minimizing losses of 
loan portfolios impose the need for software with 
learning capabilities for dynamically analyzing 
various sources of historical data and capturing 
complex relations amongst the most important 
attributes for loan evaluation. 

On the other hand, neural networks are good for 
learning complex relations by using non-paramet­
ric modeling. However, neural networks are usu­
ally considered as black boxes because it is 
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difficult to understand how learning occurs within 
their architecture and it is hard to explain how par­
ticular decisions are made through the networks 
once they are trained. Furthermore, neural net­
works may suffer from slow learning rates. The 
limitation of neural networks in explanatory capa­
bilities is critical to their adoption for credit scor­
ing. This is because there are regulatory constraints 
that require explanations to be given to consumers 
whose applications for a credit product have been 
rejected [4]. 

In this paper we propose the application of a new 
machine learning method for the credit analysis of 
consumer loans. Most classifiers in machine learn­
ing are built with the aim of minimizing errors 
made when predicting the classification of unseen 
examples. In contrast, our method is based on the 
general idea that it is worse to classify a bad cus­
tomer as good than it is to classify a good customer 
as bad. Thus, classification errors may ensue differ­
ent costs depending on the type of error. These 
costs can be in nominal values or if they are not 
known they can reflect constraints on the percent­
age of cases erroneously identified to belong to a 
particular class. This asymmetry in costs is of par­
ticular importance to applications like credit analy­
sis where one class is comparatively rare and of 
special interest like loan defaults. Asymmetric mis­
classification costs may act as a focus mechanism 
for exploring the areas of the attribute space where 
the rare class is comparatively more common. 

In a classification process, in addition to the costs 
of classification errors there are also the costs of 
tests which are incurred as information about the 
attributes of an object is acquired for making a 
classification decision. For example, credit investi­
gation expenses are involved in the acquisition of 
information about the credit attributes1 regarding 
an applicant. When both types of costs are consid­
ered the problem of cost-effective classification 
amounts to identifying for each state of the classifi­
cation process an optimal sequence of tests (i.e. an 

1 In the sequel, the term test will be used for denoting a credit 
attribute. 
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optimal plan) for deciding among competing alter­
natives (i.e. classifications or additional tests). 

Our approach to cost-effective classification is 
built upon reinforcement learning. The latter is a 
dynamic optimization paradigm within machine 
learning [13]. It is used for learning optimal poli­
cies in state-space problem-solving tasks. A policy 
specifies for each state what action to perform next. 
During learning, the system receives a reinforce­
ment signal (a penalty or reward) after each action. 
The goal of the system is to find a policy that mini­
mizes/maximizes the expected reinforcement over 
all future actions. Although reinforcement learning 
is quite different from typical concept learning, 
when test and misclassification costs are taken into 
account credit analysis becomes a stochastic opti­
mization task. The goal of the task is to minimize 
the total cost of classification of each applicant. 

The remainder of this paper is organized as fol­
lows. Section 2 proposes a problem formulation 
that makes reinforcement learning applicable to the 
cost-effective classification task. Section 3 devel­
ops a clustering technique for enhancing the scale­
ability of reinforcement learning for this complex 
task. The whole algorithm is presented in Section 
4. Section 5 reports on experiments for evaluating 
the performance of the proposed algorithm. Asam­
ple of 1000 actual consumer loans granted is used 
for the experiments. Related and future work are 
discussed in Section 6. Conclusions are given in 
Section 7. 

2. Problem Formulation 

Consider a task where a case k is to be classified 
among m classes. There are n tests available each 
of which can be selected at any time but only once 
during a trial. The latter is defined as the sequence 
of tests ended by a classification. At each time t the 
set of possible actions At contains them classifica­
tions and the tests not yet selected in the current 
trial. At the start of each trial this set has size 
m + n . When the agent selects a test it pays a cost 
which may be a function not only of the selected 
test but of prior tests as well. In medical diagnosis 
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for example, a set of blood tests shares the com­
mon cost of collecting blood from the patient. This 
common cost is charged only once, when the deci­
sion is made to do the first J:>lood test. The result of 
each test i is denoted by x'. Having selected test i 
fQr case. k, the agent obsetves the value of the test, 
x' e x' , which has a distribution conditional on 
~ history of obsetvations prior to time t. The 
agent must then decide which action to perfonn 
next. It may choose to stop further testing and 
make a classification of the case to class j , 
j e [ 1, ... , m] . However, if the predicted class is 
not equal to the actual class of the case, the agent is 
penalized by the cost of the error made. This cost is 
defined in the classification cost matrix. Each ele­
ment c. . of that m x m matrix gives the cost of 
predictit~ that a case belongs in class j, when it 
actually belongs in class i. The agent repeatedly 
goes through cases in order to learn a policy that 
minimizes in the long run the cumulative cost over 
all cases. 

This problem is characterized by imperfect state 
infonnation since the state variables referring to 
the actual classes cannot be obsetved directly. 
Instead, the agent gets infonnation about them 
through the process of testing. For each case k we 
define the vector of obsetvable history at time t as 

h, = l x~, 4,. • •) (1) 

The vector consists of the obsetved values of the 
tests perfonned prior to time t for case k. At the 
start of each trial (i.e. new case) the dimension of 
the vector is initialized to zero. As a new obsetva­
tion is added at each stage of a trial, the dimension 
of the vector increases accordingly. The probability 
distribution of the history vector can setve as a suf­
ficient statistic that can refonnulate the original 
problem with imperfect state infonnation into a 
problem with perfect state infonnation. Thus, the 
state of the refonnulated control problem is defined 
as 

(2) 
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where 0 is the unknown parameter of the distribu­
tion. The perfonnance criterion of the control prob­
lem is: 

where 'Y with O < 'Y < 1 is the discount factor. The 
cost function in (3) shows the dependence of the 
cost on prior tests as well as on the currently 
selected test. The policy is defined as 
1t: H 1 ➔ P (A 1) mapping the space of obsen:able 
histories into probability distributions of actions. 
The stochastic nature of the policy enables explo­
ration of the state and action space for overcoming 
the problem of simultaneous identification of 0 
and control via 7t. We defer further analysis on 
how the policy probabilities P,c {alh,} are calcu­
lated until the next section where a generalization 
scheme is developed. The probabilities will then be 
defined upon the generalization space. 

The agent's objective is to choose a policy 1t* 

such that: 

Although, Dynamic Programming (DP) equations 
can theoretically be written for the optimization 
problem in (4), the assumptions for prior knowl­
edge and the computational intractability of a DP 
algorithm, leads us to examine Q-learning as an 
alternative for this problem. 

Q-learning is a reinforcement learning algorithm 
that is based on an asynchronous, stochastic 
approximation version of the DP equations [16]. 
Thus, in our problem the Q-learning equation can 
be written as: 

Q,+ 1 (z,, a,) = (1 - 13,) Q,(z,, a,)+ 

j31 [c(h1,a1) +yV,(z,+ 1)] 

where 

(5) 
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(6) 

It should be noted that almost all of the theory of 
Q-learning assumes look-up table representations 
of the Q-value function. Such representation is not 
suitable for our problem for two reasons. First, the 
state of the system in (2) is a vector of real-valued 
variables. The learning algorithm should be able to 
generalize over the continuous state-action space 
and over the training dataset in order to perfonn 
well on previous unseen cases in the testing data­
set. Second, the policy rules of our problem repre­
sent a mapping more complicated than the one of 
the policy rules in typical Q-learning. The general­
ization scheme should be able to accommodate 
such mapping. In the next section we develop a 
clustering technique suitable for tackling the issues 
associated with generalization in our problem. 

3. A Clustering Technique for 
Generalization 

The technique is based on the idea that as the agent 
explores the input (Z, x A 1) and output (9t) 
spaces of the task, clusters are fonned for each 
action from instances of points on the Q-surface. 
Each time a new instance is created from a history 
vector h, ·the clusters of each action a e A are 
searched in order to estimate the conditional p:C,ba­
bilities of selecting each of the clusters of action a 
given h,. The Q-value of (z" a) can then be esti­
mated from the Q-values of the clusters of action a 
using the conditional probabilities as weights. The 
action with the minimum Q-value is selected for 
the instance. After updating the Q-value of the 
instance via the Q-learning equations (5) and (6), 
the agent should also update its memory with the 
instance accordingly. We next give definitions of 
cluster and instance and then formalize the above 
procedures. 

3.1 Definition of Cluster and Instance 

A cluster i of action a denoted as c; is repre­
sented as a 3-tuple: 
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(7) 

where Z; is a vector z. = [z.1, z.2 z. ] 
• l l l ' • • •' in 

with each zij, j e [ 1, ... , n] , defined as 

(8) 

That is, ~ ij is the probability of test j displaying the 

value .:I; given action a and the parameter of the 

distribution SF In (7) Qi is the Q-value of the 

cluster and n i is the number of instances that have 

been aggregated in the cluster. 

An instance at time t denoted as s 1, is represented 
as 

(9) 

where h, is the history vector at t, a is the action 
th 

. t 
at 1s selected for the instance and QI is the Q-

value of the instance. Z, is a vector of probabilities 
defined similarly to (8), i.e. 

Suppose for the moment that each J is a discrete 
variable with r. number of values. Also, assume 
that the agent has beliefs in the fonn of a prior 
probability density on E) = [ 01, ... 0 nl . A prior 
density that is usually assumed in Bayesian analy­
sis is the Dirichlet density [1,2]. The posterior dis­
tribution of the probability z,. in (10) is also a 
Dirichlet density. Omitting sonie theoretical details 
we can estimate the distribution in (10) from 

(11) 

a, 
where N,j is the !1umber of times that when ~ction 

a, is selected, :J has the particular value J. and 
a, t 

N
1
. is the number of times that when action a is . t 

selected, :J has a value. 
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In the case that J is a continuous variable, it can 
either be discretized and treated as above, or one 
can apply Bayesian analysis for continuous distri­
butions (for example, see [l]). 

3.2 Q-value Estimation, Matching 
and Merging 

Suppose that instance s I is created from the cur­
rent history vector h1 . Selecting an action for s 1 
requires estimating for each possible action 
a e A1 the value of Q1(s1, a) from the Q-values 
of the clusters of action a . Since averaging over 
the Q-values of all clusters of an action involves a 
considerable amount of computation without nec­
essarily a payoff in learning, we choose to average 
only over the k-nearest neighbors. The latter are 
determined according to the Euclidean distance 
between the vector z, of s1 and the vector Zi of 
I 

a . 
c uster c i , 1.e. 

n 

d(Z1, Z) = L (z,'t - zi't) 
2 

(12) 

't = 1 

where the z,'t are estimated frorg (11) and zi't are 
the values stored in the cluster c i . The fonnula for 
Q-value estimation is: 

k 

Q/s,, a) = LP { c~ls,} • Q/c~, a) (13) 

i = 1 

where Q/c;, a) is the value stored in the Qi field 

of cluster c i . The first tenn in the sum is the prob­

ability that cluster c ~ is selected given instance s 1 . 

This probability denotes the policy for selecting an 

action in the space of clusters 

x,: H, ➔ p { CA'} . It is given by 

A, 1 c , name y 
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a a 
P{sdc) ·P{ci} 

1',P {s,lc;} • P { c;} 
j 

(14) 

The first tenn in the numerator of (14) is the proba­
bility of st having the particular history vector h1 
given cluster c ~ . This probability can be consid­
ered as a measure of how ;robable the values of h1 
in s I are, given cluster c i . It is approximated by 

(15) 

The second tenn in the numerator of (14) is the 
prior ;robability of any instance coming from clus­
ter c i . This probability is estimated by using a for­
mula suggested by Anderson and Matessa in their 
work on Bayesian analysis of categorization [1]. 
Thus, we have 

(1-c) + cna 
(16) 

where c is the fixed probability that an instance 

comes from a cluster, n i is the number of instances 

aggregated in cluster c ~ and n a is the number of 

instances aggregated in all clusters of action a . 

Merging of an instance with a cluster requires the 
following two conditions to be satisfied: (i) 
d (Z1, Z) < e1 and (ii) IQ,- Qil < e2 . If the two 
conditions are met then the instance is aggregated 
in the cluster by updating the fields of the cluster: 
zij = zij·n/(ni+l) +z1/(ni+l), 

Qi = Qi· n/ (ni + 1) +Q/ (ni+ 1) and ni = ni + 1. 

Similar conditions and operations apply when 
merging two clusters together. 

4. The Proposed Algorithm 

We assume that the dataset of the classification task 
has been split into a training set and a testing set. 
During learning the agent picks a case from the 
training set randomly without replacement and ini­
tiates a sequential decision process for the case, i.e 
a trial. During the trial the agent selects actions for 
making new estimates of the probabilities in (11) 
and updating the Q-values of its generalization 
space accordingly. When the agent selects a classi-
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fication the current trial ends and a new one starts 
for the next case. Whenever all the cases of the 
training dataset have been processed this marks the 
end of an epoch. A new epoch is created by repeat­
ing the above procedure for the whole training set. 
Learning stops when the average cost of classifica­
tion in the training set - total cost for the set 
divided by the number of cases in the set - is 
within £ between two consecutive epochs. The 
steps of the Q-learning with clustering (QLC) algo­
rithm for one trial are shown in Figure 1. 

Do: 

(i) Create an instance s
1 

from the current history h
1

; 

(ii) For each possible action a e A
1 

estimate Q
1
(s

1
, a) 

from its clusters; 

(iii)Choose with probability I; the action 
a

1 
= argminb [Q 1(s1

, b)] ; 

(iv) Apply action a
1 

and pay the cost c (s
1
, a

1
) ; 

(v) If a1 is a test, update the history and probability vec­
tors to h1+ 1 and z1+ 1 respectively; 

(vi) Update the Q-value of s
1 

by 

Q,+ 1 (s,.a1) = (1-~1)Q1(s,.a 1) + 

~,[c(s,.a) +yV1+e(s1+ 1)] 

where v,+e = minbQ,+e(s,+e, b) is the e-step 

lookahead value of s,+ 1 ; 

(vii) Update the memory either by merging s
1 

with a 
cluster of a

1 
or by creating a new cluster with only 

one instance s 1 ; check whether any clusters of a
1 

can 
be merged; 

Until a1 is a classification action. 

Figure I: The steps of the QLC algorithm for one 
learning trial. 

Step (iii) defines the exploration scheme of the 
algorithm. A value is randomly sampled from a 
uniform distribution in (0,1). If this value is less 
than ; then the action with the minimum Q-value 
is chosen. Otherwise, any action is randomly 
selected. This scheme enables the algorithm to suf-
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ficiently explore the state and action space before 
converging to a good local optimum. In step (vi) 
the lookahead value V, + e (st+ 1) is calculated by 
iterating over steps (i)-(vi) e times. We introduced 
this lookahead scheme due to empirical evidence 
from our experiments that this scheme improves 
the efficiency of the above algorithm. 

5. Experiments 

The experiments reported in this section were per­
formed on a sample of 1000 actual consumer loans 
granted by a German bank. There are 20 attributes 
in the dataset that take symbolic or real values. 
There are also two classes of loans: good loans 
(70% of the dataset) and bad loans (30% of the 
dataset). The dataset was retrieved from the Uni­
versity of California at Irvine collection of datasets 
[7]. It was donated to the Irvine collection by Hans 
Hofmann2. 

Two experiments were performed. The purpose of 
the first experiment was to compare the perfor­
mance of the QLC algorithm against the perfor­
mance of other statistical and neural network 
algorithms on this dataset as reported in [11]. No 
test costs were assumed in this experiment. The 
purpose of the second experiment was to demon­
strate the performance of QLC when both test and 
classification error costs are considered. Due to 
lack of information about actual credit investiga­
tion expenses we assumed a cost of one unit for 
each test. QLC is compared with Nunez's cost-sen­
sitive algorithm EG2 [8]. This algorithm takes into 
account only the cost of testing. In both experi­
ments the misclassification cost matrix had the 
form of Table 1. 

It should be mentioned that part of the implementa­
tion of the QLC algorithm involves a discretization 
procedure. In both experiments each real-valued 
attribute of the dataset was discretized by dividing 
its range of values in the training set into five inter-

2 The dataset has the URL ftp://ftp.ics.uci.edu/pub/machine­
learning-databases/statlog/german/german.data. 
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vals of approximately equal size. We also used 4-
nearest neighbor for estimating the Q-values by 
(13). The coupling probability in (16) was set to 
0.3. The exploration probability of the QLC algo­
rithm was set to ~ = 0.9. The learning rate p1 in 
the Q-value equation (5) had initial value 0.3 and 
was decayed as a function of learning experience. 
For each action the Q-value of state-action pairs 
was initialized to zero. The threshold e for stop­
ping training was set to 0.001. 

Actual Guess Classification Error 
Class Class Cost 

class 1 class 1 $0.0 

class 1 class 2 positive error cost 

class 2 class 1 negative error cost 

class 2 class 2 $0.0 

Table 1: The matrix of classification error costs. 

In the first experiment we used the same procedure 
as in [11] for splitting the dataset into a training 
and a testing set. The training set consisted of 200 
good and 200 bad loans randomly chosen from the 
initial dataset. The testing set consisted of the 
remaining cases, i.e. 500 good loans and 100 bad 
loans. We adopted this splitting procedure in order 
to ensure comparability of our results with those in 
[11]. For the same reason, the positive error cost 
was set to 1.0 and the negative error cost to 13.3. 

The results are shown in Table 2. LDA is linear 
discriminant analysis; QDA is quadratic discrimi­
nant analysis; CART is a statistical method for 
building decision trees [3]; NNl is a neural net­
work with two hidden layers, 45 nodes in the first 
and 5 nodes in the second layer; and NN2 is a neu­
ral network with two hidden layers, 40 nodes in the 
first and 5 nodes in the second layer. The results of 
these five methods are taken from [11]. %N.E. 
denotes the rate of negative errors in the testing set, 
i.e. the fraction of bad loans that the classifier 
judges positive. %P.E. denotes the rate of positive 
errors in the testing set, i.e. the fraction of good 
loans that the classifier judges negative. The aver­
age cost is computed as the total cost of classifying 
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the cases in the testing set divided by the number 
of cases. 

Algori- No. Avg 
thms Attr. %N.E. %P.E. Cost 

LOA 20 28.7 29.1 0.88 

QDA 20 28.3 34.0 0.91 

CART 15 27.7 28.9 0.85 

NNl 20 38.0 24.0 1.04 

NN2 20 24.0 31.2 0.79 

QLC 20 15.7 25.2 0.56 

Table 2: Performance with cost ratio= 13.3. 

The results of LDA and QDA were derived by 
leave-one-out cross-validation. The results of 
CART, NNl and NN2 were computed by using 
only one testing set. For the training of the CART 
algorithm 15 attributes were selected from the 20 
attributes of the dataset. The QLC algorithm was 
run on 10 pairs of training and testing sets. Each 
pair was formed by randomly splitting the initial 
dataset according to the aforementioned procedure. 
The results reported on QLC are averages over the 
10 testing sets. Although the algorithms have not 
been evaluated in exactly the same way, QLC 
shows a better performance than the other algo­
rithms in terms of both average cost and error rates. 

The above splitting procedure creates a training set 
with equally sized classes in order to enhance 
learning of the rare class of bad loans. In the 
respective testing set, however, the ratio of the size 
of the two classes is different from the ratio in the 
initial dataset. This disparity may be biasing the 
results of Table 2. In the second experiment we 
used a different splitting procedure. The initial 
dataset was randomly split into 10 pairs of training 
and testing sets. Each training set consisted of two 
thirds of the dataset and each testing set consisted 
of the remaining one third. A cost of one unit was 
assumed for each test. To enable sufficient testing 
we set the positive error cost to 40.0, i.e. a value 
greater than the total test cost. The negative error 
cost was set according to the negative-to-positive 
error cost ratio. We experimented with two values 
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of the error cost ratio: 5.0 and 13.3. In [11] these 
two values are suggested as the lower and upper 
limits of the error cost ratio. 

The results of this experiment are shown in Tables 
3 and 4. QLC perfonns better than EG2. It should 
be noted that because EG2 considers only test costs 
the different values of the error cost ratio do not 
affect the perfonnance of the algorithm in tenns of 
accuracy. QLC has better performance with cost 
ratio equal to 5.0 than with cost ratio equal to 13.3. 

Algori- Avg 
thms %N.E. %P.E. Cost 

QLC 18.2 22.6 32.84 

EG2 60.9 14.9 42.56 

Table 3: Perfonnance with cost rati0=5.0. 

Algori- Avg 
thms %N.E. %P.E. Cost 

QLC 16.4 27.5 54.67 

EG2 60.9 14.9 102.38 

Table 4: Perfonnance with cost ratio=13.3. 

6. Discussion 

There has been an increasing interest within the 
machine learning community for devising classifi­
cation algorithms that are sensitive to either the 
costs of tests, e.g. [8], or to the costs of classifica­
tion errors, e.g. [9] (see [5] for an extensive list of 
references). Tumey [14] has recently proposed the 
ICET algorithm that talces both types of costs into 
account. The aforementioned research has focused 
on extending typical decision-tree and rule induc­
tion algorithms by either incorporating heuristic 
cost-sensitive attribute selection metrics or by 
building a two-tiered method for selecting among 
decision trees or rule-sets based on their cost-effec­
tiveness. 
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In the statistics field, the CART algorithm [3] 
allows misclassification costs to be incorporated 
into the test selection process of a decision tree. A 
limitation of the CART algorithm is that it requires 
converting a cost matrix to a cost vector. This con­
version results in having a single quantity to repre­
sent the importance of avoiding a particular type of 
error. The accuracy of the conversion depends on 
the accuracy of two estimates: (i) the frequency of 
examples of each class and (ii) the frequency that 
an example of one class might be mistalcen for 
another. 

In this paper we have introduced a new strategy for 
test selection given the goal of minimizing the 
expected cost due to both testing and classification 
errors. The strategy is realized through a single 
incremental learning algorithm. A particular 
advantage of our approach is that since the algo­
rithm is incremental, after the learning system is 
deployed new cases of customers' loans can be 
incorporated in the system's memory depending on 
how infonnative these cases are with respect to the 
classification model already learned. In other work 
[5], we have empirically shown using three data­
sets from the domain of medical diagnosis that 
QLC performs better than related cost-sensitive 
classification algorithms. In that work actual costs 
were used for the medical tests. Future work 
should, therefore, examine the perfonnance of 
QLC on credit decision malcing when actual credit 
investigation expenses are considered for the test 
costs. 

Due to its stochastic optimization context, our 
algorithm can be extended for developing more 
sophisticated credit decision making models that 
talce into account additional pragmatic consider­
ations of credit granting decisions such as the risk 
of cash flows from credit sales [10]. 

7. Conclusion 

This paper examined the problem of minimizing 
the expected classification cost due to both tests 
and classification errors in credit decision making. 
We presented a new cost-effective classification 
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strategy that is realized through the QLC algo­
rithm. The latter is a single incremental learning 
algorithm which is based on a stochastic optimiza­
tion framework. QLC scales up Q-learning for 
dealing with the intrinsic issues of imperfect state 
information and of generalization over continuous 
spaces and over training data. 

We empirically evaluated the performance of QLC 
using a dataset of actual consumer loans granted. 
Previous work using this dataset focused only on 
misclassification costs. QLC performed better than 
the algorithms reported in that work. When test 
costs are assumed QLC performs better than both 
the EG2 algorithm that takes only test costs into 
account. 

Further experimentation is needed to analyze the 
performance of the QLC algorithm especially 
when actual credit investigation expenses are con­
sidered. Other pragmatic considerations of credit 
decision making should also be investigated. 
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GECCO : An Expert System for Mining Investment-Quality Loans 

Sue Bynum, Robert Noble, Cheri Todd GE Capital Mortgage Corporation 
6601 Six Forks Rd. 

The Guideline Eligibility 
Compliance Criteria Organizer 
[GECCO], is a knowledge-based 
application which automates the 
information-intensive process of 
compliance underwriting for 
mortgage loan resale in the 
secondary market. GECCO was 
originally built and deployed as a 
tool for third-party underwriting 
services m one business 
component of GE Capital 
Mortgage Corporation [GECMC], 
and has then been successfully 
integrated into two other GECMC 
businesses for internal use - in 
wholesale loan pricing, and in loan 
origination, and closing. The 
latest GECCO project 
development has resulted in its 
integration with the GENIUS™ 
Automated Underwriting System, 
as a commercial product offered to 
mortgage lenders. This paper 
chronicles the evolution of the 
GECCO tool, and describes the 
latest effort to combine its 

* Ben Bloom 

Raleigh NC 27615 

Inference Corporation 

Abstract 

compliance underwriting expertise 
with the evidential reasoning 
model of risk underwriting 
provided by GENIUS™. 

Successful incorporation of AI 
methodologies into critical 
business application software has 
reaped numerous significant 
benefits for GECMC, including 
higher loan throughput, improved 
consistency of underwriting 
decisions, and more effective 
quality control. GECMC has 
further distinguished its position as 
a leading provider of mortgage 
services through use of AI-based 
systems, and the GENIUS™ 
product equips GECMC with a 
competitive edge for extending its 
top market share in the mortgage 
insurance business. GECCO is an 
exemplary case of leveraging 
corporate knowledge through reuse 
of a formalized business model of 
the compliance underwriting 
process. 

Keywords: Mortgage banking, rule-based expert system, automated compliance underwriting 
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Background 

GE Capital Mortgage Corporation is 

a leader in the home mortgage banking 

industry, with substantial portfolios in 

mortgage insurance, origination, and 

private-label mortgage-backed securities. A 

new GECMC business initiative was 

launched in 1989 with the creation of GE 

Mortgage Management Systems [GEMMS], 

to provide third-party processing and 

underwriting services to mortgage lenders. 

The Guideline Eligibility Compliance 

Criteria Organizer [GECCO] began in 

March 1992 as a GEMMS project to design 

and build a knowledge-based application for 

internal use as a tool for automating the 

information-intensive process of 

underwriting mortgage loans according to 

investor guidelines. GECCO was put into 

production in January 1993 at GEMMS for 

third party loan processing and 

underwriting. 

During this same period when the 

GECCO compliance checker tool was 

developed, the GENIUS™ project was in 

progress at the GE Corporate Research and 

Development center. AI specialists at the 

R&D center built a formalized risk 

assessment model based on training 

examples provided by mortgage 

underwriting experts from the GECMC 

Company [GEMICO]. The GENIUS™ 

Automated Underwriting System is the 

software implementation of the example-
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based evidential reasoning model of 

mortgage insurance risk assessment. has 

proven to be a remarkably successful 

productivity tool for the Mortgage Insurance 

branch offices since going into production 

in February 1993.l 

The natural marriage of the two AI 

systems has been brought about as the result 

of the PC GENIUS™ project, began in May 

1994. The project focused on incorporating 

the compliance underwriting function of 

GECCO into the GENIUS™ risk 

assessment function. The rearchitecture 

effort involved reimplementation of 

GENIUS™ from a mainframe application 

into a Windows®-based client/server 

environment, and writing GECCO rulesets 

for the two largest mortgage investing 

agencies, Fannie Mae and Freddie Mac. The 

combined compliance and risk automated 

underwriting GENIUS™ functionality was 

made available as a commercial product to 

mortgage lenders in January 1995. 

Business Context: Mortgage 
Banking 

The field of loan underwriting has 

proven fertile ground for the application of 

AI technology for mortgage funding and for 

mortgage insurance. (See, for example, 

1 See [Gol95] for a thorough presentation of 
the GENIUS™ project. 
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[Gol95] and [Tal94]). The GECCO project 

is distinguished from related efforts by 

focusing on evaluating compliance with the 

investor eligibility guidelines which control 

resale of mortgage loans in the secondary 

market. It would serve to establish the 

business context of the GECCO tool by 

starting with an overview of the mortgage 

banking business and an itemization of the 

steps typically involved in the mortgage 

loan processing pipeline: 

I. Loan origination : application by the 
borrower for a mortgage loan from a 
lender 

2. Registration: Creation of a file for the 
loan in the processing pipeline 

3. Processing : gathering and validation of 
loan documents required to complete 
the loan 

4. Underwriting : assessment ofrisk 
incurred by the lender through 
evaluation of subject property, and of 
factors which determine the borrower's 
ability and willingness to repay. 

5. Mortgage insurance [ Ml] : mandatory 
insurance purchased by the borrower to 
protect the lender against loss in the 
event of default by the borrower. MI is 
usually required when the borrower is 
infusing less than 20% of the loan 
amount into the transaction. 

6. Closing : signing and recording of loan 
documents and transfer of mortgage 
funds 

7. Servicing: Collecting the monthly 
mortgage, along with taxes, insurance 
and other escrows. 
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8. Pricing/Repurchasing : Sale of the loan 
from the originating lender to a 
mortgage investor. The two dominant 
agencies in the secondary market for 
conventional mortgages are Fannie Mae 
(Federal National Mortgage 
Association) and Freddie Mac (Federal 
Home Loan Mortgage Corporation). 
Mortgages which fall outside of agency 
eligibility guidelines may be sold to 
private investors, who would have their 
own purchase criteria. 

9. Packaging and Contract Servicing 
Collection of investment-grade loans 
into pools for issue on Wall Street in the 
form of mortgage-backed securities. 

A discussion of mortgage banking 

terminology is useful to explain the function 

served by GECCO. It is necessary to 

understand the use of terms in this paper for 

the following: loan underwriting, investor 

guidelines, and lender compliance. Fannie 

Mae gives the term investment-quality to a 

mortgage when (1) the borrower's ability 

and willingness to pay the loan has been 

established and (2) the market value of the 

subject property provides sufficient 

collateral to secure the loan. The 

borrower's ability to repay the loan is based 

on income, employment history, assets, 

liabilities and source of funds. Willingness 

to repay the loan is based on credit history, 

separated into examination of mortgage/rent 

and revolving/installment accounts. The 

appraisal of the property is based on 
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evaluation of comparable properties, market 

trends for the neighborhood, and the 

property size and condition. 

Fannie Mae, like other mortgage 

bankers, provides sets of guidelines which 

specify the criteria by which a loan can be 

judged to be investment-quality. A 

guideline may be thought of as a collection 

of business rules that evaluate the various 

pieces of applicant and property 

information. A mortgage loan application 

which does not violate any aspect of the 

investor's guideline is said to be in 

compliance, and may be underwritten by a 

mortgage loan analyst with confidence that 

the investor ( e.g., Fannie Mae, Freddie 

Mac) would buy the loan. 

Investor guidelines are typically 

extensive and are updated frequently ( often 

quarterly) to adjust to changing housing 

market conditions. The size and volatility 

of a guideline is compounded by the fact 

that many points are open to the 

underwriter's interpretation. Certain loan 

application parameters are rigidly set by a 

guideline, such as dwelling type (single­

family, duplex, condo, etc.), LTV (loan-to­

value) limit, occupancy type (primary or 

second home, or investment property), and 

mortgage type (purchase, refinance, cash 

out refinance). Consideration of the large 

remainder of factors however, is flexible. 

120 

As an example of a soft factor, Fannie 

Mae's guideline for the applicant's housing 

debt to income ratio is 28%, yet "we also 

recognize that some circumstances may 

justify your exceeding this ratio. If you use 

a higher ratio, you need to fully document 

the compensating factors you feel justify 

your doing so." Several examples of such 

factors are also provided to the 

underwriter.2 

The underlying notion of salability 

of a loan is crucial to the underwriter's 

determination that the loan is in or out of 

compliance with the rules set forth in the 

investor guidelines. A typical mortgage 

lender relies heavily on investor capital in 

order to maintain a profitable and sizable 

portfolio of loans. If the loan does not meet 

investor guidelines, the lender must decide 

whether to fit the borrower into another type 

of loan program, add the loan to the "in­

house" portfolio, or tum away the 

borrower's business. Strict interpretation of 

a guideline could result in denial to 

underwrite a loan which the investor would 

in fact have purchased ( and, more 

importantly, loss of business), while a less 

cautious interpretation can result in funding 

a loan that cannot be sold and must remain 

in the lender's portfolio. 

2 [FNM93, p.27] 
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Project Description : 

GECCO I Third-party underwriting 

The original inception of GECCO 

was within the third-party underwriting and 

processing facility at GE Mortgage 

Management Systems [GEMMS], a part of 

GECMC. GEMMS offered a unique 

business concept in providing the service of 

loan underwriting to mortgage lenders. 

Rather than having to maintain a full staff of 

underwriters to process loans, a lender could 

contract with GEMMS to process and 

underwrite the lender-originated loans. This 

arrangement would permit lenders to handle 

the resource strain of a peak market. A 

technical challenge facing this concept was 

that each lender has their own investment 

guidelines against which loans were to be 

underwritten. After servicing two or three 

lenders, it became clear that not even a 

superhuman underwriter would be able to 

keep up with the customized, voluminous 

and often-updated investor guidelines from 

several lenders at once. The idea came out 

of necessity for an automated compliance 

checker that could manage the information 

overload of a large number of investor 

guidelines for the GEMMS underwriters. 

GECCO is embedded in the 

VISION loan registration and processing 

system, a client/server application which 
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uses a GUI to capture the loan application 

data elements and stores the information in 

a relational database [Figure I]. The 

underwriter can invoke GECCO at any point 

in loan processing and may rerun on the 

same loan at different stages in the pipeline 

as new information is entered. GECCO 

reports a status of either in compliance or 

out of compliance and provides explanatory 

messages when the latter is the case. The 

messages are divided into two classes -

fatals and warnings - to distinguish between 

hard and soft guideline constraints. 

Prior method of operation 

Manual compliance checking for 

loan underwriting generally can be a 

tedious, time-consuming and information­

intensive process. Prior to development of 

GECCO, the compliance checking process 

was performed manually at GEMMS. The 

manual process involved checking 

compliance of a loan application file by 

thumbing through a bookshelf of documents 

that specify the details of the investor 

guideline for the relevant loan program. On 

average, this process took between thirty 

minutes to an hour per loan. 

A rule-based approach was adopted 

as a natural way of modeling the manual 

process of guideline compliance checking, 

based on identifying the specific eligibility 

constraints which apply to a given loan. 
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Loan Processor 
• Loan Application 

.. 

Database 

Investor Guidelines t 
.. 

Guideline Maintenance 

.. 

Mortgage-backed 
Securities Analyst 

Quality Control Auditor 

Figure 1: Compliance Checker Process Overview 

Objectives and Benefits of the 

GECCO Compliance Checker 

Several objectives were identified 

for the original GECCO application within 

the initial third-party GEMMS application. 

These included: 

• Produce a flexible investor guideline 
modeling tool -- The initial objective of 
GECCO was to make it possible for a 
mortgage loan analyst to underwrite a 
loan for any mortgage lender subject to 
salability constraints of any investor 
guideline. This was achieved through 
an. architecture for flexible modeling of 
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an unlimited number of guidelines. The 
third-party underwriter deployment of 
GECCO contains over 170 investor 
guidelines for 70 mortgage lenders. 

• Improve quality of the underwriting 
process -- Underwriters tend to look for 
middle ground within the more flexible 
aspects of an investor guideline, 
offsetting a potentially unacceptable 
factor with other mitigating factors. 
The goal of GECCO was to provide 
consistency to the underwriting process, 
by standardizing both the process of 
applying the guideline constraints to 
loan applications as well as the content 
of the compliance warning messages. 

• Gain a productivity benefit -- Raise 
business volume and shorten turn­
around time by reducing the time 
required to process and underwrite a 
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loan. GECCO runtime of under 30 
seconds is a significant time savings 
compared with the 45 minute manual 
compliance checking process. 

• Provide a remedial course of action -­
GECCO gives an explanation of which 
guideline rules are being violated, and 
provides suggestions of what must be 
done to correct a variance. 

• Tracking and monitoring capability -­
GECCO provides an audit trail for 
underwriting, and keeps track of 
documents required by lenders for 
closing the loan. This information 
management reduces the burden of 
knowledge placed on the analyst. 

Versatility of the Application 

The early success of GECCO for 

third-party processing and underwriting 

raised awareness of other ways in which the 

rule-based application could be applied to 

other GECMC businesses in which the 

questions "Should we buy these loans?" or 

"Can we sell this loan?" are central to the 

process. 

Several of the possibilities 
identified for GECCO reuse were: 

• Secondary market/ post-closing 
(wholesale pricing): Batch process a 
pool of loans to filter out non-compliant 
loans prior to purchase for repackaging 
in a mortgage-backed security 
investment instrument. This filtering 
process determines that each loan that 
has already been closed does in fact 
meet the guidelines of an investor to 
whom the loan is to be sold. Should a 
loan fail to comply with investor 
guidelines at this point, the lender must 
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keep the loan until it is seasoned (i.e., 
hold and service the loan for a period of 
time until salable under a different 
guideline). Each lender may have a 
customized contract with Fannie Mae 
and/or Freddie Mac. In addition, 
lenders have their own group of 
investors who provide the base of 
working capital for funding the lender's 
mortgage originations. 

• Point of sale/prequalification: At this 
point in the loan application process, the 
borrower is volunteering data about 
employment, assets, liabilities and 
credit history. Though the information 
has yet to be verified, it is still useful 
for a lender at a point-of-sale branch of 
a mortgage company to run GECCO as 
an early screening mechanism for fitting 
the applicant into the best available loan 
program for which he or she qualifies. 

• In-depth processing and underwriting: 
Determine and track receipt of the 
required documents, and grant 
conditional approval subject to 
satisfactory resolution of any pending 
items. 

• Closing: As a final quality assurance 
check. Use GECCO to maintain an 
audit trail of warning or fatal messages 
that have been issued at points during 
loan processing. 

• Quality assurance: Pull a 
representative sample of loans from the 
portfolio to measure the underwriter 
judgments against the known outcome 
of the loan. Used in this manner, 
GECCO can alert an underwriting staff 
to an undesirable trend if for example 
loans of a particular type ( e.g., 
condominiums in California) are being 
rejected by a lender's investors, contrary 
to what the underwriters had thought to 
be in compliance with investor 
guidelines. 
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From the above list of candidate 
applications for GECCO reuse, the 
following have been implemented to date: 

GECCO I Wholesale Pricing 

A partitioning of the existing 

GECCO knowledge base was made to 

facilitate a need for integration of 

compliance checking capability into the 

Wholesale Pricing and Registration 

[WHOPR] project at GE Mortgage Services 

[GECMSI]. The WHOPR project purpose 

was to build a rule-based system that would 

conditionally apply a variety of price 

adjustment factors to loans delivered to 

GECMSI for purchase from originating 

lenders. Determination of compliance with 

GECMSI resale guidelines was a 

precondition for loan purchase. The pricing 

rules would determine the purchase price of 

a loan once it had passed the compliance 

check. 

The GECCO rules were accordingly 

divided into checks for lender compliance, 

used by GEMMS third-party processing, 

checks for wholesale pricing, and a group of 

core checks used in both businesses. 

GECCO I Loan Closing 

The Closing project was the 

GEMMS follow-on to third-party 

processing. The primary focus for GECCO 

in this effort was to expand the processing 

capabilities with specific functionality 

needed for delivery of loans to "the closing 

table." This functionality was achieved 
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with the addition of two new GECCO rule 

sets: the special conditions rules and the 

required documents rules. 

Special conditions are extra 

procedures that may be placed on a loan by 

the lender guidelines ( e.g., self-employed 

borrowers must complete a Fannie Mae 

form for self-employed, and must provide 

proof of income for the past two years). A 

loan may be in compliance subject to 

special conditions which have been attached 

automatically by GECCO. The required 

documents rules generate a list of all 

documents needed for closing as specified 

by lender and investor guidelines, and keep 

track of which documents are still 

outstanding. Examples of these documents 

are: proof of flood insurance if the subject 

property is in a flood zone, or a special form 

for energy-efficient dwellings in the state of 

New Mexico. 

GECCO Functional Description 

GECCO is integrated into a loan 

entry and processing system, which consists 

of a GUI component for capturing and 

updating the loan information and a 

client/server relational database for efficient 

data storage. When an underwriter or loan 

processing agent invokes GECCO, the 

following process takes place: 
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1. Retrieval of the relevant data elements 

for the loan application into structured 

objects. 

2. Retrieval of the investor guideline 

information for the corresponding loan 

program (e.g.,, 15-year fixed rate) into 

structured objects. 

3. Activation of the appropriate GECCO 

rule sets, controlled via command line 

Gifts not allowed for INVESTMENT property 

arguments passed to GECCO from the 

GUI. 

4. Agenda-driven rule processing of the 

loan and guideline data. 

5. Results are posted to the GECCO output 

screen [Figure 2] and to the database. 

Downpayment and cash reserves : insufficient reserves. 

Downpayment and cash reserves: sweat equity is not acceptable. 

Borrower [PAI - John Q Public] has a prior history of mortgage late payments. Please review 
credit to establish credit worthiness. 

Overtime income represents more than 25% of earnings. Borrower [PAI - John Q Public] must 
provide past 2 years signed federal tax returns. 

Figure 2: Compliance Output Screen 

The guideline information is input 

initially by a designated guidelines 

administrator whose job is to ensure that the 

GECCO knowledge base is kept current 

with new guidelines and guideline updates 
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as they are released by investors. A 

graphical guideline editor screen facilitates 

this process of defining and modifying 

guideline information. 
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The GECCO rulebase contains rules 

for the following categories of salability 

ch~cks: 

• ARM restrictions 

• Bankruptcy / foreclosure procedures 

• Downpayment / cash reserve requirements 

• Mortgage insurance requirements 

• Loan amount limits 

• Limits on seller contributions 

• Cashout refinance restrictions 

• Appraisal requirements 

• Non-base income limits 

• LTV limits 

• Employment-related checks 

• Limits on gifted funds 

• Qualifying ratios 

• Second home/investment prop. restrictions 

• US Citizenship status 

The GECCO output consists of warning 

messages that relate soft guideline 

constraints and fatal messages that 

correspond to violation of strict guideline 

rules. In addition, GECCO provides 

processing packets which give the user 

suggestions on how to correct specific 

variances. The user always has the option to 

override a GECCO out of compliance 

overall result on the basis of compensating 

factors which may not be accounted for in 

the knowledge base; in this case, the loan is 

forced into c_ompliance, and the user is 

encouraged to provide a justification for the 

override in a notes area. 
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System Architecture 

Software development for GECCO 
/ Third-party underwriting 

The GECCO software development 

process followed an iterative spiral 

methodology, building on a series of 

prototypes to produce the first deployed 

system. The project began with collection 

and analysis of user requirements, followed 

by definition of the object model for 

investor guidelines and for the necessary 

loan application data. Next the database 

access layer was designed, followed by high 

level design of the compliance rules. The 

database access layer is the underpinning of 

the knowledge base, encapsulating the 

objects and rules from the physical 

implementation of the database that houses 

all of the loan application data as well as 

investor guideline information. 

The GECCO knowledge base 

consists of a collection of objects which 

hold the relevant data elements referenced 

in the guideline checks and a collection of 

discrete rules. 

Software development for GECCO 
/ Wholesale Pricing 

The project began with an analysis 

of rules currently enforced by GECCO. 

These rules were reviewed by business 

analysts and grouped into distinct sets for 

third-party underwriting, for wholesale 

pricing, and for both. The knowledge base 
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was then partitioned accordingly and the 

GECCO calling interface was modified so 

that the activation of individual rule sets 

could be controlled via external command 

line arguments. 

The reorganized GECCO was 

regression-tested on a database of test loans 

and then redeployed to both GEMMS for 

third-party processing and GECMSI for 

wholesale pricing. 

Software development for GECCO 
/ Loan Closing 

The feedback from lenders for 

enhanced processing capabilities further 

advanced GECCO functionality. The new 

development began with analysis of the 

types of special conditions that lenders 

wanted to be able to attach to loans and of 
Hardware and software environment 

the types of documents that conceivably 

could be required. The analysis was 

followed by a design specification for the 

new database and knowledge base structures 

required for storing and modeling both 

special condition and required document 

information. Business analysts then 

gathered all of the specific business rules 

for both from each GEMMS lender. The 

rules were then implemented in separate 

rule sets, one for special conditions and one 

for required documents, and these new rule 

sets were then added to the GECCO 

knowledge base, bringing the number of 

rules up to 230 in four distinct rule sets. 

The identical hardware and software environment applies to the third-party processing 

and underwriting, wholesale pricing, and loan origination deployments of GECCO: 

GECCO is written in ART-IM and is deployed as a C executable on a client/server 
architecture. 
Operating system 
Database 
Software 
Hardware 
Network 

: OS/2 2.1 
: Sybase 4.9.1 
: ART-IM 2.5, Microsoft C 7.0, Sybase DB Library for C 
: Client: 486 desktop, Server Sun Sparc-20 
: Local: Token ring/Novell 3.11, Wide-area: T-3 link 

For integration with GENIUS™, the latest development effort has resulted in 
redeployment of GECCO for Windows, for both client/server and single-user 
environments. 
Operating system 
Database 
Software 
Hardware 
Network 

: Windows 3 .1 
: Watcom SQL Server 
: ART-IM 2.5, MS Visual C, Watcom libs, MS Visual Basic 
: Client/Server or standalone : 486 desktop 
: site-specific 
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Description and significance of AI 

techniques used 

The GE Compliance Checker is an 

excellent candidate for a rule-based solution 

because the processing involved fits the 

model of asynchronous testing of a large 

number of discrete logical conditions. This 

approach was facilitated by using a highly 

optimized inference engine and a powerful 

pattern-matching rule language. The 

specific architectural features, and their 

significance as employed by GECCO, 

include the following: 

• Agenda-driven inferencing fires only for 
rules that apply as opposed to 
exhaustively testing for each rule 
sequentially. 

• Partitioned rule sets provide the 
flexibility of customizing the behavior 
of the compliance checker accordingly 
with the specific eleigility constraints of 
the selected investor. 

• Ruleset partitions also serve to make 
actual distinctions in the business model 
explicit, so that categories of rules ( e.g., 
credit checks, property checks) may be 
easily enabled or disabled through the 
GUI. 

• Selective, optimized database access is 
controlled through the rules -- only data 
required by the given process/ruleset is 
loaded. 

• Platform independence is achieved by 
insulation of the knowledge base from 
the platform and the database (See 

Figure 3). A generic ART-IM/SQL 
interface was developed for GECCO. 
The interface is based on functions 
which define mappings between the 
physical database model and the object 
model created in ART-IM. The 
accessor function names are properties 
of the ART-IM objects and are 
analogous to create-instance methods, 
called to generate instances of ART-IM 
schema. The ART-IM/SQL interface 
used in GECCO is robust in that it 
permits arbitrarily complex object 
mappings to be written and compiled 
incrementally. The ART-IM 
deployment compiler which generates 
compilable "C" code for the complete 
contents of the knowledge base, thus 
allowing platform independence. 

• Rule parameterization, the separation of 
declarative knowledge, allows the user 
to customize compliance rules 
dynamically through the GUI 
maintenance screens without requiring a 
change to the executable. 

• Object-oriented inheritance allows 
GECCO to exploit the large overlap of 
information contained in investor 
guidelines, so that only the differences 
need to be stored. This method 
produced a drastic performance 
improvement as well. 

• High level rule language permits a 
straightforward software coding of a 
compliance business rule; this high 
level representation not only makes the 
rules easier to write and debug, but has 
a positive impact on maintenance of the 
rulebase as well. 
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The following code fragment from the knowledge base gives the flavor of a typical compliance 
checker rule: 

(defrule check-geographic-non-conforming-loan-amount 
"Check if the loan amount exceeds the guideline limit for the given type of 
dwelling in the given state." 

ii Match a property instance 
(schema? 

{instance-of property) 
{prop-dwelling-type ?dwl-code) 
{prop-state ?state)) 

ii Bind the loan amount 
{schema? 

{instance-of loan-application) 
{loan-amount ?loan-amt)) 

ii {e.g., single-family, duplex, ... ) 
i i { e . g . , NY, FL, CA ... ) 

ii Check if the loan amount exceeds the guideline loan amount limit 
ii for the matching property state and dwelling type. 
(schema? 

{instance-of geographic-loan-limit) 
{gee-loan-limit-dwelling-type ?dwl-code) 
{gee-loan-limit-property-state ?state) 
{gee-loan-limit-amount ?loan-limit&:{< ?loan-limit ?loan-amt)) 
) 

=> 
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f $ 0 ld 1 • • t of $%ld." (bind ?msg (sprintf "Loan amount o -.; over imi 
?loan-amt ?loan-limit)) 

ii Post a fatal message for exceeded loan limit. 
(gee-message FTL ?msg) 
) 

GECCO In Production 

GECCO I Third-party processing 
and underwriting 

The GECCO third-party 

underwriting deployment contains over 170 

investor guidelines for 70 mortgage lenders. 

The knowledge base contained 

approximately 120 guideline compliance 

rules. The usage data for the fiscal years 

1993-4 shows that GECCO was run on 

approximately 15,400 mortgage loans, with 

an average weekly volume of 150 loans. 

During this period GECCO was run over 

52,000 times - over 3 times per loan on 

average. 

Because the loan application 

information can fluctuate during the 20-30 

day window during which a loan file is 

typically open for processing, it is useful to 

rerun the Compliance Checker at various 

points during the process to ensure that 

important changes are noted, such as with 

borrower's income, employment status, 

assets, or credit profile, and their 

consequences for the salability of the loan 

taken into account. It is also often 
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customary for GECCO to be run at any 

point when the loan file passes between 

mortgage loan processors, as a safeguard 

against possible oversights. 

GECCO I Wholesale Pricing 

Usage data for GECCO/Wholesale 

Pricing reports that for the period from 

February through December 1994, GECCO 

has been run on over 7000 loans, of which 

1700, or roughly 1/4 were found to violate 

GECMSI guidelines for purchase. 

GECCO I Loan Processing and 
Closing 

The addition of the required 

documents ruleset and the special conditions 

ruleset grew the knowledge base to 230 

rules. Some database optimizations resulted 

in a performance improvement which 

reduced GECCO runtime from 40 to 25 

seconds per loan on average. 

GECCO/ Loan Processing has been run on 

over 5000 loans for the six-month period 

from July through December, 1994. 

Copyright© 1995 Software Engineering Press 



Application Payoff 

Improved throughput and productivity: 

The time savings of at least 30 

minutes per loan ( 45 minutes average) 

directly increased the number of loans 

processed and underwritten by GEMMS; 

GECMSI and outside lenders. Comments 

from underwriters who have used GECCO 

suggest that they have noted a greater 

feeling of accomplishment due to increased 

productivity, that exposure to state-of-the­

art information technology makes their job 

more interesting, and that they have more 

confidence in the consistency of their work. 

Improved risk management 

GECCO produces a consistent 

evaluation of compliance with investor 

guidelines; this helps to equalize the 

disparate levels of underwriter experience 

and gives standardization to the subjective 

art of underwriting. The result of better 

quality of underwriting is a stronger 

portfolio and a fewer number of loans 

refused by the investor. 

Improved customer service: 

GECCO for third-party 

underwriting provided a high-quality and 

timely level of customer service to 

mortgage lenders who dispatched loans to 

GEMMS for processing and underwriting. 

GECCO is now offered directly to lenders 

Copyright © 1995 Software Engineering Press 

as a commercial product for assessing 

salability of their mortgage loans. 

Improved business process: 

GECCO /third-party underwriting 

made it feasible for GEMMS to pursue the 

loan processing overflow market. 

GECCO /wholesale pricing allowed 

GECMSI agents to quickly approve or reject 

purchase of individual loans in a package 

for resale on the secondary market. 

GECCO I PC GENIUS™ allows 

GECMC to offer their customers a 

W• d ® m ows product for assessing investor 

requirements for mortgage loan resale. 

It was not conceived at the time that 

the initial effort to build a compliance 

checker for third-party underwriting would 

result in a tool that is germane to so many 

different aspects of the mortgage loan 

business process. GECCO exploits the 

overlap of data used across the processing 

pipeline while providing the flexibility to 

apply the set of business rules distinct to 

each of several specific phases, including 

conditional prequalification at origination, 

underwriting for salability and for mortgage 

insurance, processing of required 

documents, appraisal and credit reports, and 

quality control. 
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Present and Future Work 

It is expected that the flexibility 

gained through the GECCO application will 

continue to have a positive impact on the 

efficiency of several key GECMC 

businesses. The GENIUS™ 

product will continue to be enhanced and 

supported as driven by external customer 

needs. 

Plans are underway to rearchitect 

the GECCO data access layer so that it can 

be available as a plug-in tool for new and 

existing GECMC software applications with 

a minimum of integration work Currently, 

the GECCO guideline maintenance screens 

are being expanded to allow authorized 

users to modify existing rules and to define 

new ones as new mortgage products are 

offered in the market place. This flexibility 

to represent any investor's eligibility criteria 

has generated interest in use of GECCO to 

build custom portfolios automatically .. 

The National Processing Center is a 

major reengineering project now in 

development at GE Capital Mortgage 

Insurance; the NPC is focused on 

streamlining the process so that the 

mortgage insurance underwriting step may 

be performed as quickly as possible. The 
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combined capabilities of GECCO and 

GENIUS™ will be the heart and soul of 

NPC operations. A new GECCO ruleset for 

compliance with GECMC Mortgage 

Insurance guidelines is being defined for 

this effort. New guidelines are also being 

defined to increase GECCO functionality 

for FHA,VA and affordable housing loans. 

Summary 

GECCO has proven to be an 

effective tool for the underwriter who must 

balance the need to bring in new business 

against the imperative of keeping a portfolio 

of salable loans. GECCO also gives the 

benefit of applying standardization to a 

process that in practice is subjective and 

prone to variances introduced by different 

underwriting philosophies. 

The reuse of the GECCO as a 

generic tool for loan salability assessment, 

prequalification, underwriting, and quality 

assurance has been a remarkable success for 

GE Capital Mortgage Corporation. 
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Abstract 

Probabilistic graphical models are being used 
widely in artificial intelligence and statistics, 
for instance, in diagnosis and expert systems, 
as a framework for representing and reasoning 
with probabilities and independencies. They 
come with corresponding algorithms for per­
forming statistical inference. This offers a uni­
fying framework for prototyping and/or gen­
erating data analysis algorithms from graph­
ical specifications. This paper illustrates the 
framework with an example and then outlines 
a software toolkit that allows rapid prototyping 
of data analysis algorithms. Tools available for 
this task including methods from Bayesian net­
works, statistics, and neural networks. 

1 Introduction 

This paper argues that the data analysis tasks 
of learning and knowledge discovery can be 
handled using techniques for graphical models, 
and therefore rapid prototyping of data anal­
ysis algorithms can be done. The ability to 
adapt data analysis or learning algorithms to 
the user's application is a key capability for 
the financial markets, for instance in knowl-
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edge discovery1 . This meta-level use of graph­
ical models for learning was first suggested by 
Spiegelhalter and Lauritzen [25] in the context 
of learning probabilities for Bayesian networks. 
An extension of the standard graphical model 
is used here that allows this kind of learning 
to be represented. The extension is the notion 
of a plate introduced by Spiegelhalter2 . Plates 
allow samples to be represented explicitly on 
the graphical model, and thus reasoned about. 
This makes data analysis problems explicit in 
much the same way that utility and decision 
nodes are used for decision analysis problems 
[23]. 

Consider, for instance, Figure 1. This 
presents a situation where a mixture model 
with hidden variable class is used for subse­
quent prediction of var1 from var2 and var3 . 

The part to the left of the parameters </> and 
0 is the graphical representation of a sample. 
The contents of the plate ( the box around the 
nodes for class, var1, var2 and var3 ) on the 
left indicates that a sample of N cases with 
variables var1, var2 and var3 are given, while 

1 For instance, Evangelos Simoudis cites this as one 
of the key selling points of the knowledge discovery tool 
RECON from Lockheed AI Center. 

2 Personal communication. The notion of a "repli­
cated node" was my version of this developed indepen­
dently. I have adopted the notation used by Spiegelhal­
ter and others for uniformity. 
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N 

Figure 1: Simple unsupervised learning, with 
general prediction 

class is hidden, being unshaded. The plate 
indicates that its contained subgraph is repli­
cated N times. The part on the graph to the 
right of the parameters <p and 0 represents the 
prediction task. The value node on the right, 
the diamond, indicates that subsequent pre­
diction accuracy is the goal of learning. To­
gether, this graph indicates that the utility for 
the problem is ( var1 - vari( var2, var3)), and 
the joint distribution of the parameters takes 
the form 

with the knowledge representation and stan­
dard search methods. A simple connection­
ist feed-forward network (using the notation 
of Hertz, Krogh and Palmer [14]) and its cor­
responding Bayesian network is given in Fig­
ure 2( a) and (b) respectively. Similarly, other 

(a) 

Figure 2: A simple feed-forward network: (a) 
in native form (b) as a DAG. 

neural networks can be modeled with graphical 
models ( "probabilistic networks"). 

This general approach, engineering using 
principles of probability, is now becoming 
widespread. The basic tools of probabilistic 

p( </>, 01, 02, 03; class, var1, var2, var3, (Bayesian) inference used for this process are 
classi, var1,i, var2,i, var3,i : i = 1, ... , N) reviewed, for instance, by Tanner [26], Kass 
p(cp)p(01 )p(02)p(03)p(classl</>) and Raftery [16], Neal [21], and Madigan et 

( I l 0 ) ( I l 0 ) ( I l 0
~

. [19]: various exact methods, Markov chain 
p var1 c ass, 1 p var2 c ass, 2 p var3 c ass, C 1 h d h G"bb • 
N onte ar o met o s sue as 1 s samplmg, 

IIP(class·l,1..)p(var ·!class· 0) the EM algorithm, and the Laplace approxima-
i '+' t,i ii 

1 • w· h • b" • h bl tion. 1t creative com mat1on, t ese are a e i=l 
p( var2,ilclassi, 02) p( var3,iiclassi, 03) . to address a wide range of data analysis prob­

lems. Gilks, Spiegelhalter and Thomas have 
taken this process a step further by developing 
a compiler that generates Gibbs samplers from 
graphical specifications [10]. This handles a 
surprisingly broad number of statistical tasks. 

There has been a recent push within the ma­
chine learning and neural network communities 
to dispel the magic and art from the various 
learning fields and present them more as engi­
neering disciplines. Decision tree methods [4] 
and feed-forward networks [18, 6] are some ex­
amples that show how already popular algo­
rithms can be re-engineered from well under­
stood principles of probability in combination 
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It is the thesis of this paper that these tech­
niques are now sufficiently well developed so 
that software support can be provided for their 
use in data analysis problems. That is, we 
are now able to generate components of data 
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analysis algorithms, and even entire algorithms 
themselves from high-level specifications. The 
paper demonstrates the thesis by presenting a 
framework based around the use of graphical 
models as a specification language. 

We begin with two examples. The first illus­
trates the intended use of the software we en­
visage, and the second gives some more math­
ematical detail. Then we outline in more de­
tail the specification language we are develop­
ing. A low-level implementation of these ideas 
demonstrates the feasibility of our software 
[22]. More details of the underlying theory 
for our approach can be found in [3], including 
results for deterministic nodes and techniques 
for doing differentiation, both used in model­
ing neural networks with probabilistic graphi­
cal models. 

2 Two examples 

The software we are developing is intended 
to be used in an iterative prototype-refine 
cycle using standard data manipulation and 
visualization packages such as Matlab, PV­
Wave/IDL, or S-Plus. An important observa­
tion is that prepackaged data analysis software 
such as clustering, linear regression, and feed­
forward neural networks are sometimes inade­
quate for the particular task at hand. While 
these packages are often good for exploratory 
data analysis, our experience and that of many 
others indicates that data analysis and knowl­
edge discovery requires more flexibility in gen­
eral. The first example below illustrates the 
kind of prototyping our envisaged software is 
intended to assist, and the second example il­
lustrates some more of the mathematical de­
tail. 
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2.1 Prototyping data analysis 

This example will demonstrate how the system 
we are developing would operate, reducing a 
problem that might require weeks of effort into 
an afternoon's work. Figure 3 plots the raw 
data for this example. The data give mean 

$ 
o 1.560 

1.550 

1/3:46:40 2/7:33:20 3/11:20:0 4/15:6:40 5/18:53:20 6/22:40:0 
Doy/Time 

Figure 3: The mean bid-ask price for DM/$. 

bid-ask prices posted by banks at various time 
points over the course of a week for turning 
dollars into Deutsch marks. The mean bid-ask 
price ( average of the two) is a more stable in­
dicator of the bank's pricing position because 
the bid or ask price alone also includes effects 
due to the banks policy on the bid-ask spread. 
The mean bid-ask price helps reduce the arti­
facts of "returning to the mean" and "stable 
patterns" reported in the bid price data or the 
ask price data alaone [20, l]. Original data 
takes the form of a date and time, the bid and 
asking price, and the bank code. 

Sep 1 
Sep 1 
Sep 1 

Date 

13:42:40 
13:42:45 
13:43:14 

Bid 

1.5737 
1.5735 
1.5735 

Ask 
1.5742 
1.5745 
1.5740 

Bank 
CONY 
MGTX 
BBIX 
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Our goal is to model the time series and to 
understand individual differences among the 
banks. The data we have at our disposal con­
sists of the tick data in Figure 3 together with 
various properties of the banks, such as their 
geographical location. 

We hypothesize that the tick data is effec­
tively a random walk, but where the percent­
age change at each time point is influenced by 
the bank posting the price. For example, we 
might suspect that some banks tend to post 
larger differences from the previous tick than 
the average change, or that some banks post 
more frequently during upswings than down­
swings, so that the ticks posted by such a bank 
run contrary to the downward trend. Figure 4 
shows the kind of thing we are after, plotting 
the empirical frequency of percentage changes 
for all the ticks, for a bank that only posts large 
changes from the previous tick, and for a large 
bank that posts many changes. 

We sit down at our data analysis system, 
pull in the raw data, and set up a quick model 
to do an unsupervised clustering of the banks. 
Our first pass uses the random so that we can 
get a basic feel for the different kinds of banks. 
For each bank we have: 

• The mean of the bank's bid-ask spread. 

• The bank's geographical location. 

• The average number of posts the bank 
generates per day. 

• The massaged tick data giving the bank's 
relative price change over the immediately 
preceding price (probably posted by a dif­
ferent bank)._ 

The graphical model, shown in Figure 5, is cre­
ated using a drawing tool. In this model, the 
relative change that a bank will offer is as­
sumed to be determined by its class, but is 
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price changes. 
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Bank 
Price 

Figure 5: Basic clustered random work model 
for price changes. 

otherwise a random walk. Notice this model 
has multiple banks, and each bank gives mul­
tiple prices, so this model has multiple plates 
indicated a double product occurs in the full 
joint distribution for the data ( over banks and 
over the bank's price changes). For the current 
problem we simply drag a prefabricated mix­
ture model and appropriate components from 
a palette or component library into the work 
area, and make some modifications to it. The 
model should include complete specification of 
all distributions and parameters ( e.g., all pa­
rameters of the Dirichlets in Figure 5 be sup­
plied). For instance, we would have to set the 
various parameters for the conjugate priors ap­
pearing in the model. The model of Figure 5 
is not a standard clustering model so could not 
be obtained from any standard statistical pack­
age. In other problems we could create a free 
form model by drawing individual nodes, links, 
and probability annotations. The drawing tool 
contains the necessary hooks to associate vari­
ables on the plate with the fields from the bank 
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database, and the computed fields from the 
tick database. 

We now press the RUN button. At this point 
the system performs all the drudgery such as 
mathematical calculations, programming, and 
validation, previously requiring weeks of effort: 

• It performs known symbolic simplifica­
tions on the graphical model. For in­
stance, it knows about sufficient statis­
tics and some closed form solutions to ex­
pected values. 

• It computes all required derivative func­
tions. 

• It chooses an optimization algorithm. 

• It finds the parameter values of maximum 
posterior probability, together with the 
Bayes factor and the Hessian of the poste­
rior evaluated at the final parameters. 

• It generates optimized C code to evaluate 
the model by performing a data flow anal­
ysis over the needed computations. 

Now we could provide the system with an algo­
rithm scheme, such as EM or Gibbs sampling 
(additional examples are given later), and have 
the system come up with the necessary code for 
the derivatives, expected values, probabilities, 
and so forth. However, in this case the default 
algorithm matching the graph is good enough. 

We can now analyze the final model to see 
what it tells us, for instance using available vi­
sualization tools. ( All this is make believe.) 
The classes that it finds are natural ones we 
might expect. The banks are broken into differ­
ent classes according to whether they are closer 
to the New York or London markets. Banks 
that post infrequently tend to have a higher bid 
ask spread than those that post often. Each 
of these groupings also has different random 

Copyright© 1995 Software Engineering Press 



walks for their pricing. Some smaller banks, 
for instance, tend to make larger changes. 

We now go back to the drawing tool and re­
fine the model to account for the context of the 
tick data. In the previous model, the relative 
change that a bank will offer is assumed to be 
determined by its class, but is otherwise a ran­
dom walk. In this case we also make the price 
sensitive to the current average trend which is 
dependent on previous prices. This new model 
is given in Figure 6. Having drawn the new 

irichlet 

A, 

Normal-Gamma 

Price 

Bank 

Figure 6: 
changes. 

Trend sensitive model for price 

model, we simply click the RUN button and 
let the system re-optimize for the new config­
uration. This time, we could use the previous 
classification got as the initial values for the 
new extended model. 

For this more complex model, we would 
probably have to modify the default algorithm 
scheme suggested by the system. This is some­
thing we expect in general, so the system in-

Copyright@ 1995 Software Engineering Press 

eludes both a graphical model and a general 
algorithm scheme as inputs. If the algorithm 
scheme is missing, the system can provide a 
default using general purpose algorithms such 
as Gibbs, EM or MAP algorithms. 

2.2 A more detailed example 

An example of a graphical model for a simple 
clustering problem is given in Figure 7. To be 

N 

Figure 7: A simple unsupervised learning prob­
lem. 

explicit, we also have to give the full distribu­
tions for the variables in the graph. Assume 
there are 10 classes, so class E {1,2, ... ,10}, 
and the variables vari are binary. The graphi­
cal model is a mnemonic for the following dis­
tributional assumptions for the j-th case being 

var·· i,J 

claSSj 

~ Bernoulli with prob. success Oi,class1 ; 

~ 10-dimensional Multinomial with 

probabilities </>1, ¢2, ... , ¢10; 

and for the parameters ¢ and O being 

¢ ~ Dirichlet(0.1, 0.1, ... , 0.1) ; 

Oi,c ~ Beta(Dq;, D(l - q;)) ; 

for the hyper-parameters D, q1 , q2 , q3 . Using 
an empirical Bayes approach, we set q; to be 
the observed frequency of success for var; and 
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set D = 4 to yield reasonable prior standard 
deviation for the possible values of 0i. 

A matching algorithm scheme for this model, 
an iterated EM algorithm in pseudo-code, goes 
as follows: 

1. Repeat, 5 times. 

( a) Initialize the parameters </>, 0 ran­
domly according to their prior. 

(b) Repeat until the maximum relative 
difference in parameter values </>, 0 is 
less than 1.0e - 5. 

i. Reassign the sufficient statistics 
for </> as follows: 

N 

problems with this algorithm scheme, for in­
stance, if a </>i approaches zero the score will 
become ill-defined because some of the param­
eters will become redundant. This is irrelevant 
for the purposes of our illustration. 

3 High-level specification of 
data analysis algorithms 

An overview of the basic framework is given in 
Figure 8. Inputs to the system are a graphical 

ss( </>) ~ lclass·ivar1 · var2 • var3 • ,,_ 0 (clas .L...,; ' ,, , ,, ' ,, ,If', 

i=l 

11. For 
c = 1, ... , 10, reassign the suf­
ficient statistics for 01,c, 02,c, 03,c 
as follows: 

i=l 

Algorithm templates 

lc1ass; lvar1 ,i ,var2 ,; ,var3 ,; ,¢,,q ( lc1ass; =c var j,i )'-A __ ___::_ _ __, 

iii. Replace </> and 0 by their MAP 
values given the sufficient statis­
tics as above. 

( c) Compute the score for the final pa­
rameter values as 

_ d ( d
2

logp(<f>,0lsample)) 
score - et d( </>, O) 

2. Return the parameters </>, 0 matching the 
best score. 

The system would automatically compute the 
derivatives, expected values, MAP calcula­
tions, and so forth and insert the code effi­
ciently into the major loops. Notice there are 
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' 
' 

Probability model 

C program --------------- ' ------------

Figure 8: The basic framework for specifica­
tion. 

model to specify the variables and their rela­
tionships, and an algorithm scheme to spec­
ify the algorithm. These two inputs can be 
patched together from libraries. 
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3.1 A language to specify variables 
and their relationships 

Probabilistic graphical models ( chain graphs 
(27]) extended with plates are used here as a 
specification language. When augmented with 
specific functional forms such as the Gaussian 
and the logistic, this language is sufficient pow­
erful to represent a broad range of problems 
across several fields: generalized linear mod­
els, feed-forward networks, Jordan and Jacobs 
mixture of experts (15], unsupervised learning 
of many different kinds, and hybrids of these 
models. A review of some of the learning prob­
lems represented appears in [5]. 

A graphical model implies a probability 
model, thus it defines how probabilities, log­
probabilities, their derivatives, and some ex­
pected values can be computed, and in some 
cases how sampling can be done. For a Gaus­
sian or discrete Bayesian network, for instance, 
the usual exact computations are implied by 
the graph (24]. Techniques for computing 
these quantities are of course more complex 
in other cases. In general, exact methods for 
expected values are not known, and probabil" 
ities are not in general easy to compute for 
chain graphs and Markov networks, although 
ratios of probabilities are. The automatic cal­
culation of derivatives on structures such as 
graphs is a well understood problem [11]. In 
neural networks, this corresponds to the Back­
propagation algorithm and its extensions for 
second derivatives [7]. Likewise, the calcula­
tion of derivatives on probabilistic graphical 
models is an application of the chain rule for 
differentiation. Details appear in [3]. 

3.2 Algorithm schemes 

Algorithm schemes are high-level algorithms 
used as input for code generation and compi­
lation. The algorithm scheme refers to vari-
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ables, probabilities, log-probabilities, deriva­
tives, and expected values for items on the 
graph whose computation can be determined 
automatically. Thus the scheme is free of many 
of the cumbersome equational details found 
in most languages. Algorithm schemes them­
selves can be produced automatically from al­
gorithm templates for problems matching the 
right preconditions, and in other cases may be 
provided or refined by the user. We do not 
give a specification of the scheme and template 
language itself here, but the reader can infer 
from the examples that the scheme language 
is a fairly standard procedural language with 
appropriate hooks into the matching graphical 
model. Some sources for algorithm templates 
are as follows: 

• Gilks et al [10] have developed general al­
gorithms to perform Gibbs sampling on 
Bayesian networks with plates. 

• Other algorithms such as conjugate gradi­
ent, Fisher's scoring method, or Laplace 
approximations [16] can be applied once 
first and second derivatives are calculated 
for model parameters. 

• Lauritzen describes the application of the 
EM algorithm [9] to Bayesian networks 
with a single plate [17] in the context of 
missing values. The more general applica­
tion of the EM algorithm for hidden vari­
ables is obvious, as for instance done in 
unsupervised learning [12]. 

4 General discussion 

One task that can never have direct software 
support is the design of an appropriate model 
with an appropriate prior. This is a knowledge 
elicitation problem. Techniques here are var­
ied and range from careful choice of the repre-
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sentation to simplify elicitation [13], to tech­
niques for working with components and li­
braries [2]. But the elicitation task still has 
to be done afresh with each different problem, 
except in those prototypical situations that 
are routinely addressed by standard statisti­
cal packages. While one might use a standard 
package in initial modeling, as the problem be­
comes better understood specific requirements 
are needed that canned software may not pro­
vide. Of course, tools for software generation 
alleviate the modeling task greatly by provid­
ing rapid prototyping. Nevertheless, it is my 
view that a sizeable burden in the Bayesian 
analysis of data is software engineering rather 
than the statistical analysis itself, and there­
fore software generators and support tools are 
both a realistic and important goal. 

Naturally, an important part of such a 
framework is component libraries containing 
modules for common sub-tasks. Almond et 
al. [2] point out that parts of a graph, com- , 
ponents, are often shared in a series of applica­
tions. Learning and data analysis are no dif­
ferent. 
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Abstract 

Finding the optimal setting(s) of a technical indica­
tor with respect to the historical data of a given stock 
is a computationally expensive task because the size 
of the data is normally large. This paper presents 
a method for partitioning the data into equivalence 
classes such that each class contains data blocks of 
similar patterns. Then, optimizing the settings of 
a technical indicator with respect to an instance is 
equivalent ( or close to equivalent) to that for the en­
tire class. We discuss the metrics involved in the 
derivation of equivalence classes and an example il­
lustration of the optimization process. 

1. Introduction 

Developing intelligent trading systems that sig­
nal profitable entry and exit points of the long 
( or short) trades of a stock ( or commodity) is 
a research area which may produce useful tools 
for alerting and assisting traders in critical deci­
sion making. A "good" intelligent trading sys­
tem should advise its users taking a position at 
the optimal ( or close to optimal) trading oppor­
tunities. By optimal we mean the peak and the 
bottom of each upward/ downward trend. 

A critical task related to the development of an 
intelligent trading system is the choice of a set of 
technical indicators [1,2,6-10) with optimal pa­
rameter settings that maximizes a pre-defined 
utility function. For example, a utility function 
can be defined in terms of the net profit (loss) 
resulted from the trades initiated at a certain 
period of time [4). 

There are two optimization problems involved 
in the task just mentioned: (i) the optimal set­
ting( s) of a technical indicator with respect to 
the historical data of a given stock/ commodity, 
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(ii) the optimal combination of the technical in­
dicators that maximizes a utility function. In 
this paper, we focus on the first optimization 
problem. 

Optimizing the parameter setting of a technical 
indicator with respect to the historical data of a 
given stock/ commodity is very computationally 
expensive because the size of historical data is 
normally large. This paper presents a method to 
deal with the computational problem by "sum­
marizing" the behavior of a stock/ commodity. 
Our approach is based on the partition of the 
data into equivalence classes such that each class 
contains data blocks of similar patterns. By do­
ing so, optimizing the parameter setting of a 
technical indicator with respect to an instance 
is equivalent to that for the entire class, thus 
reducing the computational cost. In this paper, 
the equivalence class is induced by the criterion 
that the data patterns exhibited by the data 
blocks of the same class closely resemble each 
other. 

Partitioning a data set into equivalence classes 
of similar patterns requires the identification of 
data patterns which exhibit similar behaviors. 
Patterns that are not similar to any other data 
pattern in the data set, are called unique pat­
terns or data signatures [3] and each forms a class 
of its own. Therefore, the lower bound of the 
number of classes that a data set may be par­
titioned into heavily depends on the number of 
data signatures. 

In section 2 we discuss the concept of similarity 
between data patterns. Section 3 presents a dis­
cussion on class equivalence and a classification 
algorithm for summarizing a data set. Section 
4 describes an alternative method of classifica­
tion that first identifies the data signatures in 
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a data set and then derives classes from all the 
non-signatures. We describe the optimization of 
the settings of a technical indicator along with 
an example illustration in section 5. Finally, we 
conclude the paper in section 6 along with future 
research directions. 

2. Similarity Between Data Patterns 
The similarity ( or sameness) between two enti­
ties can be thought of as a predicate that re­
turns truth or falsity depending on the criterion 
that we use. This criterion can be an n-tuple 
of attributes and two entities are rendered sim­
ilar if they have matching attributes. For ex­
ample, if we are interested only in shape, then a 
green pepper and a yellow pepper are similar ob­
jects, but if we are interested in shape and color 
then they are not. In matching individual at­
tributes in some cases one might only accept ex­
act matches, while in some other cases one might 
accept an almost exact match, particularly when 
an exact match is virtually impossible to get due 
to the subjectivity of the attribute. 
In dealing with time .series data we are inter­
ested in summarizing the "behavior" of the se­
ries. One way to derive this summarization is to 
consider the various subsets of the series (given 
some subset size) and describe the behavior of 
each subset in relation to other subsets .. The be­
havior of each subset is an ordered description 
of the consecutive data points involved, with re­
spect to their respective values. For instance, a 
subset of three points, Pi, P2 and Pa has an up­
down (or{+,-} or a peak) behavior, if the value 
of P2 is higher than the other two. Moreover, we 
are interested in the magnitude of this behavior; 
i.e., the actual shape of the peak relative to the 
values of the points involved. For these reasons 
and for the purpose of determining similar be­
havior among subsets of the series (which we call 
data patterns), we are using the linear correlation 
coefficient, a standard and widely applied mea­
sure of the degree of association between two 
series of values ( also known as Pearson's r and 
product-moment correlation coefficient). For pairs 
of values (xi, Yi), i = 1, • • ·, m, the linear correla­
tion coefficient pis given by [5]: 

E(xi - x)(Yi - ii) 
i 

p = --;:====--;::==== Jr; (x, - ii:)
2 Jr; (y; - ii)

2 

The coefficient, p, is bounded between -1 and 
+1, inclusive. A value of p close to 1 denotes 
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positive correlation (i.e., x and y are increas­
ing or decreasing together), while a value of p 
close to -1 denotes negative correlation (i.e., y 
increases as x decreases or vice versa). A value 
of p near zero indicates that the two series are 
uncorrelated. 

Each pair of terms considered in the statistic is 
scaled by the expected value (mean) of its cor­
responding subset series. Therefore, it is not 
necessary to de-trend a series before attempting 
to summarize its behavior. In our case, two sub­
sets ( of equal size) of consecutive data values are 
considered similar to each other, if they have a 
high positive correlation. At this point we can 
see that the criterion of similarity between two 
patterns is some predefined correlation thresh­
old, p. Then, the closer pis to 1, the stricter the 
acceptance for similarity. 

3. Deriving Equivalence Classes 

Each data pattern in a time series, X(t), is char­
acterized by its size (number of data points), k, 
and its time stamp (its time of occurrence), ta 
(Figure 1 ). For the rest of the paper we denote a 
data pattern by P}(ta)• Then, given k, it can be 
easily seen that in a series X(t) there are n-k+l 
data patterns, where n is the size of X(t). 

~ 
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Figure 1: A time series and a pattern 

Our task is to partition these n - k + 1 pat­
terns into groups ( classes, Cl~k ( i)s) of similar 
patterns. In each class we include only data pat­
terns whose pairwise correlation (with all other 
data patterns of the class) is equal or higher than 
a predefined correlation threshold, p. By do­
ing so, we ensure that the transitivity property 
holds true within the class. Each derived class is 
an equivalence class (i.e., a class whose members 
satisfy the RST properties; namely, Reflexive, 
Symmetric and Transitive) and each instance 
( data pattern) in a class is a summary of the 
class. 
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To derive these equivalence classes we first de­
cide on the size of the patterns we wish to an­
alyze (i.e., set the value of k) and the criterion 
of similarity (i.e., the correlation threshold, p). 
Then, initially we consider that each possible 
pattern of size k in the series is in its own class. 
Subsequently, we start processing pairs of pat­
terns (in an ordered fashion) in an attempt to 
find pairs whose correlation is above the thresh­
old. For example, if P_¾(t 1) is found to correlate 
with P_¾(t5) then we know that we can group 

- k 
these two patterns in the same class, say CllJt (1). 
Keeping track of a parent-child association be­
tween these two patterns, we continue to pro­
cess P_¾(t5) in an attempt to add members to 
the already established class. So, if say, P}(ts) 
correlates with P_¾(t 16 ), we will include P_¾(t16) 
in the class CtlJi"(l) only if it correlates also with 
P}(t1). In addition, the parent-child association 
between P_¾(t5 ) and P}(t15) is established only 
if P}(t16 ) is accepted as a member in the class. 
For instance, if P}(t16) does not correlate with 
P_¾(t 1 ) then P}(t16 ) is not accepted in CllJi"(l) 
and the search proceeds by testing P_¾(ts) with 
Pk(t 17 ). The process is an iterative one, and at 
each iteration it only considers patterns which 
are not classified by previous iterations. 
Following is the algorithm to derive these equiv­
alence classes. 

Algorithm 1: Derivation of equivalence classes 
from set X(t). 

Input: A time series data set, X(t), data win­
dow, k, correlation threshold, p. 

Output: The set, CtlJi", of all equivalence classes, 
Cl~"(i)s, in .X(t). 

Description: Let CllJi" - {} and set p, k. 
Set a - 1, /3 - 2, , - 1, x - l 
and n - IX(t)I 

/* initialize each pattern to be in its own class * / 
loopl: if x > n - k + l then goto 1 

else P_¾(tx).parent - x 
P}(tx).child f- x 
x-x+l 
goto loopl 

/* compute classes * / 
1: if a ~ n - k + l then goto 2 else goto 7 

2: if P}(ta).parent = P}(ta).child then goto 3 
else a - a+ 1 

goto 1 

3: if /3 ~ n - k + l then goto 4 
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else insert P_¾(ta) in Cl~"(i) 
insert c11Ji"(i) in c11Ji" 
i -i+ 1 
,-,+1 
O:' - 'Y 
/3-a+l 
goto 1 

4: if P}(ttJ).parent = P}(ttJ).child then goto 5 
else /3 - /3 + l 

goto 3 

5: if p(P}(ta), P}(t/J)) 2: j5 then goto 6 
else /3 - /3 + 1 

goto 3 

6: if Pk(ta).parent = a then 
insert P_¾(ta) in CllJi"(i) 
P_¾(ta).child - /3 
P}(ttJ).parent - a 

O:' - /3 
/3-a+l 
goto 3 

else x - a 
a - P}(ta).parent 

loop2: if p(P}(ta),P}(t/3)) 2'. p then 
if P}(ta).parent # a then 

a - P}(ta).parent) 
goto loop2 

else insert P_¾(tx) in CliJi"(i) 
P_¾(tx).child - /3 
P}(ttJ).parent - x 
O:' - /3 
/3-a+l 
goto 3 

elsea-x 
/3-/3+1 
goto 3 

7: Return CllJi" 

4. Data Signatures and Equivalence 
Classes 

In the previous section we discussed an algo­
rithm for deriving the equivalence classes of pat­
terns in a data series. In this section, we de­
scribe an alternative two-step method of deriv­
ing equivalence classes. First, we discover the 
unique patterns of the series which we call data 
signatures[3]. 

Formally, a data signature is a block of consecu­
tive time varying data points which exhibits low 
or no statistical correlation to any other block of 
data in the same data set. 
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For instance, the two patterns shown in Fig­
ure 2a are data signatures since they have low 
correlation. In Figure 2b the middle pattern is a 
data signature, since it does not correlate highly 
with either one of the extreme blocks. The two 
extreme blocks are not data signatures because 
they are almost identical (highly correlated). 

Figure 2a Figure 2b 

A data signature is found if its correlation with 
all other data windows in X(t) is less than a 
predefined correlation threshold, p. 
Once we derive the data signatures for a par­
ticular correlation threshold, we know the lower 
bound of the number of equivalence classes we 
would deal with, which is # of data signatures +1. 
In other words we know that a data signature 
forms a class by itself. In addition, we do know 
that if a data pattern is not a data signature, 
then there exists at least one other data pattern 
(possibly more) with which it is highly corre­
lated, and therefore, together they may form an 
equivalence class. At this point we proceed to 
the second step. The data patterns which were 
found to be non-signatures are further consid­
ered in the derivation of the remaining equiv­
alence classes using the algorithm described in 
section 3. 
Although for the purpose of deriving equivalence 
classes this approach is never better ( computa­
tionally) than the straightforward approach de­
scribed in the previous section, by first identi­
fying the unique patterns of a series, we do get 
a better insight on the number of true single el­
ement classes. A unique pattern is guaranteed 
to be its own class regardless of which method 
we use. But, with the straightforward approach 
we do not really know whether a particular one­
element class contains a unique pattern or a pat­
tern which correlates with a few but not all of 
the patterns of some other class. 

5. Setting a Technical Indicator 
The basic function of a technical indicator is to 
assist a user in making trading decisions (i.e., 
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when to buy and when to sell). The indicated 
trading actions are dictated by a set of parame­
ters incorporated in the formula of the indicator. 
A popular such indicator is the Wilder Relative 
Strength Index, (RSI) [9,10]. RSI is a momentum 
oscillator that measures the velocity of direc­
tional price movement by comparing a stock's 
highest highs and lowest lows over a period of 
time, thus able to indicate trend reversals at an 
early point. The formula for RSI is: 

where 

RSI = 100 - lOO 
l+RS 

RS_ Average of Up Clo,es for X Number of Days 
- Average of Down Closes for X Number of Days 

The number of days considered in RSI is thus a 
parameter. Moreover, a second pair of settings 
involves the thresholds for a buy and/ or a sell 
signal. For example, setting these two parame­
ters at 30 and 80 respectively, then a buy signal 
is triggered when RSI goes from a value of less 
than 30 to greater than 30 and a sell signal is 
triggered when RSI goes from a value of greater 
than 80 to less than 80. Figure 3 visually dis­
plays the series of the daily closing price of a 
stock (upper graph) for a two-year period and 
its corresponding 9-day RSI (lower graph) with 
30 and 80 trading thresholds. 

Figure 3: A stock and its 9-day RSI 

The optimization of a technical indicator is the 
setting of the aforementioned parameters such 
that a utility function, e.g., net profit, is max­
imized. Generally speaking, optimizing the pa­
rameters of the indicator is specific to the stock 
and in particular to a specific time period. In 
other words, the optimized setting of the indica­
tor for some period of the stock may be different 
than the optimized setting of the same indicator 
for some other period. 
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Traders are usually interested in the settings of 
an indicator which historically have a "good" 
performance, with the belief that they will work 
effectively in the future as well. In finding those 
settings, one might decide to consider a fixed 
length time period, say 100 days, and pull sev­
eral 100 day periods from the historical data and 
check for a consistent performance of the setting 
of the indicator for these periods. By consistent 
performance we mean that the chosen settings 
return a value ( or values) of the utility function 
which are approximately close. While this is a 
common and practical approach, theoretically, 
there are n - 100 + 1 different 100 day periods 
that the user would have to consider when op­
timizing the indicator. Immediately we can see 
that this raises computational concerns. 
By summarizing the stock data in classes of sim­
ilar patterns we want to avoid optimizing the 
parameters of an indicator for patterns that are 
found to be similar, since setting these parame­
ters for similar patterns would be approximately 
the same. The question that arises is how consis­
tent those settings are for members of the same 
class under different values for the pattern size 
and correlation threshold. 
To address this question we experimented with 
the daily closing price of International Business 
Machines stock (IBM). We applied our classifi­
cation algorithm on the data using different cor­
relation thresholds (0.5, 0.6, 0.7, 0.8, 0.9 and 
0.95) at different pattern lengths (20, 50 and 
100). Our preliminary results indicate that the 
larger the pattern size the smaller the number 
of classes we partition the series into (i.e., an 
increased ratio of number of possible patterns 
over the number of classes found which trans­
lates to more patterns per class) regardless of 
the correlation threshold. Our criterion for set­
ting the trading thresholds of the 9-day RSI in­
dicator was set to be the value crossing the bot­
tom (buy signal) and the value crossing the peak 
(sell signal) of the indicator's pattern. We found 
that these values for patterns in the same class 
for higher correlation thresholds such as 0.9 and 
0.95 were significantly more consistent than for 
lower correlation thresholds. Also, analysis with 
patterns of length 100 resulted in more consis­
tent results than for the smaller lengths. 

6. Conclusions 
A theoretical optimization of the parameters of a 
technical indicator on a time series data requires 
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the processing of all the patterns from the data 
of some length k. We presented a method to 
deal with this computational complexity, parti­
tioning the series in patterns of similar patterns 
and then optimizing the parameters using only 
one pattern per class. In our preliminary exper­
imental results we found that the level of consis­
tency for settings of the 9-day RSI indicator for 
a particular stock, increased with higher corre­
lation thresholds and larger data patterns. 
In our future work, we will conduct experiments 
with various technical indicators and different 
utility functions in an attempt to derive an opti­
mal combination of indicators over a wide range 
of stocks. 
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Abstract 

In this paper we discuss how different techniques 
have been integrated in a system designed to 
perform fine grain text categorisation, involving 
information extraction, of natural language 
texts. The texts analysed are agency news 
(Reuters news), while the target users are traders 
and analysts of an Italian merchant bank, which 
requested the possibility of having both a broad 
and a fine grain text categorisation. The need 
for a flexible text categorisation system which 
could be able to perform a rich categorisation 
lead to the development of a new system 
integrating different text analysis techniques. 
The techniques used range from pattern based 
text analysis, used for a first 'shallow' 
categorisation, to full NLP, including full text 
parsing and semantic analysis of the text. 

The work reported has been done in the 
framework of the LRE (Linguistic Research and 
Engineering) project COBALT (LRE 61-0I 1); 
LRE projects are partially funded by CEC. The 
COBALT prototype was developed by a team 
composed by Quinary SpA, Italy, UMIST-CCL, 
UK, Cril, France, Reuters SpA, Italy, and 
Euromobiliare, Italy. 

1. Introduction 

Managing the overwhelming amount of 
unstructured, textual information made available 
in electronic form, either via on-line information 
sources or via e-mail or in CD-ROM is 
becoming a crucial task. The main requirements 
to attack this problem are the ability of 
recognizing concepts mentioned in the texts and 
to relate a portion of text to a set of conceptual 
categories. 

When dealing with financial news, several 
systems have been built performing a broad 
categorisation, recognizing the main topics the 
news deal with, but a more powerful approach is 
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needed to perform a richer categorisation, able 
to discriminate also on details reported in the 
agency news. The requirements of performing a 
precise categorisation, with a high degree of 
recall and precision, and of managing big 
amounts of texts, impose severe constraints on 
the possible approaches to the problem. 
Keyword search and pattern matching 
techniques on their own are fast and cost 
effective, but can't achieve the accuracy users 
need from an automated system. On the other 
hand, more complex systems, based only on 
natural language understanding technologies, 
are still much too slow and not robust enough 
for practical uses. 

The basic idea behind the Cobalt approach is 
therefore to integrate different technologies such 
as shallow pattern matching and robust syntactic 
and semantic analysis in order to get the 
advantages of each while overcoming their 
weaknesses. The main challenge is obviously to 
manage the integration, both from the point of 
view of effectively being able to obtain the best 
result from each component and from the point 
of view of building a robust, extendible system. 

The main glue among the different components 
is given by the use of knowledge representation 
techniques to describe the main concepts in the 
application domain and the relationships among 
the different kinds of information that can be 
extracted by the different modules. This allows 
us to define a 'common substrate' for each 
component specific knowledge and therefore to 
manage integration defining opportunistic 
strategies depending on 1) partial results of each 
component 2) domain knowledge available to 
the system and 3) known capabilities of each 
component. Moreover it becomes possible to 
exploit domain knowledge to manage the 
complexity of patterns and analysis rules, 
making it easier to maintain and extend the 
system. 
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2. The Cobalt Project 

The COBALT project ([1]) was concerned with 
the problem of capturing factual and 
definitional knowledge from textual sources. 
The main aim of the project was to demonstrate 
that different text analysis techniques can be 
used together to provide a system able to 
perform a fine grain classification, placing it at 
the boundary between text categorisation 
systems and text understanding systems (which 
are generally characterised by tasks such as 
being able to extract information from texts or 
to summarise or abstract texts [2]). 

Research and development activities in COBALT 
resulted in the production of an experimental 
"empty categorisation shell", which has been 
used for the real-world prototype described in 
this paper. The main aim of the prototype is to 
be able to recognise news which are interesting 
for the end user from the set of news distributed 
by Reuters' datafeed and to make them available 
for routing and retrieval. The possibility of 
filtering important news at a particular moment 
will greatly aid end users in their work since it 
will make it possible for them to concentrate 
only on the potentially important news without 
being diverted by the big amount of 
uninteresting ones distributed by the datafeed. 

Both end users of this prototype, the analysts 
and traders, are mainly interested in financial 
news, related to specific companies and stock 
markets as well as to the economic and political 
situation of the country. Although the two 
different types of users are interested in the same 
kind of news, they however have quite different 
requirements with respect to the kind of 
categorisation that must be performed. 

Traders, who are in charge of buying and selling 
stocks on the market need help in quickly 
discriminating between news; for this type of 
user, a broad categorisation identifying the main 
topics pertaining to the financial news types is 
sufficient since they need to keep an eye on the 
overall market situation without being 
overwhelmed by the great amount of incoming 
news. Their major requirements are a high speed 
of the system (since the arrival of a relevant news 
may imply an immediate reaction in the market) 
and a high recall, which is preferred to a high 
precision since they do not have to miss out any 
of the possibly relevant news. 

On the other side, analysts are usually assigned 
to specific sectors and they use news as a source 
of information for making analyses and writing 
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reports regarding their sector and the companies 
belonging to it. Unlike the traders, time is not so 
much a constraint, since they do not have to 
react immediately to a news but have instead 
plenty of time to reflect on its contents and on 
the longer term impact it may have. Moreover, 
this kind of user needs a fine grain news 
categorisation since they are usually interested in 
filtering news depending on particular 
information regarding the main topics identified 
by the broader categorisation; for example, they 
might be interested in filtering news depending 
on who is the vendor in a stake modification 
story. 

While the first users mainly need a broad 
categorisation, supplied by what we will refer to 
in this article as "base categories", the second 
users' need implies the necessity for the system 
to have some capabilities of information 
extraction which is to be used for the 
identification of the fine grain categories. In the 
following we will refer to this fine grain 
categorisation as "compound category" 
assignment, since it implies the identification and 
extraction of information which will fill some 
slots (what we call 'category relevant slots') that 
have been associated to the base categories thus 
rendering them "compound". 

While base category assignment may be 
achieved with quite a high accuracy through a 
shallow analysis of text (in Cobalt done using 
pattern matching techniques), the identification 
of compound categories requires a deep 
syntactic and semantic analysis of the contents 
of the text. Information to be inserted in the 
relevant slots to build compound categories 
could then be extracted from the text 
representation that results from the deep 
analysis. 

The mechanism that controls text analysis is 
based therefore from one side on knowledge 
about how to perform categorisation and on how 
to extract relevant information from texts, and 
from the other side on user needs, explicitly 
stated in terms of filters, expressed as boolean 
combinations of the categories that have been 
defined for the system. 

3. Categories and Concepts defined for the 
Cobalt Prototype 

The end users are interested in financial news 
both related to specific companies listed in the 
Milan stock exchange as well as to news related 
to the behaviour of certain foreign stock markets 
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and to the political and economic situation of 
the country. 

In the prototype, a set of categories has been 
defined (in a hierarchical manner) for the 
company news and for the foreign _st_ock market 
behaviour news; the political and 
macroeconomics news related to the country 
(Italy) have not been treated. 

The total number of base categories defined is 
240; where 15 pertain to the stock market news 
and 225 to the company news. Out of the 
defined categories, 180 are explicitly assigned 
by categorisation rules an~ the rest act. as 
containers for grouping the different categones. 
Approximately 155 of the explicitly assi~ned 
categories actually correspond to either 
company or stock market . instance~. 
Approximately 100 concepts _(1.~; gen~nc 
concepts, such as "stake_sell~ng , hav~ng 
patterns defining them) and 150 mstances (1.e. 
concept instances, such as "Fiat" which ~ave 
associated specific patterns) have been defmed 
to treat the company news; 22 concepts and 14 
instances have been defined for the stock market 
news for a total number of approximately 550 
patterns. 

Regarding the hierarchical structure of the 
category KB, there is a root category named 
category_ which has two main subtrees 
respectively for the company news and for the 
stock market news. 

For the company news, the further identified 
categories correspond to the single company 
instances the user is interested in (companies 
listed in the Milan stock exchange) defined 
hierarchically reflecting their sectorial 
subdivision as already used by the users, and 
categories identifying topics pertaining to 
company news. Such topics are for example: 
share capital changes . (capital increase and 
decrease), stake selling and buying, share 
offerings, initial public offerings, quarterly, 
yearly and half yearly economic re~ults, c~anges 
in the management of the compames, ratmg of 
companies. 

For the stock market news, the single foreign 
stock markets the user is interested in, and the 
different behaviour of the markets (we have 
identified them as up, down and steady) 
constitute the further classification. 

For some of the categories, a set of relevant slots 
has been defined thus allowing the users (mainly 
the analyst) to specify compound categories. 
Fine grain categorisation rules have been 
initially defined for: stake_modification, 
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share offer and form_joint_ venture. For these, 
we will give therefore a more detailed 
description both regarding the base category 
and its relevant slots. 

stake modification: should be assigned if the 
news speaks about the sale/acquisition of a stake 
or shares of a company. In a stake modification 
event there are different roles: the vendor of the 
stake, the buyer of the stake and the object of 
the sale, i.e. shares or a stake of the company 
whose share/stake is being traded. Other 
information such as the amount of the 
stake/shares, and the price paid are relevant for 
the creation of compound categories. Attributes 
have therefore been defined for this base 
category to take into account this information 
and in particular they are: ":vendor", 
":buyer", ":company_name", ":goods", 
":number-of-shares", ":stake-percentage", 

' " 1 • " d " " ":unit-price' , :tota -pnce an :currency . 
An example of compound c~t~go~y t~at co~ld 
be formulated is :stake_modificat10n m which 
the stake-percentage being traded is greater than 
50%. 

share offer: should be assigned if the news 
speaks-about either an offer to buy or to sell 
shares of a company. The relevant information 
for this base category are: whose shares are 
being offered and by whom, the amount of 
shares and the price for the offer, which are 
identified respectively by the following relevant 
slots: ":company-name", ":offerer", 
":amount", ":unit-price", ":total-price" and 
":currency". 

form.Joint_ venture: should be assigned if ~he 
news speaks about two or more compames 
joining up to form a joint venture. The outcome 
of a joint venture is usually a new co~~any_ or 
the modification of one of the part1cipatmg 
companies with an exchange of shares_ among 
them. Information that has been associated to 
this base category are represented by the 
following relevant slots: ":companies­
involved:" identifying the companies involved 
in the venture; ":venture-outcome:" which is 
the new company formed as a results of the 
venture; ":investment:" indicating the quantity 
invested in the venture; ":currency" which 
identifies the currency the investment is 
expressed in; ":activity" of the new joint 
venture; (for example: production, sale, design, 
marketing, services); ":phase:" identifying in 
what phase of the venture agreement the venture 
is in (whether we are in a plan, agreement or in 
the actual activation of the venture); ":sales" 
which identifies the expected sales or sales 
volume of the new venture; ":stake-
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partitioning:" which identifies the stake division 
in the new venture of the participating 
companies. 

Figure 1 below reports a portion of the 
~iera_rchy as shown through the system 
mtertace; bold nodes represent base categories, 
with underlying text reporting available relevant 
slots; boxed nodes mean that a subhierarchy 
exist below the node. 

ORM AGREEMENT 

HARE CAPITAL 
( :cocnpaay- name) 

TAKE RELATED 
(:cocnpaay-name) 

OMPANY RE SUL TS 
( :cocnpaay- name :yn1) 

Fig. 1: a portion of the category hierarchy 

In order to assign the categories to the texts, a 
knowledge base of concepts has been defined in 
:,vhich the domain knowledge is expressed both 
m terms of properties and relations existing 
between concepts, and in terms of patterns which 
are used to perform the shallow analysis. 
Concepts are organised in a hierarchy which can 
be exploited for score inheritance by the shallow 
categorisation rules [3]. 

Entities describing the domain range from the 
single instances identifying the stock markets, 
and the corresponding market indexes, the user 
is interested in; the companies listed in the Milan 
stock exchange organised in a hierarchy 
reflecting the sectorial division used by the user; 
entities appearing in the balance sheet and 
res~l~s stat~m~nts; currency instances; personal 
pos1t10ns w1thm an enterprise. Such entities are 
obviously described by properties (for example, 
:company-name for the concept company_) and 
relati_ons linking these entities (for example, the 
relation :stock-market-index and its inverse 
:related-bourse which link instances of the 
concept stock_market to instances of the 
concept stock_market_index). The KB contains 
also concepts describing the possible actions that 
are relevant in assigning the categories 
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identified, such as, for example, the 
buying/selling of shares/stakes in a company, the 
increase or decrease of the share capital, the 
upward and downward behaviour of shares and 
stock market indexes, the forming of a joint 
venture, the election to or dismissal from the 
board of directors and so on. 

4. Prototype Functionalities 

The main functional requirement for the 
prototype is that of being able to filter news 
coming from a datafeed according to user 
specified interests. User interests vary both from 
user to user, and, for each user, from moment to 
moment according to the specific situation or 
work he is doing in a particular moment. Thus 
the necessity of a user configurable system 
which allows him to specify from moment to 
moment his interests in terms of categories (base 
or compound) to be satisfied by news in order 
for them to be reputed interesting. The news 
which satisfy the user's interests will then be 
made available to him and will displayed on the 
screen. 

Besides specifying the meaning of interesting 
news, the users wanted to have the possibility of 
displaying the different kinds of news in 
different windows on the screen thus aiding 
them in further visually classifying among the 
filtered relevant news. 

For this reason the idea of "user profile" has 
been introduced in the prototype and has been 
defined as a set of windows to which a set of 
filters is associated. Profile execution should 
then consist in the display on the screen of the 
windows defining it, and in the display of the 
headlines of the incoming news in the windows 
which have associated at least one filter which is 
satisfied by the category assignment that has 
been performed on the news by the system. The 
user could then read or print the entire text of 
the news whose headlines appear in the profile 
windows. 

Filters ai:e defined by specifying both a name, a 
level of importance and a definition in terms of 
boolean combinations of categories (be them 
base or compound). The level of importance for 
a filter defines the action to be performed when 
the filter is satisfied. Simple actions involve 
evidencing the title using different colours, or 
directly displaying the news contents, or sending 
alert messages to the user via e-mail. 
Straightforward extensions could include 
integration in workgroup environments and 
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storing of classified texts in specialized data 
bases. 

Following is an example of filter definition 
containing the base category formjoint_ venture 
and the compound category defined by 
specifying. the slot :vendor for the base category 
stake_modification: 

"( or form_joint_ venture 
(stake_modification where :vendor Fiat)) 

5. Cobalt Architecture 

The COBALT system is composed of four main 
modules; one which performs shallow analysis, 
two devoted to deep analysis, performing 
syntactic and semantic analysis of text, and a 
control module. 

The shallow categorisation component of 
COBALT (TCSM, Text Categorisation System 
Module) is based on a commercial product, and 
is aimed at identifying in each considered text 
portion references to known concepts. Such 
references are recognised thanks to the presence 
of defined combinations of keywords 
("patterns") that are associated with the 
concepts' definitions. 

The basic text categorisation system has been 
enhanced by integrating it with a knowledge 
representation language that allows to describe 
the domain of interest, expressing entities' 
properties and relations. Domain concepts are 
represented as frame-like objects organised in a 
hierarchy, and patterns exploit domain 
knowledge represented in the concepts 
knowledge base; moreover, the concepts 
hierarchy allows inheritance of patterns as well 
as of match results. This work, which is 
described in detail in [3], represents an attempt 
to increase the capability of the pattern match 
based analysis and to ease the construction of 
the search patterns. 

This first level shallow analysis sets up a rough 
representation of the conceptual content of each 
considered portion of text, which can then be 
used to evaluate its "relevance". "Relevance" 
in our context is both application dependent and 
user dependent, in that different users are 
generally interested in different topics and at 
different levels of detail. Therefore, the 
"relevance" associated to different news may 
involve the number of retrieved concepts as well 
as the presence of references to some 
"important" concept, and will also take into 
account the ranking defined by the different 
users. 
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The deep text analysis is based on NLP 
techniques. Relevant portions of text can then be 
submitted to the syntactic analysis module 
(SCAM, Surface COBALT Analyser Module) 
which is based on a sort of unification-based 
"categorial grammar", see [4]. 

The output of the module is the input to the 
semantic parser (CLAM, COBALT Language 
Analysis Module) which produces, by applying 
a set of substitution and triggering rules, a 
formal representation of the content of the 
original text in terms of NKRL ([5]) a 
specialised Knowledge Representation 
Language. 

The semantic analysis is in charge of producing 
a 'normalised' representation of the text in 
terms of concepts and relations among them, 
resolving syntactic/semantic ambiguities and 
anaphora. The representation is necessarily rich, 
to take into account the real text contents and 
will directly reflect the text structure. 

A specific module, the COBALT Control 
Module (CCM), provides the application 
developer with a general approach and 
languages for defining, in each specific 
application, which categories have to be handled, 
which information is carried with them, and how 
to perform categorisation. The category 
definition language enables the application 
developer to define the categories for the 
application, which are characterised by a name a 
definition and a set of attributes. Attributes, 
defined as slots of specific types,' could contain 
either control information (such as references to 
mechanisms needed by the control structure to 
perform categorisation) or domain information, 
such as additional attributes that could be 
relevant to the specific category (e.g. the fact 
that for "stake_selling" category a "buyer" 
could be a relevant information potentially 
associated to the category). A rule based control 
language allows to specify the control strategy. 

In the prototype developed, the categorisation 
flow is dependent on both the results obtained 
from the textual analysis components (TCSM, 
SCAM and CLAM) and on the user preferences 
set through the profile definition. Both the rules 
to assign the base categories, the rules that fill 
the relevant slots of the base categories, and the 
control rules that activate deep analysis when 
needed and decide which slot filling rulesets to 
fire are written in the COBALT Rule Language 

First of all, news texts are read into the system 
from an external source via a reader program 
which is in charge of reading the news items 
from the news feed and transforming them into 
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their internal format. Each text then undergoes 
the surface analysis performed by the TCSM 
module. Then, a first set of CCM application 
dependant rules is fired. This set of rules is in 
charge of analysing TCSM pattern matching 
results and performing base categories 
assignment. 

After base categories assignment, filters defined 
in the current profile(s) running are verified; for 
each compound category mentioned in a filter 
for which an assignment of the corresponding 
base category has been made, a specific ruleset is 
activated. 

The activation rulesets that are fired whenever a 
compound category has to be matched are in 
charge of actually trying to provide the 
information requested in the compound 
category or to fail. In the prototype, each ruleset, 
different for each base category, will activate 
deep analysis (SCAM and CLAM in sequence) 
and then fire a set of rules in charge of 
analysing the results and perform compound 
category assignment. These rules will try to fill 
the category relevant slots with the results 
obtained by the deep analysis (i.e. on the NKRL 
representation of the text). The category with the 
relevant slots filled will then be the compound 
category assigned to the text. 

If the categories (base and/or compound) that 
have been assigned to the text satisfy any of the 
filters defined in the currently running profile, 
then the action corresponding to the filter 
relevance will be executed, namely to display the 
news' headline or contents in a window. 

It's worthwhile noticing that 

• only shallow analysis is always performed on 
the text; deep analysis is performed only on 
demand depending on the user needs 
(usually analysts' needs); 

• by partitioning slot filling rules depending 
on specific categories, the system will only 
look for requested information, not trying to 
extract from deep analysis results 
information which is not needed 

an obvious advantage of this approach is the 
gain in speed; on the other side however, if 
categorisation results need to be saved for later 
retrieval this implies that deep analysis need to 
be done again to retrieve further compound 
categories. • 
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6. Evaluation 

A complete evaluation of the prototype has 
already been performed on a set of unseen texts. 
The evaluation involved shallow categorization 
(i.e. assignment of base categories) of about 500 
texts, automatically computing accuracy 
measures on the results. A subset of 50 
randomly chosen texts then underwent full 
analysis, involving information extraction and 
recognition of compound categories,. 

A full analysis of evaluation results has already 
been completed concerning shallow analysis 
results, while the analysis of compound 
categorization results is still ongoing, due to the 
higher complexity of evaluation data. 

Shallow categorization results showed an overall 
accuracy of over 85%; in figure 2 the results 
obtained on all the categories for which at least 
10 texts in the evaluation corpora were relevant 
are reported. Most of the categories reached 
over 90% in both recall and precision, and the 
few that fall below these figures were also the 
ones less recurring in texts and to which lower 
attention was paid during development. 

1 

0.8 

0.6 
recall 

0.4 

0.2 

0 

Categories (texts> 10) 

[iii F,. 
1----+------ll---+--,■,=;;....----1 

0 0.2 0.4 0.6 0.8 1 
precision 

Fig 2: accuracy results for shallow categorization 

Preliminary results concerning deep analysis 
showed that only about 50% of the information 
available in texts could be extracted, but also 
showed that the error rate (i.e. wrong 
conclusions) is quite low. 

Processing time is about 1 sec for shallow 
categorization and ranging from 10 to 30 
seconds for deep analysis (timings on a 
SparcStation 2 with 32 Mb of main memory), 
proving effective to satisfy user requirements. 
Moreover, it must be noted that the prototype 
has been developed with no special attention on 
speed optimization 
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7. Conclusions 

The Cobalt prototype was built with the aim of 
demonstrating how the integration of shallow 
and deep text analysis techniques could be 
successfully exploited in performing the kind of 
categorisation of financial news needed by a real 
end user. 

The integration of shallow (pattern based) and 
deep (syntactic and semantic) analysis was 
envisaged to overcome the conflicting 
requirements of a rich categorisation to be 
performed quickly. From this point of view, the 
integration of the two technologies proved to be 
able to deliver expected functionalities, while the 
control mechanism developed for the prototype 
(and the general idea implemented in the Cobalt 
shell of providing a powerful control language) 
showed that necessary flexibility could be 
achieved. 

Although a detailed analysis of the raw results is 
still ongoing, some conclusion could already be 
drawn. Shallow and deep analysis capabilities 
proved themselves effective and complementary 
in performing the task. Preliminary results from 
the evaluation confirmed the capability of 
shallow analysis to perform a quick and accurate 
enough categorisation, but also confirmed the 
impossibility of doing too much precise 
category assignment using it alone. In particular, 
while good results could be obtained in 
performing generic category assignment (i.e. 
determining the main topic the news deal with, 
e.g. stock trading), it proved impossible ( or not 
cost effective) trying to perform richer 
categorisation involving information extraction 
(e.g. who actually traded the shares) using 
shallow analysis directly. Syntactic and semantic 
analysis, on the other side, while being still too 
inefficient or not robust enough to perform in a 
reliable way simple categorisation on the whole 
set of possible incoming texts, proved to be 
useful in analyzing specific texts to extract 
interesting information. 

The shallow analysis results confirmed the high 
accuracy that could be obtained with the 
employed techniques; alternative approaches for 
performing a 'pre filtering' stage before a 
richer categorisation still deliver lower accuracy. 
The known problem related with knowledge 
based pattern analysis, namely that of the 
development effort needed, were partially 
mitigated by exploiting domain hierarchies [3]; 
moreover, the use of explicit patterns (instead of, 
for example relying on statistical techniques or 
on semantic dictionary based techniques [6]) 
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make easy to understand and justify (and thus 
modify and extend) system behaviour. The use 
of statistical techniques as a support for the 
pattern definition activity, although not 
exploited within the Cobalt project, is envisaged 
to further minimise development effort and will 
be considered as prioritary for further 
development. 

Concerning deep analysis results for relevant slot 
filling, while the overall results showed that only 
about 50% of the information available in texts 
could be reliably extracted, the chosen approach 
proved anyway to be robust enough to process 
any agency news. Improvements need to be 
done to extend the domain specific lexicon and 
to enhance the treatment of unknown words, 
mainly for proper name recognition and proper 
treatment of abbreviations or acronyms. 
However, even if the syntactic and semantic 
analyses still need further work to enhance the 
obtainable results, they proved to be effective in 
successfully integrating shallow techniques, thus 
justifying the chosen architecture. 
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Reference Aid for Economic Research (REFER) is a computer-based support environment 
for balance of payments (BoP) analysis. REFER currently provides three services. First, 
it displays key economic indicators for BoP analysis ( calculated from the International 
Monetary Fund's International Financial Statistics (IFS) database) and warns the user 
when anomalous changes occur. Second, REFER assists analysts in assessing the effects 
of domestic and international events on a country's BoP by applying a body of BoP expert 
knowledge. Third, it allows the user to browse through the IFS database, conduct statistical 
analyses, and generate graphs of the IFS data and the results of the statistical procedures. 

INTRODUCTION strategies in their respective domains. The 
difficulty with which the knowledge is acquired 
and represented increases with the degree to 
which the expert's task is cognitive rather than 
mechanical and probabilistic rather than 
deterministic. One cannot rely on the immutable 
laws of the physical sciences to build highly 
effective explanatory and predictive models of 
human behavior. All of the variables that affect 
decision processes cannot be controlled in an 
experimental setting and manipulated precisely, 
as one endeavors to develop and test behavioral 
models. This problem is compounded when one 
attempts to apply these models to completely 
uncontrolled operational environments. The 
difficulty in modeling human behavior 

Mystech has developed knowledge-based systems in 
domains representative of both the physical sciences 
and the behavioral sciences. In the former, for 
example, Mystech has modeled, under a wide range of 
conditions, the multistep process by which torpedoes 
are preset for targeting prior to launch. In the latter 
domain, Mystech has modeled, in the field of political 
psychology, the decision-making behavior and 
effectiveness of political leaders. 

Key differences between the physical and behavioral 
sciences have substantial implications for the 
knowledge base system design and development 
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intensifies further as one considers the size and 
complexity of the models required to account for the 
relevant variables and the relationships among them. A 
number of research efforts have addressed this problem 
(Anderson, 1987; Hudson, 1987; Thorson, 1984). 

In Mystech's experience, knowledge-based systems 
have demonstrated promise in modeling human 
behavior, as they excel at handling numerous, complex 
combinations of variables and their interrelationships 
when they are not subject to a priori determination. 
They also have the capability to integrate probability 
and confidence factors in the model, a necessity in the 
behavioral sciences. 

SYSTEM DESCRIPTION 

Reference Aid for Economic Research (REFER) is a 
computer-based support environment for balance of 
payments (BoP) analysis. It supports two major 
analytic functions. First, it supports the proactive 
search for information and the detection of significant 
trends and patterns for analysis. Second, it supports the 
identification of early warning indicators of potential 
problems and the assessment of the effects of discrete 
events that occur with little or no warning. 

REFER currently provides three services. First, it 
displays key economic indicators for BoP analysis 
(calculated from the International Monetary Fund's 
International Financial Statistics (IFS) database) and 
warns the user when anomalous changes occur. 
Second, REFER assists analysts in assessing the 
effects of domestic and international events on a 
country's BoP by applying a body of BoP expert 
know ledge. Third, it allows the user to browse through 
the IFS database, conduct statistical analyses, and 
generate graphs of the IFS data and the results of the 
statistical procedures. 

Statistical Data Analysis 

With regard to the first function, the user may apply 
sophisticated statistical procedures to the IFS or 
user-created databases, browse through these 
databases, and dump subsets of data to a spreadsheet 
for further analysis and fast, easy graphing. The 

Copyright © 1995 Software Engineering Press 

combination of a statistical package, 
spreadsheet, and the IFS and user-defined 
databases provides a powerful environment for 
quantitative analyses of economic data. 

Knowledge-based Data Analysis 

With regard to the second function, a knowledge 
base of international economics expertise is 
employed to provide two additional services, key 
economic indicators and key economic events. 

Key Economic Indicators. Predefined key 
economic indicators are calculated based on IFS 
data updated monthly; their levels and trends are 
measured; anomalous changes and key warning 
threshold violations are identified based on expert 
rules; and the results are reported to the user. 

A default set of indicator threshold values is 
customized for each country in the system. The 
user may also create an optional, user-defined set 
of threshold values for each country and, 
thereafter, select which set will be invoked when 
the IFS database is analyzed. This feature allows 
the user to adjust the sensitivity of the warning 
thresholds as desired. 

The current key indicators are: 

• Budget Deficit/Surplus, Level of (expressed 
as a percentage of GDP); 

• Exchange Rate (nominal), Percentage Change in; 

• Exchange Rate (real), Percentage Change in; 

• Exports Less Imports; 

• Exports Less Imports Trend; 

• Foreign Exchange Reserves, Level of (ex­
pressed as months of imports (MOI)); 

• Foreign Exchange Reserves, Percentage 
Change in (in terms of MOI); 

• Interest Rate, Real; and 

• Wholesale Prices, Percentage Change in. 

159 



Additional indicators are displayed that should be 
monitored, but for which no thresholds are specified; 
they are: 

• Exports Less Imports, Change in (to be monitored­
no specific threshold); 

• International Terms of Trade (to be monitored-no 
specific threshold); and 

• Investment Less Savings (to be monitored-no spe­
cific threshold). 

Line graphs of historical trends are provided for each 
indicator and for three indicator pairs that represent the 
terms of the basic balance of payments equation 
(import/exports, investment/ savings, and government 
revenues/ expenditures). 

By this process, a massive database is analyzed, key 
economic indicators are evaluated, and the results are 
returned to the user in seconds. 

Significant Economic Events. In addition, an analyst 
who is confronted with the occurrence of one or more 
events may enter information about those events, and 
REFER will assess the magnitude and direction of 
their effects on the country's balance of payments. 
Approximately three dozen event types are avail_able 
for selection ( domestic and foreign; financial and 
nonfinancial), ranging from interest and exchange rate 
changes to trade regulation and price changes. Event 
definition data entry forms are provided for each event 
type, so that the user may define the particular event 
in terms of key characteristics of analytic value, such 
as direction of change, specific commodity or 
instrument involved, temporal boundaries, etc. 

The events in the current typology are: 

Domestic Financial 

• Central Bank Regulation or Operation Change 

• Exchange Controls Change 

• Exchange Rate Change 
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• Exchange Reserve Change 

• Financial Institution Change 

• Inflation/Deflation Change 

• Interest Rate Change 

• Investment Earnings Change 

• Other Capital Flows Change 

Domestic Nonfinancial 

• Economic Performance (GDP) Change 

• Economic Regime Change 

• Government Fiscal/Budget Change 

• Price Change 

• Supply Change 

• Quota Change 

• Subsidy Change 

• Tariff Change 

• Unusual Population Shift 

Foreign Financial 

• Exchange Rate Change 

• Exchange Reserve Change 

• Foreign Direct Investment Change 

• Inflation/Deflation Change, World 

• Interest Rate Change 

• Investment Earnings Change 

• Net Credit (Loan) Availability Change 

• Official Assistance Change 

• Other Capital Flows Change 

• Worker Remittances Change 
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Foreign Nonfinancial 

• Economic Performance (GDP) Change 

• Price Change, World 

• Supply Change, World 

• Quota Change 

• Tariff Change 

• Trading Arrangement Change 

A country profile database was also developed for two 
purposes in conjunction with the development of the 
event analysis knowledge base. First, the maintenance 
of country profiles allows the inference engine to 
generate analyses, based on general principles of 
balance of payments theory, that are modified 
appropriately for each country based on differing 
country profile factors. For most events, no single 
analysis is appropriate for all developing countries, 
according to REFER' s domain experts. The analysis 
should, and does, vary from country to country 
depending upon one or more country profile factors. 

Second, the country profile database supports the 
display of country-specific information in the user 
interface. For example, when the user wishes to enter 
information about an event involving a major world 
price change for a commodity, he/she selects the event 
from the event typology above and an event definition 
data-entry template is displayed. A list of the 
country's major commodities, called from the country 
profile database, is then displayed for selection. If the 
commodity in question is not listed, then the user is to 
infer that it is not .an important commodity for the 
country under study (as only major traded and 
nontraded commodities are listed in the country 
profile). 

For example, in the commodity price change event 
described above, the user would select the appropriate 
event type from the event typology and indicate the 
direction of change (increase/decrease) on the event 
definition data-entry template. REFER would then 
check the country profile to determine if the 
commodity is a major export, import, or nontraded (but 
tradeable) item, note demand and/or supply 
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elasticities, as appropriate, and draw appropriate 
inferences accordingly regarding the impact of 
the price change on the country's balance of 
payments. 

The country profile also contains characteristics 
that are fundamentally relevant to a broad range 
of events. For example, exchange rate regime 
type (fixed/crawling peg/managed float/free 
float) affects the analyses of many events, 
particularly the domestic and foreign financial 
events. 

The current country profile factors are: 

• economy type (agriculture/industry/ 
service/mixed); 

• elasticities, demand (for each major commod­
ity-elastic/inelastic); 

• elasticities, supply (for each major commod-
ity-elastic/inelastic); 

• exports (major); 

• export competitors (major); 

• export customers (major); 

• imports (major); 

• import suppliers (major); 

• level of import controls (low/high); 

• monoculture (yes/no); 

• nontraded (major); 

• raw materials; and 

• stock market (yes/no). 

A world profile database has also been developed 
which currently maintains lists of: 

• major industrialized countries; 

• international financial centers; and 

• large developing countries. 
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For example, if a foreign country (i.e. a country other 
than the one being analyzed) experiences a major 
adjustment in its interest rate, then the analysis 
generated of the impact of the event on the focal 
country's balance of payments will vary depending on 
whether or not the foreign country is also an 
international financial center. 

Both the country and world profiles are easily 
modified and updated through the user interface by the 
system administrator. 

Thus, REFER employs a body of expert knowledge 
and conducts event analyses based on user-entered 
event-definition information and input from the 
country and world profiles. The analyses focus on 
estimates of the effects inferred from these data on the 
country's balance of payments (current and capital 
accounts). The analyses also provide guidance in 
assessing the importance of the event for the target 
country's balance of payments and other economic 
effects, the temporal factors involved (time lag and 
duration of effects), and common analytic traps to be 
avoided. 

REFER Session Report 

At the end of a REFER session, the user may request 
a written report that is sent to a word processor and 
displayed for review. The report contains three major 
sections: 

• Key Economic Indicator Status Report-based on 
analysis of the IFS database and the selected set of 
indicator threshold values; 

• Event Analyses-report of the analyses of entered 
events generated by the inference engine and 
knowledge base; and 

• Balance of Payments Data-table of the principal 
balance of payments accounts, based on IFS data. 
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Adding New Countries to REFER 

New countries may be incorporated into the 
REFER system literally within a matter of 
minutes. The system administrator need only 
add the name of the country to the Master List 
(with IFS country code), create a country profile 
and set indicator warning thresholds through the 
country profile and indicator threshold editing 
utilities, and execute the provided REFER 
software to download the new country's IFS data 
from IMF's CD ROM to REFER's SQL Server 
database. The new country is then available for 
BoP analysis with the full range of REFER's 
suite of tools. 

CRITICAL SYSTEM DESIGN PROBLEMS 
AND ISSUES 

Perfect design solutions that obviate the need to 
accept tradeoffs in pursuit of multiple goals are 
rare. The design of REFER is no exception. 
Embedded in a key functional requirement of the 
system are three goals: 

REFER must possess the ability to 
treat any domestic or foreign 
economic event that may occur at any 
time in the future with regard to its 
impact on the BoP of any developing 
country. 

This requirement raises four technical 
challenges. How can REFER be designed: 

• to assess information about an almost infinite 
number of future events in a manner that is 
general enough to encompass the universe of 
possible cases, but specific enough to differ­
entiate among them sufficiently to provide 
assessments relevant to the circumstances of 
a particular case? 

• to assess the BoP impacts of an event in a 
manner that is broad enough to apply to a 
wide range of developing countries, but is 
tailored sufficiently to the focal country to be 
valid and accurate for a particular case; 
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• to reflect accurately the characteristics of the coun­
tries and the international system on which its infer­
ences are partially based, as those characteristics 
change over time, without requiring onerous main­
tenance of the system or, even worse, time-consum­
ing and costly continual iterative development (in 
an effort to modify the knowledge base to reflect 
accurately the inexorably changing economic and 
political systems of the world); and 

• to assess the magnitude of expected change for a 
specified event with sufficient precision to provide 
a meaningful assessment on the effects on BoP. 

To address the first problem, Mystech and Nathan 
developed the event typology and event definition 
data-entry templates to provide a compromise between 
an attempt to accommodate an infinite number of 
specific events or force a choice among highly 
generalized events that may be marginally relevant to 
any specific event. 

To be effective, the typology must reflect the universe 
of events that can affect the balance of payments. To 
meet this requirement, the typology was 
systematically designed to reflect the inputs to all of 
the elements of the BoP accounting structure ( current 
account, capital account, and their respective 
subaccounts) and reflect as well the terms of the 
fundamental relationships expressed in the BoP 
identity: x-m = (i-s) + (t-g), (where x = exports, m = 
imports, i = investment, s = savings, t = government 
revenues, and g = government expenditures). 

The event data-entry template enables the user to 
provide REFER with information about a particular 
event that goes beyond defining it as simply one of the 
general event types. On the template, the user can 
specify the direction of change (characterized 
appropriately for the event type, e.g. price 
change-increase/decrease or exchange controls 
change-tighten/relax) and other factors that define the 
event. In this manner, REFER obtains sufficient 
information to provide an assessment that is relevant 
to the user's particular case, without requiring the 
impossible, near impossible, or at least 
impractical-maintenance of an exhaustive (and 
exhausting) catalogue of potential specific cases. 
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Another problem with the catalogue method, of 
course, is the maintenance burden of adding 
potential cases as the future reveals situations 
previously unanticipated, e.g. the oil price shocks 
of the 1970s. 

With regard to the second and third problems, if 
a decision is made to implement knowledge that 
is tailored to each country and its contemporary 
problems in order to maximize policy relevance, 
then the knowledge base may be valid for only a 
short period of time, since circumstances in an 
economy and political system can change 
rapidly. It also makes the addition of new 
countries a labor-intensive process, since 
reliance on country-specific knowledge requires 
the acquisition, representation, and 
implementation of a new body of know ledge for 
each additional country. 

On the other hand, if general models of 
developing countries and international economic 
theory form the core of the knowledge base to 
maximize the useful life of REFER and to 
minimize maintenance burdens, then one runs 
the risk of providing a system that, in any specific 
situation, offers guidance that is too simple, too 
general, and of marginal relevance to be of much 
analytic value. 

To address this dilemma, Mystech and Nathan 
structured the knowledge by relating a core 
knowledge base of BoP theory for each event to 
the country profile of the focal country and the 
world profile, so that for any single situation (i.e. 
need to assess the BoP effects of a specified event 
for a specified focal country) the analysis is 
general enough to be robust over time and 
circumstances, but sufficiently tailored to the 
focal country, through use of the country profile, 
to be relevant to the specific case. 

By this approach, a flexible, robust, but relevant 
analytic aid is maintained with little effort as the 
world changes and the system is expanded to 
accommodate additional countries. 
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The fourth problem concerns the determination of 
sufficient precision in expressing the magnitude of 
BoP effects that result from the occurrence of a given 
event. This issue was considered at length during the 
design phase, and, for three principal reasons, the 
decision was made to eschew econometric modeling 
in favor of a general nonparametric approach. 

First, the risk of failure was deemed to be unacceptably 
high, especially considering the cost of developing 
econometric models. While there was high 
confidence in our ability to develop a knowledge base 
that would support forecasting of the direction of 
effects and nonparametric measures of their 
magnitude (e.g. very large/large/moderate/low/nil), 
there was considerably less confidence in our ability 
to develop a knowledge base that could generate 
forecasts with the level of precision associated with 
econometric models, while meeting simultaneously an 
acceptable standard of accuracy. 

Second, an econometric approach requires very 
substantial database support. Missing or substantially 
lagged data can cause major problems that may render 
the system inoperable from time to time; this is a 
significant and unacceptable vulnerability. 

After an exhaustive survey, we found that the IMF/IFS 
database was the most complete and relevant database 
available for BoP analysis; but even IFS contains 
missing data and, in some cases, significantly lagged 
data. Moreover, we found that data for certain critical 
variables, such as those that measure indebtedness, are 
not available reliably from any sourcein electronic 
form for developing countries. For example, the most 
detailed and comprehensive source that we found, the 
World Bank's World Debt Tables are updated only 
annually. 

Third, for an analytic tool to be useful for BoP analysis, 
its forecasts do not need to be expressed in parametric 
terms. One purpose of REFER is to warn against 
analytic traps that lead to erroneous conclusions in 
analyzing the BoP effects of events. This purpose is 
well-served, therefore, when REFER provides 
accurate guidance regarding the expected direction of 
change and qualitative estimates of its magnitude. 
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For these reasons, we concluded that, although 
an econometric approach would raise forecasting 
precision, the result would yield marginal 
analytic utility at substantially increased 
technical risk and development costs. 

KNOWLEDGE BASE DEVELOPMENT 
METHODOLOGY 

Mystech employs a proprietary methodology for 
knowledge acquisition, representation, and 
implementation. Structured interviews are 
conducted with the domain experts, they are 
audio and video recorded, verbatim transcripts 
are produced, the transcripts are analyzed by 
knowledge engineers, and the knowledge is 
extracted from the transcripts and structured in 
an object-oriented, hyper-text knowledge 
representation environment. The represented 
knowledge is then implemented in software 
code. 

The system is then exercised with test scenarios 
and the output is validated by the original domain 
experts working with knowledge engineers in an 
iterative fashion until acceptance is achieved. 

For REFER, Mystech and Nathan have 
conducted 46 knowledge acquisition sessions 
with leading international economists, yielding 
over 200 interview hours of acquired, 
represented, implemented, and validated 
knowledge. 

SOFTWARE DEVELOPMENT 
TECHNOLOGY 

REFER is currently under iterative development 
and employs an object-oriented approach. 
Inference Corporation's Automated Reasoning 
Tool for Information Management (ART-IM) is 
being employed in the development of the 
event-assessment knowledge base. The 
knowledge is being implemented in frames and 
production rules with a forward chaining 
approach. 
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The graphical user interface is being developed with 
Glockenspiel's Common View interface development 
tool (now published by Computer Associates, Inc.) and 
C++. 

A key feature of the software architecture is the 
separation of the knowledge base and user interface; 
the information that appears on the display is 
controlled almost entirely by the knowledge base. As 
the knowledge base expands (with additional 
countries, indicators, events, etc.), necessary changes 
to the interface will be handled automatically by the 
knowledge base and will require little or no 
modification of the interface software. 

The ART-IM/C++ combination and software module 
separation also maximize REFER' s cross-platform 
capability (e.g. MS DOS/Microsoft Windows, 
UNIX/X-Widows (OSF Motif), etc). 

REFER runs under OS/2 on IBM-compatible personal 
computers and is a Presentation Manager application. 

FUTURE RESEARCH AND DEVELOPMENT 

The following enhancements are currently undergoing 
research and development: 

• To this point in its development, the knowledge 
base focuses on estimating the effects of economic 
events on the BoP of developing countries. Ques­
tions remain to be addressed. What policies/instru­
ments are available to governments to respond to 
BoP problems? How are particular governments 
(perhaps according to economic regime type) likely 
to respond to particular problem types? In the view 
of expert economists, how should they respond? If 
there is a discrepancy between how they are likely 
to respond and how they should respond, what are 
the implications for the likely, as opposed to the 
expected, effects of the anticipated policy choice?; 

• In the wake of the 1994 balance of payments crisis 
in Mexico, we have begun an effort to develop a 
BoP Crisis Early Warning (BoP/CEW) module for 
REFER that complements the event assessment 
module. The latter reflects a forward chaining ap-
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proach, in which economic events are as­
sessed for their unknown impacts on the BoP 
of developing countries. Here the stimulus 
(i.e. an event) is known but the outcome (i.e. 
effects on BoP) is unknown; thus the reason­
ing process employed is characterized as for­
ward chaining. For the BoP/CEW, however, 
backward chaining is appropriate. In this 
case, the outcome is known or postulated (i.e. 
the occurrence of a BoP crisis), but the ante­
cedents to it (i.e. early warning indicators) are 
unknown. Initial knowledge acquisition has 
been conducted to address the issue of how 
expert international economists attempt to an­
ticipate BoP crises; 

• A Case-based Reasoning (CBR) tool is cur­
rently under development. This tool will pro­
vide users with the ability to identify and 
compare historical cases with known out­
comes (in terms of BoP effects) to a current 
situation with similar characteristics for 
which the outcome is yet unknown. This com­
parative approach provides a framework for 
drawing inferences about the likelihood of 
possible outcomes of the current situation 
based on an analysis of similar historical 
cases; and 

• REFER currently uses the IFS database as 
supplied by IMF. Unfortunately, as noted 
above, the data may be missing or delayed in 
reporting. Under development is the capabil­
ity of extending IFS data with user-supplied 
data, as desired, to provide the most complete 
and current database possible. 
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A Genetic Algorithm Approach to Optimizing Portfolio Merging 
Problems 

Abstract 

William Edelson 
Computer Science Dep't 
Long Island University 

University Plaza 
Brooklyn, N.Y. 11201 

The portfolio merging problem can be viewed 
as finding the optimal mix of k different cat­
egories of portfolios in a combined aggregate 
portfolio to maximize expected profit or min­
imize risk subject to numerous constraints. 
This optimization problem is important in as­
set allocation applications. Conventional opti­
mization techniques have been used effectively 
in the past on problems involving the merging 
of portfolios. However, there are many real 
world portfolio merging problems whose solu­
tion do not lend themselves readily to conven­
tional techniques. A genetic algorithm (GA}, 
a biologically inspired optimizing search proce­
dure, is more suitable for solving these types 
of problems. 

We apply a GA to various portfolio merging 
problems leading up to the problem of maxi­
mizing the return/risk ratio with the added 
constraint of a satisficing expected return. We 
make use of goal programming techniques to 
recast the problem into one that is more suit­
able for solution by a GA. This is shown to 
have advantages in generating initial feasible 
solutions quickly, without compromising the 
effectiveness of the GA. 
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Introduction 

The portfolio merging problem can be viewed 
as finding the optimal mix of k different cat­
egories of portfolios in a combined aggregate 
portfolio to maximize expected profit or min­
imize risk subject to numerous constraints. 
The portfolio categories might be equity sec­
tors such as banking, energy, healthcare, util­
ities, etc., or they might be asset categories 
such as corporate bonds, equities, money mar­
ket instruments, municipal bonds, etc. 

Conventional optimization techniques have 
been used effectively in the past on problems 
involving the merging of portfolios. How­
ever, there are many real world portfolio 
merging problems whose solution do not lend 
themselves readily to conventional techniques. 
These more complicated problems are usually 
characterized by a solution space which is un­
structured ( eg, multimodal), discontinuous, or 
poorly understood. A genetic algorithm (GA), 
a biologically inspired optimizing search pro­
cedure, is more suitable for solving these types 
of problems. 

The genetic algorithm paradigm [1,4] is an 
adaptive method based on Darwinian nat­
ural selection. It applies operations of re­
production (based on survival of the fittest), 
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crossover, and mutation, to a given population 
of potential solutions to generate a new, more 
fit, population of potential solutions. The pro­
cess repeats itself until it converges to a stable 
optimal ( or near optimal) solution. A GA is 
particularly suitable for multi-parameter opti­
mization problems with an objective function 
subject to numerous hard and soft constraints. 

We apply a GA to three portfolio merging 
optimization problems. We first investigate 
a mean-variance optimization problem solv­
ing for the optimal allocation mix which mini­
mizes risk subject to an equality constraint for 
the expected return. Next, we maximize the 
expected return subject to an inequality con­
straint ( upper bound) for the risk . Lastly, we 
maximize the return/risk ratio subject to the 
additional constraint of a satis:ficing expected 
return. We make use of goal programming 
techniques in these problems to recast them to 
ones that are more suitable for solution by a 
GA. This is shown to have advantages in gen­
erating initial feasible solutions quickly, with­
out compromising the effectiveness of the GA. 

2 Model 

An investment is allocated among k portfolios 

in accordance with corresponding portfolio al­
location weights 

The Expected Total Return is: 

where P j is the expected return of the jth 
portfolio and must be measured statistically. 
The Total Risk is: 
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where Rj is the risk in the jth portfolio and 
must be measured statistically.1 

The following additional constraints are ap­
plied to the model: 

O<L·<C·<U·<l J - J - J 

where Lj and Uj define the range of the port­
folio allocation weights Cj and generally de­
pend on market fundamentals and/or investor 
preferences. 

3 Optimization Problems 

Problem #1 

Minimize portfolio risk subject to an equality 
constraint for the expected return. That is: 

subject to the constraints: 

This is a mean-variance optimization prob­
lem producing an efficient portfolio (minimum 
risk) for a given expected return (D). 

1 For simplicity we are assuming there is no statisti­
cal correlation between portfolios; however, the results 
should generalize to the case of correlated portfolios. 
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Problem #2 

Maximize the expected return subject to an 
inequality constraint for the risk. That is: 

subject to constraints: 

This optimization problem can be considered 
a risk averter and is treated in [6,10]. 

Problem #3 

Maximize the return/risk ratio subject to the 
constraint of achieving at least an expected 
return (D). That is: 

subject to the constraints 

In contrast to the model of problem #1, this 
model permits the acceptance of a higher risk 
to realize a higher profit. This optimization 
problem is a basic underpinning of modern 
portfolio theory and is similar to a problem 
investigated in [8]. 
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4 Goal Programming 

We borrow from the technique of goal pro­
gramming [2,3], which stresses the satisfaction 
of multiple objectives, to recast the optimiza­
tion problems in section 3.0 into ones that are 
more suitable for solution by a GA. Goal pro­
gramming indirectly determines the unknown 
variables in an optimization problem by di­
rectly minimizing positive and negative devi­
ations from the goal constraints' right hand 
side values. In effect, it uses slack variables. 
This process of minimizing deviations from a 
prespecified level ( rather than satisfying this 
level absolutely) relaxes the rigidity of the con­
straint and results in a larger space of feasible 
initial populations for the GA. This suggests 
the possibility of generating initial feasible so­
lutions quickly, even for problems with numer­
ous and complicated constraints. 

Recasting Problem #1, we have a new ob­
jective function to minimize: 

subject to new constraints: 

F(C1,Cz, ... ,Ck)+d- 2'.: D 

C1 + C2 + •••+ck = 1 

O < Lj ::; Cj ::; Uj < l 
d+ 2'.: 0, d- 2'.: 0 

where d+ and d- are the positive and negative 
deviations (ie, the slack), respectively, from 
the threshold expected return D. Here, (3 = 
(3( d+, d-) scales the deviations d+ and d- in 
the new objective function in accordance with 
their importance2 . 

2 Large values of the deviations were scaled quadrat­
ically while small ones were scaled linearly. 
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5 GA Methodology 

Our genetic algorithm requires an initial popu­
lation of feasible members (potential solutions 
satisfying the constraints), an evaluation func­
tion to score each member of the population, 
conventions for creating new members of the 
population by mating and random mutation, 
and a grim reaper mechanism to discard low 
scoring members of the population to make 
room for new ones. 

In these optimization problems, the popula­
tion POP= {(C1,C2,---,Ck)} is a large sub­
set of all the feasible members. POP is ini­
tially chosen randomly and consists of a large 
but finite number of members. Each Cj is en­
coded withs bits. Thus, the encoding is a bit 
string of k * s bits. The evaluation function 
(objective function) scores the performance or 
worth of individual members of the popula­
tion. (In our optimization problems where we 
minimize risk, the closer the score is to zero, 
the higher is the score). The mating conven­
tion is such that only high scoring members 
will preserve and propagate their "worthy" 
characteristics from generation to generation 
and thereby help in continuing the search for 
an optimal solution. 

Selection of parents for mating involves 
choosing one member from the high scorers by 
a "roulette wheel" approach and choosing the 
other member randomly. The reproductive 
process is a simple crossover operation where 
two selected parent members (bit strings) are 
cut into head and tail sections at some ran­
domly chosen position and then have their 
tails swapped to create two offspring mem­
bers. The crossover operation is repeated on 
the parents until at least one offspring is fea­
sible. A grim reaper mechanism replaces two 
low scoring members in the population with 
two newly created feasible offsprings or one 
newly created feasible offspring and one par-
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ent. Mutation is a GA mechanism where we 
randomly choose a member of the population 
and change one randomly chosen bit in its bit 
string representation. If the mutant member 
is feasible, it replaces the member which was 
mutated in the population. This process is 
done infrequently and is useful in creating new 
areas of search. 

We can now state the genetic algorithm 
which we used: 

Step 1: Initialize a large feasible population. 

Step 2: Evaluate any member which has not 
yet been evaluated. 

Step 3: Sort the members of the population 
by their scores. 

Step 4: Select parents for mating from the 
upper three quartiles of the population; 
one using a. "roulette wheel" approach 
and one randomly. 

Step 5: Generate offsprings using simple 
crossover. Replace the lower quartile of 
members of the population with feasible 
off springs. 

Step 6: Mutate a randomly selected member 
of the population at a randomly selected 
bit once every generation. 

Step 7: If time is up then return best 
solution found else go to Step 2. 

6 Results 

We generated a number of computer solutions 
for these optimiztion problems using the GA 
package GENESIS [7]. and a customized GA 
software package developed in c++ by the au­
thors. The input data for these problems [9] 
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consists of the percentage annual expected re­
turns and risks for a three-asset class portfolio 
as shown in the table below: 

Class Return Risk 
Stocks .13 .034200 
Bonds .08 .003600 
Treasury Bills .06 .000016 

Estimates of the weights for an efficient 
portfolio producing a yield of 8% ( Prob­
lem #1) using a GA with a population of 
32 without Goal Programming techniques are: 
C1 = 0.1666, C2 = 0.4166, and C3 = 
0.4166. Convergence ocurred after 12 genera­
tions. This is a near-optimal result which com­
pares favorably to the true efficient portfolio 
of C1 = 0.16, C2 = 0.44, and C3 = 0.40 cal­
culated by quadratic programming techniques 
[5.]. The number of tries to generate an initial 
feasible population is 6,527. Solving the same 
optimization problem using a GA with a pop­
ulation of 32 with Goal Programming tech­
niques described in section 4.0 also converges 
to C1 = 0.1666, C2 = 0.4166, and C3 = 0.4166 
after 12 generations. However, the number of 
tries to generate an initial feasible population 
is reduced to 780, an improvement of about a 
factor of 8. 

Similar results were observed for Problem 
#2 and Problem#3. 

7 Conclusions.· 

Genetic Algorithm solutions of portfolio merg­
ing problems which we generated consistently 
compare favorably to known solutions. Re­
casting the optimization problem using goal 
programming techniques ( slack variables) is 
shown to have advantages in generating initial 
feasible solutions quickly, without compromis­
ing the effectiveness of the GA. This suggests 
the posibility of significantly reducing the time 
to generate an initial feasible population for 
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larger portfolios problems with complicated 
and numerous constraints. 

We feel that the genetic algorithm paradigm 
is both a powerful and flexible tool for solving 
portfolio merging problems. 
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Abstract 

Genetic algorithms are applied to predicting the 
performance of individual stocks. A method is 
introduced that extends genetic algorithms from 
optimization problems to classification and 
prediction problems. The resulting genetic 
algorithm system is compared to a neural 
network system. 

Introduction 

Artificial Intelligence (AI) techniques have been 
used for a number of tasks ranging from playing 
grandmaster-level chess to predicting protein 
secondary structures. Expert systems, neural 
networks, and genetic algorithms are three 
popular AI paradigms. Typically, characteristics 
of the application domain have determined the 
particular AI method that is employed. 

The investment management domain is 
particularly challenging because of the 
abundance of noisy, numeric data and the lack of 
strong theories of how stock prices move. Even 
though the efficient market hypothesis (Fama, 
1970) has been challenged from a number of 
directions, finding patterns of persistent 
predictability is difficult, and typically requires 
high-speed computers and clever algorithms. AI 
techniques can facilitate the quest for these 
patterns of predictability. 

In the capital markets and other complex, real­
world domains, it is hard to specify a priori a 
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good set of rules, making knowledge engineering 
an extremely difficult task. It is preferable to 
learn (automatically acquire from data) a good 
set of rules. Expert systems typically do not 
learn. Both genetic algorithms and neural 
networks, on the other hand, have the ability to 
learn from the vast amount of data available in 
the financial domain. 

While expert systems and neural networks are 
seeing increasing use in finance (Barr & Mani, 
1993; Fishman, Barr, & Loick, 1991; Hall, 
1994; Hutchinson, Lo, & Poggio, 1994; White, 
1994), genetic algorithms (GAs) are relative 
newcomers. We concentrate on GAs in this study 
and illustrate how they can be applied to the task 
of predicting the performance of individual 
stocks. We compare the performance of a GA 
system that incorporates a niching method to that 
of a neural network system. The two systems 
predict the movement in the price of a stock, 
relative to the market. 

A criticism of neural-network approaches has 
been that they are black boxes, and that the user 
can not readily comprehend the final rules that 
these systems acquire and subsequently use to 
make decisions. An advantage GAs offer is that, 
like expert systems, they are capable of 
producing user-readable rules, along with the 
reasoning underlying each particular rule. The 
key to such explanation capabilities is choosing a 
rule format for the GA that the end user can 
easily understand. 
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Genetic Algorithms 

Genetic algorithms are general-purpose search 
techniques for solving complex problems. Based 
upon genetic and evolutionary principles, GAs 
work by repeatedly modifying a population of 
artificial structures through the application of 
selection, crossover, and mutation operators. 
GAs have traditionally been used for 
optimization, but with a few enhancements can 
be applied to classification and prediction as 
well. 

The choice of an appropriate structure for a 
particular problem is a major factor determining 
a GA's success. GAs are capable of operating 
upon a variety of structures, including binary 
strings (Goldberg, 1989), computer programs 
(Koza, 1992), neural networks (Whitley, 
Starkweather, & Bogart, 1990), and if-then rules 
(Bauer, 1994). 

We first examine how a traditional GA performs 
optimization. The goal in optimization is ideally 
to find the best possible solution to a problem. In 
real-world problem-solving, one does not usually 
know the best possible solution. Therefore, a 
more realistic objective is to find a good solution; 
or, given a current benchmark, to search for a 
better solution. A GA's fitness function 
measures the quality of a particular solution. 

The traditional GA begins with a population of n 
randomly generated structures, where each 
structure encodes a solution to the task at hand. 
The GA proceeds. for a fixed number of 
generations. During each generation, the GA 
improves the structures in its current population 
by performing selection, followed by crossover, 
followed by mutation. After a number of 
generations, the GA converges, meaning that all 
structures in the population become identical or 
nearly identical. The user typically chooses the 
best structure of the last population as the final 
solution. 

Selection is the population improvement or 
"survival of the fittest" operator. Basically, it 
duplicates structures with higher fitnesses and 
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deletes structures with lower fitnesses. A 
common selection method is to randomly choose 
two structures from the population and hold a 
tournament, advancing the fitter structure to the 
crossover stage. A total of n such tournaments 
are held to fill the input population of the 
crossover stage. 

Crossover, when combined with selection, results 
in good components of good structures 
combining to yield even better structures. 
Crossover forms n/2 pairs from the n elements of 
its input population. Each pair advances two 
offspring structures to the mutation stage. The 
offspring are the results of cutting and splicing 
the parent structures at various crossover points. 
The crossover stage advances a total of n 
elements to the mutation stage. 

Mutation creates new structures that are similar 
to current structures. With a small, prespecified 
probability, mutation randomly alters each 
component of each structure. The mutation stage 
advances n elements to the selection stage of the 
next generation, completing the cycle. 

Figure 1 illustrates one generation of a GA with a 
population of size n = 4. Structures are 
represented as rectangles, each containing two 
square components. Components may take on 
one of two values, represented by the colors, 
black and white. Assume that structures with two 
black components have the highest fitness, 
structures with two white components have the 
lowest fitness, and mixed structures have 
intermediate fitness. 

The selection stage holds four tournaments 
between randomly chosen pairs of individuals. 
The crossover stage then cuts and splices 
structures at component boundaries. Finally the 
mutation stage, through random choices, mutates 
only the leftmost component of Structure 9, 
yielding Structure 13. Although the initial 
population has no optimal structures, after the 
generation shown, an optimal structure emerges 
(Structure 14). 
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Selection 

Crossover 

Mutation 

Figure 1. One generation of a genetic algorithm 

Compared to traditional parameter optimization 
techniques, genetic algorithms offer several 
advantages. The first advantage is general 
applicability. GAs do not require information 
such as gradients. If a problem is not 
clifferentiable or otherwise well-behaved, many 
traditional optimization techniques will be of no 
use. A second advantage is resilience in handling 
the local optima of difficult problems. While 
traditional techniques are likely to converge to a 
local optimum once they are in its vicinity, GAs 
conduct search from many points simultaneously, 
and are therefore more likely to find a global 
optimum. GAs. are designed to handle highly 
nonlinear spaces. 

Genetic Algorithms for Financial Prediction 

A few prior studies have attempted to apply 
genetic algorithms to financial prediction and 
related tasks. Most recently, Richard Bauer's 
(1994) book has recommended GAs for stock 
selection. His GA finds thresholds for one or 
more variables, above or below which a stock is 
considered attractive. For instance, if the GA's 
structure consists of two variables representing a 
particular stock's price and earnings per share 
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(EPS), the final rule the GA returns might look 
like the following: 

IF [Price< 15 andEPS > l] THEN Buy 

Past performance of a particular rule over some 
time period serves as a GA's fitness function. 
The user is responsible for choosing a potentially 
good rule structure for the GA. While Bauer 
limits his attention to rules of the above form, 
other formats are also possible, such as rules 
with fuzzy variable bounds or outcomes. Beyond 
stock selection, Bauer's approach also allows a 
user to test simple relationships among variables 
when the user has only a vague idea of 
potentially good variables. 

Sikora and Shaw (1994) apply GAs to predicting 
loan defaults and company bankruptcies. One of 
their approaches is to run a GA repeatedly, each 
time generating a different rule. They combine all 
final rules to form a database of rules. Allen and 
Karjalainen (1993) utilize genetic programming, 
a type of GA that operates on computer-program 
structures, to find trading rules for the S&P 500. 
Packard (1990) applies GAs to time-series 
forecasting. 
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Complex applications such as predicting stock 
performance are often highly nonlinear tasks. 
This means, for example, that when a 10% 
increase in one variable results in a buy signal, a 
20% increase in that same variable could result 
in a sell signal. Often a single, simplistic rule is 
insufficient to model relationships among 
financial variables. Sometimes what is required is 
a combination of rules. For example, consider the 
following two trading rules based on fundamental 
analysis. 

Rule 1: IF [PIE> 30] THEN Sell 
Rule 2: IF [PIE< 40 and Growth Rate> 40%] 

THEN Buy 

Given only the price-to-earnings (PIE) ratio of a 
particular stock, a good rule of thumb is that 
stocks with too high a PIE -- in this example 
greater than 30 -- are unattractive. Rule l 
encodes this rule of thumb. However, if a stock is 
a high-growth stock, one may wish to make an 
exception to Rule 1. Rule 2 encodes such an 
exception. The interacting combination of a 
general rule (Rule 1) plus an exception (Rule 2) 
results in a better trading strategy than either rule 
alone. 

Traditional GAs return only one solution. To 
return interacting combinations of solutions, it is 
necessary to extend the genetic algorithm through 
use of a niching method (Mahfoud, 1992, 1995a, 
1995b). Unlike the traditional GA, which makes 
the population eventually converge around a 
single point in the solution space, the GA that 
uses a niching method converges about multiple 
solutions or niches. The word niche comes from 
the field of ecology, indicating the particular 
environmental factors that are favorable for a 
particular species. The analogy in the financial 
forecasting case is that different rules within the 
same GA population can perform forecasting for 
different sets of market and individual company 
conditions, contexts, or situations. 

The extension of a genetic algorithm using a 
niching method allows the GA to return a final 
population that is similar in many ways to the 
knowledge base of an expert system. In fact, 
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niching GAs represent one method of acquiring 
knowledge for an expert system -- without 
requiring a human expert. Note that in an expert 
system with 100 rules, where each rule contains 
15 variables and each variable can take on one of 
32 different values, 3.8 x 1022 possible rules 
exist. This is more rules than the fastest 
computer could expect to evaluate in a person's 
lifetime. The number of possible combinations of 
100 rules is much higher. Most possibilities 
would undoubtedly produce poor performance. 
Therefore, it would be nearly impossible to find 
one of the best sets of rules by trying arbitrary 
combinations. A financial expert could perhaps 
develop a good set of rules by weeding out most 
possibilities using his or her experience and 
background knowledge. However, that expert 
would likely produce a set of rules qualitatively 
different than one produced by a GA, due in part 
to the expert's a priori bias against 
counterintuitive or contrarian rules. 

Neural Networks 

A neural network is a general-purpose model for 
handling pattern recognition or classification 
tasks. Neural networks were conceived as models 
of the brain, but are in fact artificial 
computational models that roughly mimic simple 
operations of real neurons. For computational 
finance tasks, neural networks are useful because 
of their ability to handle large amounts of noisy, 
numeric data. 

A neural network is an appropriately connected 
set of simple processing elements or nodes. 
Connections between nodes have a strength or 
weight associated with them. Each weight is 
initially set to a random value. As the network 
"learns" to classify or recognize patterns, the 
weights change. A popular algorithm for 
effecting these weight changes is 
backpropagation (Rumelhart, 1986). The central 
idea behind backpropagation is to use the error -­
the difference between the network's current 
prediction and the actual answer -- to adjust the 
weight on each link. This process repeats several 
times, each time reducing the error by a small 
amount. 
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Output Nodes 

Hidden Nodes 

Input Nodes 

Before Learning After Learning 

Figure 2. The training of a neural network 

Figure 2 shows an example of a simple neural 
network with four input nodes, two hidden nodes, 
and one output node. Before learning, all of the 
weights are set to small random values. After 
learning, some of the weights become 
strengthened, and others weakened, as depicted 
by the various shaded connections. 

Preliminary Results 

As a preliminary set of experiments, we attempt 
to predict the return, relative to the market, of a 
MidCap stock randomly selected from the S&P 
400. We call the chosen stock X. We employ 
fifteen proprietary inputs representing technical 
as well as fundamental information about the 
stock. The GA operates upon all of the inputs to 
find favorable or unfavorable combinations of 
circumstances with respect to the output variable 
being predicted. The GA, in combination with the 
niching method it employs, evolves a population 
of over 100 interacting rules. Each rule indicates, 
in terms of the fifteen indicators, the particular 
conditions that produce various price behaviors 
relative to the market. We look at increases and 
decreases over 331 past, overlapping, 12-week 
time periods, as well as the values of the fifteen 
indicators over these past time periods. Each time 
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period is hence an example. 70% of these 
examples are used to form a fitness function for 
the GA. (In the parlance of machine learning, this 
is the training set.) 20% of the examples are 
used to decide when to terminate the GA. (This is 
the stopping set.) Finally, 10% of the examples 
are used to measure performance. (This is the 
out-of-sample or test set.) 

We perform 100 different experimental runs of 
the GA, allocating examples to the three sets 
randomly for each experiment. The results we 
report are for the 100 out-of-sample sets. The 
GA returns one of three predictions for each out­
of-sample example: up, down, or no prediction. 
Averaged over the 100 out-of-sample sets, the 
GA correctly predicts Stock X's direction relative 
to the market 47.6% of the time, produces no 
prediction 45.8% of the time, and incorrectly 
predicts the direction relative to the market 6.6% 
of the time. Thus, over half of the time (47.6% + 
6.6%), the GA makes a prediction. When it does 
make a prediction, the GA is right 87.8% of the 
time. Note that it would be possible to force the 
GA to make a prediction each time. However, the 
no-prediction option allows the GA to indicate 
those times when a stock is nearly equally likely 
to move in either direction. 
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We apply a second performance measure, called 
the average alpha score, that takes into account 
magnitude as well as direction. If the GA predicts 
a test example correctly, then it receives as a 
score, the absolute value of the actual return of 
the stock relative to the market. For an incorrect 
prediction, the score is the absolute value of the 
actual return, negated. The score is averaged 
over all test examples and then over the 100 
experiments. The GA achieves an average alpha 
score of + 10 .2%. By contrast, random guessing 
produces an expected average alpha score that is 
slightly negative. Another naive strategy, 
choosing the most common direction in the 
training set, yields a slightly positive score (less 
than +2%). 

A sample rule that the GA generates in one of the 
experiments is of the following form: 

IF [Earnings Surprise Expectation > 10% and 
Volatility> 7% and ... ] THEN Prediction= Up 

Such rules can serve as approximate 
explanations of how the various technical and 
fundamental input factors relate to future, 
individual stock returns. 

Comparison to Neural Networks 

We perform the same set of 100 experiments 
using a neural network with one layer of hidden 
nodes. Each experiment involves training the 
neural network with the backpropagation 
algorithm, using the same training, stopping, and 
test sets as in the corresponding GA experiment. 

For each experiment, the neural network makes 
no prediction when the squared correlation on the 
stopping set is less than 0.5. Note that this 
decision is made experiment by experiment rather 
than example by example (as in the GA). The 
network makes no prediction in only 5 out of 100 
experiments (5% of the time). 79.2% of the time, 
the neural network correctly predicts Stock X's 
direction relative to the market. 15.8% of the 
time, it incorrectly predicts direction relative to 
the market. When it does make a prediction, the 
neural network is correct 83.4% of the time. The 
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neural network achieves an average alpha score 
of+9.2%. 

In the above experiments, the neural network 
made many more gue~ses than did the GA. One 
way of being more selective with the network is 
to allow a prediction only when that prediction is 
more than 0.5 standard deviations away from the 
mean (across all test examples) of the output 
variable. This helps in eliminating many near­
zero or noisy predictions. Under this new 
methodology, the neural network makes no 
prediction 48.6% of the time, a correct prediction 
4 7.4 % of the time, and an incorrect prediction 
4 % of the time. When it does make a prediction, 
the network is correct 92.2% of the time, 
achieving an average alpha score of+ 13 .4 %. 

Discussion and Conclusion 

The preliminary results demonstrate that GAs 
and neural networks are both promising methods 
for predicting individual stock performance. 
Their success is due to their ability to learn 
nonlinear relationships, among the input factors, 
that result in a stock outperforming or 
underperforming the market. An advantage of 
GAs is their ability to output comprehensible 
rules. 

Both methods achieve a high degree of accuracy 
(83% to 93%) in forecasting the direction of the 
selected stock relative to the market. Both 
methods also achieve high average alpha scores 
(+9% to+ 13%). The neural network makes more 
predictions, on the average, except when 
explicitly restricted. We are currently 
investigating methods for forcing the GA to make 
more predictions, without substantial loss of 
accuracy. With any method, however, there is a 
tradeoff between number of predictions and 
overall accuracy. 

Although the experiments we conduct are similar 
for the GA and the neural network, the 
experiments are not completely standardized. For 
instance, the GA, like the neural network, could 
employ a magnitude-based cutoff for deciding 
when to make a prediction. Likewise, the neural 
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network could raise its squared correlation 
threshold to eliminate more cases with poor 
performance. One area of current research is 
better standardization of experiments across 
different AI methods. 

Although the neural network and genetic 
algorithm produce very similar overall results, it 
is possible that the concepts they learn are 
qualitatively different. We know that the "rules" 
the two methods generate look different. It is 
possible that where one method fails, another 
might succeed, leading to a synergistic, combined 
approach. This combined approach would be 
analogous to having multiple human experts 
independently perform the same task and pool 
their results afterward. Should the learned 
concepts be qualitatively the same, the GA could 
provide explanations of what the neural network 
is forecasting. 

The above comparative results consist of 
multiple experiments on a single stock. Genetic 
algorithms and neural networks, however, are 
widely applicable. LBS Capital Management 
currently employs over 3000 neural networks 
( one for each stock) to manage large investment 
portfolios, totaling over $600 million. We are 
currently beginning to use GAs for portfolio 
construction (an optimization task) as well as 
stock selection (a classification/ prediction task). 
We are also working towards applying the GA 
prediction method to a broad range of stocks and 
indices, and towards enhancing the GA' s ability 
to predict magnitude. 
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Abstract 

This paper announces support in the form of the 
Spearman rank correlation test for the hypothesis: 
stock variance is a stable commodity, but the covari­
ance of stocks varies randomly. Among the conse­
quences of this hypothesis are: 

1. Arbitrage equations involving covariances do 
not constrain the marketplace. 

2. Variance is a stable commodity whose price is 
set by the arbitrage opportunities it presents. 

3. Portfolio theories depending on estimates of fu­
ture stock covariances are not at present useful 
theories. 

The result is not unexpected, however the conclu­
sions challenge some of the existing literature. 

1 Introduction 

The theory of the efficient portfolio aids the investor 
to stabilize available capital, as well as provides a 
justification for risk-return payoff. However, to cal­
culate with the theory, estimates of market vari­
ances and covariances are required. The question 
arises as to how well past variances and covariances 
predict future variances and covariances. Besides 
this motivation, whether variances and covariances 
can be valuable assets depends on whether they 
are stable. A predictable market behavior might 
be combined with an arbitrage opportunity thereby 
pricing the market behavior. If, say, covariances 
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had no predictability, they would also be of no value 
as an asset. 

The theory by which an optimal portfolio is calcu­
lated is due to Markowitz [6]. For that theory, vari­
ance and covariance information is required. One 
possibility would be to calculate the historical vari­
ances and covariances of a universe of stocks and 
bring these values forward to the next time step. 
We decided to question this supposition. Weaken­
ing the requirements, we tested only how the rank­
ings of stocks from least to most variant and the 
rankings of stock pairs from least to most covariant 
change from time step to time step. In other words, 
is it true that a high variance stock this year will be 
a high variance stock next year? Will a high covari­
ance stock pair continue to covary strongly during 
the next year? 

According to the methods of this paper, it is true 
that the variance of a stock moves with the stock 
into the next time step. Variance is a property of 
the stock and in this sense we say it is stable. How­
ever, they cannot confirm that covariance is stable, 
in the following sense: the distribution of the Spear­
man rank correlation coefficient for the two order­
ings of stock pairs by covariance during consecutive 
time periods is essentially the distribution achieved 
by taking two independent, random orderings. 

The problem of prediction of stock price move­
ments has been previously studied from the time­
series standpoint. The work of Granger and Mor­
genstern [4] uses the classical techniques of Fourier 
Analysis to study the spectral qualities of stock 
price movements. A very detailed study of stock 
price variance has been undertaken by Shiller [7] in 
order to bring into accord observed variance and the 
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efficient market hypothesis. In addition, there has 
been much work done using the ARCH model in­
troduced by Engle [2] and the extension GARCH 
model introduced by Bollerslev [1]. These het­
eroscedastic models assume that stock price is a 
gaussian normal random variable with time vary­
ing variance, the variance predicted according to 
the parameters of the model. 

This paper attacks the problem from a different 
angle. We consider it a problem in hypothesis test­
ing, rather than one of model fitting. Furthermore, 
we use nonparametric methods and thus have no 
hypotheses on distributions. 

2 The experiments 

Two experiments are described. The first experi­
ment, summarized in Figures 1 and 2, uses a data 
set of 212 stocks containing records of at least 280 
closing prices since October 30, 1993. The data was 
taken from MIT's Stock Market Project [8]. We 
use this data to test quarter and semi-annual data 
streams running from the third quarter of 1993 until 
the fourth quarter of 1994. This data is of limited 
depth in time, but does give us a large population 
of stocks to work with. 

The second experiment, summarized in Figures 3 
and 4, uses the CRSP data set on thirteen stocks 
running from July, 1962 through December, 1992. 
We corrected this data for splits but not dividend 
disbursements. This data was used to test a stream 
of annualized variance and covariances, normalized 
for means, of prices from 1963 until 1993. 

The experiment on the stability of a stock's vari­
ance compares two time periods, ji and h for a 
sample R of N stocks, picked from our universe of 
stock data. In our experiment, ii and h are consec­
utive quarter, semi-annual or annual periods. Sort­
ing by· variances during each of the time periods 
gives us two orderings a and /3 of the stocks, from 
least to most variable: 

and, 

where a;, /3; are the various stocks in the sample R. 
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The rank of a stock r E R under the a order is 
the i such that a; = r, 

Ranka(r) = {ija; = r}, any r ER. 

Likewise, 

Rank/J(r) = { i I /3; = r }, any r ER. 

We wish to compare these two rankings in order 
to reject the possibility that there is no significant 
influence of the past on the future. Spearman's rank 
correlation coefficient [3], [5] is the correlation of 
ranks under the two orders: 

r = 
1 

_ 6 I:rER(Ranka(r) - Rank/J(r))
2 

R (N + l)N(N - 1) 

Similarly, consider S = R( 2) the collection of 
all distinct stock pairs, and select a size N sub­
set R C S. Two orders a and /3 can be defined for 
consecutive time periods j 1 and j 2 , 

and, 

and Spearman's coefficient is calculated to compare 
the two rankings. 

For Experiment 1, where N is large, if the two 
rankings were chosen independently at random, rR 
would be approximated as a zero-mean, 1/(N - 1) 
variance normally distributed random variable. In 
Experiment 1, the underlying space of events is the 
choice of subset R. We calculate, 

z = rRJN - l. 

The event, 
I z I 2: 2.575, 

will occur only 1 % of the time if a and /3 were in­
dependently chosen orders. 

For small N, such as Experiment 2 where N = 6, 
the Spearman coefficients are compared in a table 
of theoretically calculated values [5]. The approach 
here is to consider the set of stocks fixed and the 
randomized event to be the choice of a pair of years. 

183 



In fact, we exhaustively use all consecutive years 
within the range of our data set. 

Th~ first experiment uses the MIT data set and 
is summarized in Figures 1 and 2. Three subexper­
iments are cited, each subexperiment had eighteen 
trials. In Figure 1, the third quarter of 1993 is de~ 
noted 93.3, and so on, and the first half of 1994 is 
denoted 94.1-2, and so on. 

For the variance subexperiment, two time periods 
were selected and forty distinct stocks were picked 
uniformly at random from the population of 212 
stocks. The variance of these stocks were calcu­
lated and ranked for the two time periods, and the 
Spearman correlation coefficient derived. Since N is 
large, the z value is calculated and shown in Figure 
1. This was done for each of eighteen trials, that is, 
eighteen selections of forty stocks. 

The covariance sub experiment was similar, how­
ever forty distinct stock pairs were selected rather 
than forty stocks. The random selection was done 
by selecting uniformly at random twice from the 
population of 212 stocks and throwing out the 
choice if the pair has already been chosen or if the 
two choices happen to be the same stock. 

The subexperiment "Random" consisted of se­
lecting forty pairs of values uniformly at random. 
That is, if variance or covariance were truly random, 
it could yield z values as in this subexperiment. 

The data shows that the hypothesis of indepen­
dence is rejected for variance. However, with each 
time period, the ranking of covariance appears to 
shuffle almost as unpredictably as Random. This 
is illustrated in Figure 2, where cumulative proba­
bilities have been totaled and graphed, along side a 
normal distribution. 

The second experiment uses the CRSP data set 
and is summarized in Figures 3 and 4. Fourteen 
stocks were selected at random from the CRSP data 
base, provided that their histories ran from 1962 
through 1992. The prices were adjusted for splits, 
at which time one of the fourteen was rejected be­
cause of a long period of missing price information. 
In one covariance subexperiment, the thirteen data 
sets were arranged into six pairs, leaving one stock 
out, and the covariances were rank correlated for 
years y and y + l. The covariances were corrected 
for stock price by dividing by the mean of each stock 
for the year, thus yielding a dimensionless quantity. 
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Each y in the range 1962, ... , 1991 was considered 
a trial, and the cumulative distribution function of 
the thirty resulting Spearman coefficients is shown 
in Figure 3, curve cov2-2. Additional choices of six 
pairs were performed and yielded similar results, 
which are not shown. 

Figure 3 also shows the results of two variance 
subexperiments. The six pairs cited in cov2-2 
were broken into two disjoint sets of six stocks, 
and Spearman coefficients calculated for rankings 
of variance divided by mean price squared at time 
y versus y + l, for y = 1962, ... , 1991. These thirty 
trials were cumulated to form curves var-2 and var-
2bis. Finally, the theoretical null hypothesis curve 
for N = 6 is given as curve n-6. 

The calculations for this project were done in Perl 
on a DEC-5000/125 workstation under Ultrix 4.3. 
Further details of the programs and data sets are 
included in an extended Technical Report. 

3 Conclusions 

It appears that stock volatility is stable in time: a 
high variance stock yesterday will be a high variance 
stock tomorrow. However, the same is not true for 
the covariance of two stocks. A strong correlation 
of two stocks yesterday does not lead to a strong 
correlation of those stocks tomorrow. To test this 
idea, we applied nonparametric tests to the rank­
ing of stocks from least to most variant and to the 
ranking of stock pairs from least to most covari­
ant. For variance, there is this stability. However, 
for covariance, we cannot distinguish between ac­
tual stock data and a purely random shuffle at each 
period of covariance ranking. 

This means that a portfolio adjusted correctly for 
the previous period, according to the methods of 
classical portfolio theory, should have no advantage 
over a neutral portfolio for the next period, since 
the facts upon which the adjustment is predicated 
are no more likely to stay put than is a pack of cards 
to remain unmodified after a thorough shuffling. 

Also, this work underlines a subtlety in the the­
ory of portfolio diversification. The stabilizing ef­
fect of diversification is not due to deterministic oc­
currences of negatively correlated industry cycles. 
Rather, negatively correlated stocks arise haphaz-
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ardly, provided that the portfolio is large enough. 
Furthermore, since covariance cannot be relied 

upon to retain its ranking, it cannot be bought and 
sold. This would lead one to believe, but one can­
not conclude, that arbitrage equations involving co­
variance are unlikely to constrain the marketplace. 
On the other hand, the stability of variance that is 
confirmed in this paper concords with current use 
of variance, for example in the Black-Scholes op­
tion pricing formula, as a salable commodity and a 
source of arbitrage opportunities. 
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Trial 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

0.8 

0.6 

0.4 

0.2 

Time Period Experiment 

II Variance I Covariance I Random 

93.3 vs. 93.4 3.42 0.21 1.44 
93.3 vs. 93.4 4.32 -1.58 -0.55 
93.3 vs. 93.4 3.63 -0.23 -0.90 
93.4 vs. 94.1 4.44 0.28 -0.24 
93.4 vs. 94.1 2.98 1.05 1.48 
93.4 vs. 94.1 2.53 0.0058 -1.31 
94.1 vs. 94.2 2.30 -0.76 0.59 
94.1 vs. 94.2 1.58 1.41 -0.24 
94.1 vs. 94.2 3.13 0.92 -1.56 
94.2 vs. 94.3 3.83 2.73 0.58 
94.2 vs. 94.3 3.74 1.75 0.20 
94.2 vs. 94.3 2.88 -0.51 1.16 
94.3 vs. 94.4 4.16 1.29 0.55 
94.3 vs. 94.4 3.68 0.13 0.90 
94.3 vs. 94.4 4.32 -0.86 0.58 

94.1-2 vs. 94.3-4 3.94 0.096 0.060 
94.1-2 vs. 94.3-4 1.12 -2.50 -0.26 
94.1-2 vs. 94.3-4 2.03 -0.32 -1.17 

Figure 1: Table of experiment one results. 
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Figure 2: Summary of the first experiment. 
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Figure 3: Summary of the second experiment. 

Sym Description n/g var-2 var-2bis cov2-2 
ADX Adams Express Co, NYSE • .1 

AL Alcan Aluminum Ltd, NYSE • .2 

BHY Belding Hemingway Inc New, NYSE 
CAN Continental Can Inc Del, NYSE • .3 

DYA Dynamics Corp of America, NYSE * 
FP Fischer & Porter, AMEX • .1 

GQ Grumman Corp., NYSE • .4 

IP International Paper Co, NYSE • .5 

LDR Landauer Inc, AMEX • .6 

NMK Niagara Mohawk Pwr Co, NYSE • .4 

PKE Park Electrochemical Corp, NYSE • .6 

RGS Rochester Gas & Elec. Corp, NYSE • .3 

sex Starrett L. S. 'A', NYSE • .2 

UIS Unisys Corp, NYSE • .5 

Figure 4: Table of stocks in experiment two. 

Copyright© 1995 Software Engineering Press 187 





Paper Session: Improving Neural Network Models 

chair: Gia-Shuh Jang, Springfield (Taiwan) 



190 

Neural Network Model Performance: Comparing Results in Photo Finish Situations 

Susan Garavaglia 
Dun & Bradstreet Information Services, N. A. 

Three Sylvan Way 
Parsippany, NJ 07054 

garavaglia@dbisna.com 

Abstract: When choosing between competing 
statistical models, neural networks should be 
compared with more traditional and well­
understood statistical methods, such as 
logistic regression or linear discriminant 
analysis. Two reasons for this are: 1) there is 
a greater "installed base" of fanctioning 
statistical models using these methods, and, 
2) the cost of implementing a neural network 
model is somewhat higher due to the 
relatively greater number of connection 
weights than linear coefficients for the same 
given application. When the empirical 
performance of competing models is close 
enough to be considered a ''photo finish, " 
additional analysis should be pursued to 
uncover indicators of statistical stability and 
robustness. Herein, examples of this 
comparative analysis are discussed for four 
competing business failure prediction models; 
three are backpropagation neural networks, 
and the fourth is a logistic regression model. 
The results show the backpropagation 
network trained on the confasion matrix 
criterion to be slightly superior to the logistic 
regression model. 

1. Introduction and Background 

A photo finish in a horse race means 
that the true winner must be determined by 
examining a photograph taken at the finish 
line, because the results are too close to decide 
by live observation. By analogy, in financial 
modeling there may be a photo finish between 
a neural network model and traditional 
statistical model. Textbook examples, by 
definition, show clear and unambiguous results 
of neural network model performance and 
favorable comparisons to older methods. 
However, real applications, and especially 

financial applications, are much more difficult 
to develop and justify. Some reasons for this 
are: 

1. Financial applications are almost 
always developed with relatively small samples 
taken from large populations. Therefore, 
sampling issues, treatment of outliers, and 
model stability must be addressed. 

2. Financial applications are mostly 
probabilistic as opposed to deterministic, 
mainly because of the degree of noise in the 
data and latent variables. For example, two 
companies with exactly the same observable 
financial conditions at one point in time may 
experience different outcomes later, (e. g., one 
may file for bankruptcy protection while the 
other may continue to operate as a solvent 
business). There are real reasons for one 
business failing, but the data available to the 
modeler may not reflect these reasons. 

3. Many different measures of stability 
and performance are available, and the 
preferences of individual econometricians may 
lead them to make different decisions regarding 
the selection of a "best" model. In addition, 
some measures of performance are purely 
pragmatic, and more technical measures of 
goodness of fit may be given a lesser weight in 
the decision relative to, say, gains chart 
statistics. Gains charts are used to estimate 
the relative gains in predictive power of models 
vs. other predictive methods or random 
selection. 

This case study strives to illustrate all 
the aforementioned characteristics of financial 
applications and to demonstrate how different 
measures of performance may lead to the 
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selection of different models and modeling 
techniques. In addition, the contest between 
models is made more intriguing by the very 
close competition and the nature of the 
application itself. The application is 
prediction of business failures in the health 
care industry, an industry in which the failure 
rates are among the lowest for any industry 
group. The models to be compared are a 
logistic regression model, and three different 
neural network backpropagation models. 

As background, Dun & Bradstreet has 
developed 13 industry specific models that 
combine balance sheet data elements, company 
"demographics" and company-specific 
payment performance information to predict 
business failure over an 18 month performance 
window. The models were developed using 
logistic regression and provide a relative rank 
ordering of risk by a universal score, universal 
percentiles, and industry specific percentiles. 
Thus, a health care firm can be compared to 
all of the scored firms in the D&B database or 
its industry peers. Although the exact 
specifications of the logistic regression model 
are D&B-proprietary, the set of predictors 
used for all models discussed in this article 
include: 

1. A continuous variable representing 
payment performance at time of 
observation 

2. A continuous variable representing the age 
of the firm 

3. A continuous variable representing 
payment variability over the last two years 

4. An indicator for a set level of Current 
Liabilities/Net Worth Ratio 

5. An Indicator for Derogatory Payment 
Notes in File 

6. An indicator for a set level of Cashffotal 
Assets Ratio 

7. An indicator for a set level of 
Sales/Working Capital Ratio 

8. An indicator for Derogatory Public Record 
Items (Open Suits, Liens, or Judgments) 

In addition, the neural network models 
incorporate an additional variable, an indicator 
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for specific 4-digit SIC (Standard Industry 
Classification) codes within the overall health 
care industry group of SICs, 8011 to 8099. 
These higher risk SICs included nursing homes 
and other nursing care services, psychiatric 
hospitals, and medical laboratories. 

Generally, our experience in trying to 
improve the predictiveness of financial stress 
models through the use of neural networks has 
yielded the kind of photo finish results that are 
detailed herein. We believe that this is because 
(1) our method of data collection and 
representation tends to favor relationships that 
are either highly monotonic or linear, and (2) 
because the use of probability by logistic 
regression compensates for its not having the 
additional estimators that are found in a 
backpropagation hidden layer. For additional 
background on bankruptcy prediction 
techniques and results, see Altman [I]. 

In a photo finish situation there could 
be trade-offs in. selecting the neural network 
model versus the logistic regression model for 
implementation. The logistic regression 
model has only as many coefficients as 
variables, plus an intercept term, and is 
relatively simpler to implement from a 
programming standpoint. However, when 
expected performance is about equal and there 
is evidence of model stability, the model user 
has nothing to lose by implementing the neural 
network model and valuable experience to 
gain. What is learned by using a neural 
network model may be transferred to other 
neural network opportunities. 

2. Development and Testing 
Methodology 

The data used for all models comes 
from D&B's database of health care industry 
companies that have supplied full fiscal year 
end financial statements within two years prior 
to the observation period. In addition, for the 
selected companies, Total Assets, Total 
Liabilities and Total Current Liabilities were 
each required to be positive and the companies' 
other D&B data had to be complete for full 
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reporting purposes. The final set of data 
elements to be included in the models was 
determined by performing an exploratory data 
analysis of the relationship between individual 
data elements and their relationship to the 
outcome of business failure or continued 
business solvency. A brief discussion of the 
appropriate data analysis can be found in 
Hosmer and Lemeshow [3]. 

Once a set of predictors was selected, 
three data sets were created: a development 
(training) data set, a holdout (testing) data set, 
and later on, a validation data set to be used 
when more recent business failure data became 
available. Table 1 provides a summary of the 
data sets. 

Data Statistics (Unweighted) 
Total Non- Failures 

Failures 
Development/Training 2316 2210 106 
Holdout/Testing 772 742 30 
Validation 2970 2908 62 

Table 1 

For the original sample, a "snapshot" 
of the companies' predictive data was taken as 
of mid-1991. This is possible because D&B 
regularly archives its databases. For each 
company, a subsequent "snapshot" of the 
outcome, either failed or not failed, was taken 
over a number of calendar quarters up to the 
end of 1992. Thus, the observation period was 
at one point in time and the performance 
period spanned the following 18 months. The 
validation data set used June and December of 
1992 as the observation periods and the entire 
year of 1993 as the performance period. This 
still fixed the performance period as 18 
months, but allowed the computation of an 
annual failure rate. In 1992, the business 
failure rate for the health care segment that 
met the data criteria was 0.8%. In 1993, it fell 
to 0.2%. 

2.1 The Logistic Model 

The challenge from a modeling 
standpoint is obvious: as the failure rate is 

very low, there are very few 'bads" and model 
stability is of great concern. Some techniques 
to work around this problem include the 
bootstrap and jackknife methods discussed in 
Amemiya [2]. Other approaches include 
limiting the number of variables while using as 
many dichotomous independent variables as 
possible, or validating the model based on 
quintiles or deciles rather than percentiles. 
The approach used for these models was to 
transform the data to remove as much noise as 
possible. Transformations included the use of 
categorical variables and natural logarithms of 
continuous variables. As a later test of the 
model with the validation data set showed 
highly favorable results with regard to 
performance and stability, it was decided that 
there would not be a significant benefit from 
the effort of bootstrapping or jackknifing. 

Because the logistic regression method 
maximizes a likelihood function, probability 
'lnatters." Therefore, the modeling data for a 
logistic regression should reflect the expected 
proportions of failures and non-failures in the 
population. All of the failures and a sample 
of the non-failures were used, but the non­
failures were "weighted up" to their expected 
proportions in the population that would be 
scored by the resulting model. The reason for 
using all the failures is simply because there 
are relatively few of them. 

The performance criteria used for. the 
logistic regression model and the neural 
network models were: 

1. The percentage of failures captured in the 
first percentile. 

2. The percentage of failures captured in the 
first five percentiles 

3. The percentage of failures captured in the 
first decile 

4. The D&B Predictiveness Index (PI), which 
is a geometrical measure of the ratio of the 
area of the ROC (receiver operating curve) 
to a hypothetical ROC for a model that 
screens perfectly, (i. e., every failure 
scored lower than the lowest scoring non­
failure). See Hutton [4] for more 
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information on the ROC as it relates to 
neural networks. 

5. The Kolmogorov-Smimov (K-S) statistic, 
which is a point measure of how well the 
model '1;eparates"the classes. See Mood, 
et al, [7] for a complete explanation. 

6. The Kullback-Liebler (K-L) statistic, 
which is a more comprehensive measure of 
class "separation. "1 

7. The Multivariate Wald statistic for the 
neural network models and the univariate 
Wald statistic for the logistic regression 
model (See Wald [9], Hosmer and 
Lemeshow [3], and Kuan and White [6]). 

It should be noted that all of these 
measures are at least somewhat dependent on 
the proportion of observations in each class 
(reflected here by the failure rate), and cannot 
reasonably be used to compare two different 
model applications. Thus, absolute measures 
of ''.goodness" for each of these criteria are 
not relevant. For criteria 1-6, the highest 
value for each statistic determines the 'best" 
model, and in criterion 7, the Wald test, the 
number of parameters for which the Wald 
statistic exceeded the critical Chi-squared 
value is used to determine the "best" model. 

2.2 The Neural Network Models 

A number of variations on the size and 
number of hidden layers were tried before a 
network with a hidden layer of seven units was 
settled on for the rest of the development work. 
Using this network architecture, three different 
versions were trained, varying the optimization 
criteria, and using the validation data set to 
test. The rationale for using the validation 
data set, as opposed to the holdout/testing data 

1 White [10] illustrates the use of the K-L statistic 
in terms of comparing an estimated conditional 
density to a true conditional density, which would 
make the best model have the lowest K-L value. 
In this case, the K-L statistic is being used to 
compare the estimated conditional densities of the 
two classes which should be as far apart as 
possible, thus giving a relatively large K-L value 
for the best model. 
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set, was that the validation data set had more 
failures and contained more recent data. 
Basing performance on more recent data also 
gives the model a longer "shelf life," in that it 
is expected keep its level of predictiveness 
longer. The lowest mean squared error, the 
highest average correct classification rate, and 
highest correlation coefficient based on a 
confusion matrix were used as optimization 
criteria. The classification rate measures the 
average percentage of neural network output 
values that fall in the right place on the 45° 
diagonal (after any necessary rounding), where 
the axes are actual value and desired value. 
The confusion matrix method of optimization 
uses the correlation coefficient of the points 
scattered on and around the same diagonal. 
Information about the neural network software 
used, NeuralWorks Professional/11®2

, and 
how to train a network based on best model 
criteria, can be found in NeuralWare, Inc. [8]. 

The failures in the training set were 
duplicated enough times to equal the number 
of non-failures, which brought the total 
number of observations to 4,330. This 
strategy improved the performance by a slight 
amount, apparently because the neural network 
had more opportunities to learn from the 
failures, which enabled it to compensate for its 
lack of knowledge of the probabilities used by 
logistic regression. 

After this first 'tound" of selecting an 
overall architecture, the second round involved 
selecting the best network from the optimizing 
criteria. The confusion matrix criteria 
performed best among the three, but still was 
not quite as good as the logistic regression 
model in some criteria. From this point, 
further improvements on the confusion matrix 
version of the model were attempted by 
additional training and jogging the weights 
periodically to see if the network was stuck in 
local minima. 

After some amount of training, which 
included several retreats back to a previously 
best network, it was decided that it was 

2 Neural Works Professional/II is a trademark of 
NeuralWare, Inc. 
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unlikely that any additional improvements 
could be made within the same architecture 
and optimization parameters. 

The full comparison of all the models 
is in Tables 2a through 2e, with the fourth 
column showing how many failures ('Val. 
Bads') were screened by each model at the 
first, fifth, and tenth percentiles. 

Loaistic Rearession 
Criteria Dev Hid Val Val. Bads 
1% 16 13.3 30.6 19 
5% 45.3 33.3 51.6 32 
10% 62.3 43.3 66.1 41 
Pl 73.4 53.48 75.5 
K-S 0.61 0.45 0.5 
K-L 1.2 0.88 1.31 

Table 2a 

Neural Network -
Confusion Matrix Criterion fTvoical Result) 

Criteria Dev Hid Val Val. Bads 
1% 9.4 12.4 17.7 11 
5% 39.6 30 50 31 
10% 56.6 40 61.3 38 
Pl 75.6 51.56 70.8 
K-S 0.62 0.47 0.53 
K-L 1.26 0.92 1.33 

Table 2b 

Neural Network - Classification Rate 
Criteria Dev Hid Val Val. Bads 
1% 10.4 6.7 14.5 9 
5% 41.5 30 46.8 29 
10% 67 40 56.5 35 
Pl 81.44 49.56 66.4 
K-S 0.67 0.48 0.52 
K-L 1.52 0.92 1.17 

Table 2c 

Neural Network - Root Mean Sauared Error 
Criteria Dev Hid Val Val. Bads 
1% 6.6 6.7 7.6 5 
5% 35.7 20 37.1 23 
10% 65.1 40 59.7 37 
Pl 82.48 51.96 72.44 
K-S 0.69 0.43 0.55 
K-L 1.49 0.7 1.12 

Table 2d 

Neural Network - Best Confusion Matrix 
Criteria Dev Hid Val Val. Bads 
1% 10.4 6.7 10.8 6.7 
5% 43.2 26.7 51.6 32 
10% 66 40 69.4 43 
Pl 82.24 40.96 73.12 
K-S 0.7 0.31 0.61 
K-L 1.56 0.72 1.42 

Table 2e 

An overall comparison of the logistic 
regression model with the neural network 
models is in Table 2f. 

Best Model Selection by Criteria 
Criteria Holdout Validation 
1 % Logistic Logistic 
5% Logistic Logistic/Best 

10% 
Pl 
K-S 
K-L 

Logistic 
Logistic 
Classification Rate 
First Confusion Matrix/ 
Tied with Class. Rate 

Table 2f 

CM Tied 
Best CM 
Logistic 
Best CM 
Best CM 

The Best Confusion Matrix version 
gave a better result than the logistic regression 
model in three categories and was tied in one. 
The logistic regression model was superior to 
the neural network in the first percentile 
screening rate and the Predictiveness Index. 

3. The Wald Test as a Potential Tie 
Breaker 

The Wald Test is a statistical 
hypothesis test to determine the significance of 
predictors. The methodology is to propose the 
Null Hypothesis, (i. e., that the 'true" 
coefficient or connection weight associated 
with the predictor is zero, therefore rendering 
the predictor irrelevant to the outcome), and 
then determine the likelihood that the Null 
Hypothesis is false and can be rejected. This 
is essentially accomplished by taking the 
estimated coefficients or connection weights 
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from the regression or the neural network 
models and calculating their relative 
contribution to a correct result versus the 
contribution of random 'hoise" to the correct 
result. It is related in application to the t-test 
and the F-test, but is defined for models that 
are more complex than linear models. 
Johnston [5] includes an extensive discussion 
of tests of significance for linear models; and 
Amemiya [2] describes several tests of 
significance for more complex models, 
including the multivariate Wald Test. 

Kuan and White [ 6] briefly discuss 
the use of the Wald Test to determine the 
significance of predictors in a neural network 
model with one hidden layer and provide the 
appropriate form of the test. The Chi-squared 
critical value is determined by the number of 
hidden units plus one, which should be used in 
place of the degrees of freedom in looking up 
the critical value in a table. Most statistics 
textbooks contain a table of critical values by 
degrees of freedom (See either Johnston [5] or 
Mood, et al, [7].). For both the multivariate 
and the univariate tests, critical values are at 
the 5 % significance level, or a probability of 
0.05 that a true Null Hypotheses is being 
rejected. For one degree of freedom, the 
critical value is 3.841, and for 8 degrees of 
freedom ( defined for this type of test as 7 
hidden units plus one) the critical value is 
15.507. 

The multivariate form of the Wald 
Statistic is computationally intensive and is not 
often available in standard software. For this 
research the calculations were programmed 
using Mathematica®3 (Wolfram [11]) and 
took several days to run on a standard 386-
based PC. The univariate form of the Wald 
Statistic is supplied as part of the standard 
output for the SAS®4 Logistic Regression 
Procedure. For more information see [9]. 

As examining the tests of significance 
is part of the traditional model development 

3 Mathematica is a trademark of Wolfram 
Research, Inc. 
4 The trademarks refer to the products and seIVices 
of SAS Institute, Inc. 
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process, all eight predictors in the final logistic 
regression model had Wald Statistics that 
exceeded the critical value of 3.841, which is 
consistent with the p-values (significance 
levels) all being below 0.05. The p-values are 
the probabilities that a true Null Hypothesis is 
being rejected. The Wald Statistics on the 
neural network models were calculated, after 
the fact, on models trained to meet other 
criteria, viz., root mean squared, classification 
rate, and confusion matrix measures. 
Therefore, these statistics served not so much 
to determine if the predictors were relevant, as 
this was a known result of the logistic 
regression, but to determine how well the 
network extracted predictiveness from the 
data. In addition, since one more input was 
used (the SIC indicator within the general 
health care group), it could demonstrated that 
the neural network was able to make use of 
other information that was not statistically 
significant in a purely linear estimation. 
Therefore, the total number of test statistics 
that exceeded the critical value is a relative 
measure among the three neural networks. As 
the multivariate Wald Statistic determines the 
significance of inputs or predictors, it is 
appropriate for the input to hidden layer 
connections only. Therefore, the percentage of 
the total is based on: 9 inputs times 7 hidden 
units= 63 connections. 

The results were as follows in Table 3: 
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Criterion/Dataset Wald Statistics 
> Critical Value 

Number Percentage 
Classification Rate 
Training/Dev 55 
Test/Holdout 47 
Validation 55 

RMS Error 
Training/Dev 
Test/Holdout 
Validation 

Confusion Matrix 

21 
7 
22 

Training/Dev 36 
Test/Holdout 18 
Validation 36 

Table 3 

87.30% 
74.60% 
87.30% 

33.33% 
11.11% 
34.92% 

57.14% 
28.57% 
57.14% 

These initial results, which show that 
the classification matrix criterion method has 
the highest proportion of significant 
connections, are consistent with expectations, 
given that the average classification rate was 
84.29%, based on the failures classification 
rate of 83.02% and the non-failures 
classification rate of 85.57%. The confusion 
matrix criterion method, which uses the 
correlation coefficient between the outputs and 
the correct classification, had the next highest 
proportion of significant connections, with a 
correlation coefficient of 0.271602 for the best 
model using that criterion. The lowest root 
mean squared error obtained was 0.606613, 
which is consistent with the expectation of the 
worst relative performance. It is proposed that 
the confusion matrix method yielded the best 
rank ordering power, as shown in the 
percentile and PI statistics, because the 
rounding used in the classification matrix 
criterion caused a number of observations to 
be counted in the wrong class. 

The exercise of calculating the 
multivariate Wald Statistics is also useful to 
examine the persistence of certain predictors 
across all models. Table 4 shows the sum of 
statistics that exceeded the critical values for 
all neural network models and all data sets 

(training, testing, and validation) for all hidden 
units. Payment performance has the highest 
number of statistically significant connection 
weights, and is also the strongest predictor in 
the logistic regression model. This should be 
expected as well, because, intuitively, the first 
sign of _a business in trouble is usually 
delinquency in bill-paying. What is interesting 
about this result is that the special SIC 
category, (tied with the Current Liabilities/Net 
Worth ratio), has the next highest number of 
statistically significant connection weights, but 
was not statistically significant in the logistic 
regression model! This supports the selection 
of a neural network model when the data is 
very complex. 

Predictor Total 
Number>Critical 
Value 

Payment Performance 52 
Age of Company 23 
Payment Variability 14 
Current Liabilities/Net Worth 39 
Derogatory Payment Notes 31 
Cash/Total Assets 30 
Sales/Working Capital 34 
Derogatory Public Record 35 
Items 
Special SIC Category 39 

Table 4 

4. Economics of Model Implementation 

A pragmatic observer of this 
discussion might challenge the results in the 
tables by saying, ''Look, the Confusion Matrix 
Neural Network screens only two more 
failures than the Logistic Regression. Who 
cares which model gets implemented?" But, 
for users of Financial Stress Predictive Scores, 
any single business failure could mean very 
large losses, and the difference between 
screening 43 versus 41 failures at the first 
decile represents a 5 % improvement. Of 
course, a rational economic decision on which 
model to use would be based on the expected 
incremental cost to develop, implement, and 
maintain the neural network model versus the 
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expected loss avoidance based on the expected 
improvement in performance. There may be 
intangibles as well, such as the model user's 
reputation and regulatory implications of 
imprudent risk taking. 

Another consideration is how the 
model will be used. For example, the logistic 
regression model screened the best of all the 
alternatives at the first percentile level. A 
company that seeks to minimize its losses and 
still approve 99% of its risks would do best 
with this model. However, a company that is 
seeking the lowest risk with a 90% approval 
rate would do better with the Best Confusion 
Matrix Neural Network Model. 

From this set of research results, it 
appears that the logistic regression model may 
have slightly better rank ordering power than 
the best of the neural network models, as 
indicated by the Predictiveness Index and the 
screening power in the lowest percentiles. 
However, the neural network models were able 
to get predictive information out of an 
additional input and showed a good proportion 
of statistically significant connection weights. 
This gives potential users the confidence that 
the network has true predictive power and 
model stability. 

5. Summary and Conclusions 

Selecting a best version of a statistical 
model is not always straight-forward. 
Measures of expected performance and 
statistical stability must be evaluated in some 
economic context of how the model will be 
applied and the relative costs of all of the 
alternatives under consideration. The nature 
of the data also determines which modeling 
paradigm will yield the best result. The results 
obtained by this study appear to suggest that 
there may be some upper limit of 
predictiveness to just about any combination of 
model and data set because of unobservable 
factors that influence the outcomes. The 
neural network paradigm may be able, through 
the use of hidden units that have the effect of 
combining subsets of inputs, to provide 
information that is not immediately observable 
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in strictly linear analysis. However, the 
presence of this type of information can be 
detected through data analysis, which often 
includes the development of a linear model as 
an initial step. 

Neural Network models remain a 
promising technology, but, as part of the 
model development process, a significant 
amount of time should be budgeted for 
exploratory data analysis, and pre­
implementation analysis such as statistical 
hypothesis testing, as described in this article. 
If standard programs and procedures are set 
up for the analytics, the process will run 
smoothly, and each implemented model will be 
better understood and accepted by its users. 
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Abstract 

This paper presents the results of a performance 
analysis of two popular techniques of 
classification: neural networks and FLDA, a 
statistical approach. It is suggested that neural 
networks which are not limited by assumptions 
such as normality and equal variances, would 
perform better especially for financial 
applications. Several financial applications have 
been documented to assume a form of non­
normality called leptokurtosis. Our results 
indicate the conditions under which the neural 
network might outperform other approaches for 
financial applications. Comparisons based on 
real world data as well as simulated data provide 
strong evidence that the neural network performs 
better when ranked data is used. 

1. Introduction 

The classification problem involves assigning data 
cases based on a set of variables to two or more 
groups. Classification is a very common problem 
encountered in the business world and is of 
considerable interest in the financial community. 
For example, investors are interested in classifying 
a firm on the basis of its financial soundness 
(bankruptcy); Stock analysts are interested in 
categorizing investments in firms as involving 
high, medium or low risk based on their financial 
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ratios; the FDIC has an interest in identifying 
banks or financial institutions that are likely to go 
bankrupt; credit rating agencies are interested in 
classifying customers as belonging to high/low 
risk categories. 

Traditional statistical procedures such as the 
Fisher's Linear Discriminant Analysis (FLDA) 
have been widely used to find solutions to the 
classification problem. While such techniques 
have worked well for some problems, the 
performance has been unimpressive for most 
business applications. This is because statistical 
approaches to the classification problem require 
some assumptions about the data, the most 
important of them being multivariate normality 
and the homogeneity of covariance. However, 
prior research has consistently shown that 
financial data in particular violate the above 
mentioned assumptions. For example, it has been 
shown that the distribution of changes in daily 
future prices is not normal but is actually 
leptokurtic; i.e. a distribution with fat tails 
(Hudson et al., 1987). An analysis of the 
empirical distributions of asset and commodity 
prices revealed similar forms of non-normality 
(Peters, 1991 ). Leptokurtotic distributions also 
seem to be prevalent in other financial data such 
as stock returns (Brock et al., 1991) and exchange 
rate changes (Hsieh, 1988). 

Recently , neural network approaches have been 

199 



used effectively to solve classification problems 
(Salchenberger et al., 1992; Marquez et al., 1992). 
However, there has been no study which addresses 
the issue of why or under what conditions one 
approach outperforms the other. As a result, no 
strong generalizations can be made as regards the 
superiority of any particular approach. In this 
paper, we present the results of a comparison 
between the traditional statistical approach 
(FLDA) and neural networks specifically for 
leptokurtotic distributions. In our comparisons, 
we vary two conditions: the assumption of 
homogeneity of covariances, and the effect of 
using ranked data versus raw data. Results of a 
comparison between the two techniques for the 
liquidation / merger alternative are also presented 
and discussed vis a vis the results from the 
theoretical distribution. 

2. The Statistical Model (FLDA) 

Fisher's linear discriminant analysis (FLDA) is the 
most frequently used classification rule. The rule 
works well in situations where the groups to be 
discriminated can be separated by a straight line. 
Consider the simplest case where two groups have 
to be differentiated. Let G1 and G2 denote the 
groups. Further, it is assumed that the two group 
populations are n-variate (n >= 1) normal and the 
homogeneity of variance-covariance is valid. 

In such a case, an unclassified data case 1s 
assigned to group G1 if 
XorS-1(X1-X2) >= l/2(X1-X2?S·1(X1-X2) + ln(pzfp1) 

and to group G2 otherwise. 

3. Neural Network Classifiers 

Neural networks are composed of highly 
interconnected neurons or processing elements 
organized in layers. The simplest form of such a 
network is one that has two layers: input and 
output. Feedforward networks are characterized 
by unidirectional flow of signals from the input to 
the output layer. Connections between the 
neurons have a numerical weight associated with 
them that explains the influence of input units on 
the output units. These weights are learned by the 
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network through training that consists of repeated 
presentation of examples from a training set. In 
the backpropogation algorithm, there is a middle 
layer that transforms and develops internal 
representations of the inputs. The transfer 
function that describes the relationship between 
layers is usually like a logistic continuous 
function. The ability of such multi-layered 
networks to represent nonlinear functions is well 
documented (Kolmogorov, 1963). The present 
study uses multilayered networks with a variant of 
the backpropogation learning procedure. 

4. Methodology 

Using a procedure proposed by Fleishman (1978), 
a leptokurtotic distribution with a skewness of 
0.25 and a kurtosis level of 3.0 was simulated. 
The number of variables was five. There were 
two levels of manipulation: homogeneity and 
heterogeneity of covariance structures. The 
design is summarized below: 

Equal Unequal 
Covariances Covariances 

Neural Network U1=(0,0,0,0,0) U1=(0,0,0,0,0) 
U2=(l,l,l,l,l) U2=(1,l,l,1,1) 
Cov1=Cov2=I Cov,=I Cov2=2I 

FLDA U,=(0,0,0,0,0) U,=(0,0,0,0,0) 
u2=(1,1,1,1,1) U2=(1,l,l,1,1) 
Cov1=Cov2=I Cov1=I Cov,=21 

Note: Ul andU2 represent the means of 5 
variablesand I represents the identity matrix. 

Two hundred observations were generated for 
each of the four conditions with hundred cases per 
group. Within each cell, hundred observations 
were used as the training set and the remaining 
hundred were used as a test or holdout sample. 
Five simulations were carried out per cell and the 
results averaged. Using the same distributions, the 
procedures of NN and FLDA were repeated for 
ranked data instead of raw data. 

5. Network Design 

A single hidden layer, feedforward 
backpropogation network with five input nodes, 
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four hidden nodes (based on a 75% rule suggested 
by Salchenbarger et al., 1992), and one output 
node was developed. The input nodes represent 
the five discriminating variables and the output 
node is the classification or group node. The delta 
rule was used to train the network. A convergence 
criterion of root mean square error of 0.01 was 
used for training and a sigmoidal function was 
used to update weights. 
The function used to classify the continuous 
output was as follows: 

f(0) = 1 if f(0) >= 0.5 
0 otherwise. 

6. Results 

The classification rates of the experimental 
comparisons between the neural network and 
FLDA for leptokurtotic distributions are presented 
below. 

RAW DATA 

Equal Unequal 
Covariances Covariances 

NN 80.5% 71.5% 

FLDA 80.0% 69.0% 

RANKED DATA 

Equal Unequal 
Covariances Covariances 

NN 94.5% 85.5% 

FLDA 89.6% 64.4% 

7. A Real World Example 

With increasing bankruptcies, security analysts, 
investors and corporations are paying closer 
attention to the survival prospects of a firm. There 
is a need to identify firms that might be strong 
candidates for being acquired. The variables 
chosen for this merger-liquidation model were 
based on failing firm theories well document in 
prior studies (Palepu, 1986; Eddey, 1991). They 
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were: Return on assets (ROA), Return on 
stockholder's equity, Price-earnings ratio, 
Dividend yield, Turnover ratios, Liquidity ratios, 
Sensitivity to economic conditions, Firm size, and 
Growth resource mismatch. Data for these 
variables was collected for one, two, and three 
years before the actual event with a training 
sample of 60 and a holdout sample of 60 firms. 
The results of this comparison are presented 
below: 

Time=l Time=2 Time=3 

FLDA 67.53% 66.43% 64.24% 

NN 73.00% 70.60% 70.15% 

8. Discussion 

The results of the merger-liquidation classification 
comparisons confirm some intuitive expectations 
about the techniques. As the actual event 
approaches, there -is an improvement in the 
predictive ability. However, the neural network 
model performs only marginally better than the 
FLDA. The same conclusion can be reached when 
looking at the classification rates for raw data 
generated in the form of a leptokurtotic 
distribution. This is also irrespective of the 
violation of homogeneity of covariances. The 
performance of both approaches is by and large 
mediocre especially in the case of unequal 
variances. However, after using ranked data for 
our comparisons, we can make three 
generalizations. First, for leptokurtotic 
distributions such as asset and commodity prices, 
neural networks are a more accurate classification 
tool than FLDA. Second, there is a drastic 
improvement in the neural network's performance 
when ranked data is used. Third, the disparity 
between the neural network and the FLDA for 
ranked data is most obvious under the condition of 
unequal covariances. 

Our results provide strong support for the 
superiority of the neural network approach in 
financial applications, but they also show the 
conditions under which performance can· be 
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improved. That is, it seems that the neural 
network performs better when the data is ranked 
and is not affected by the violation of the 
assumption of unequal variances. We are 
currently in the process of conducting additional 
simulations to determine if such improvements are 
consistent across other distributions (purely 
guassian, platokurtotic etc.). We are also in the 
process of designing and testing a genetic 
algorithm based approach to classification. 
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Abstract 
A frequent obstacle to applying neural networks to 
business is overtraining. The traditional model to 
train a neural network minimizes the sum of the 
squares of the deviations of the target and computed 
output. This paper presents a second model in which 
acceptable deviations of the target and computed 
output are specified as constraints and the objective 
junction is to minimize the sum of the squared weights. 
The resulting weights provide a robust solution. As 
examples, the experience of using the model in 
training the XOR and 3-Parity neural networks is 
presented, along with a copper price forecasting 
model. 

1. Introduction 
A frequent obstacle to applying neural networks to 
business is overtraining. When overtraining occurs, the 
resulting neural network memorizes the training data 
veiy well, but does not evaluate new data satisfactorily. 
This usually happens when several weights become 
large in absolute value and relatively small changes in 
input create large changes in output. The objective of 
this paper is to demonstrate that by minimizing the 
weights and not the errors a more robust neural network 
will be produced. To do this, two models will be 
introduced and their resulting solutions will be 
compared. 

The first model is based on the traditional model of 
adjusting the weights of a neural network so as to 
minimize the sum of the squares of the deviations of the 
target and computed output. This will be called the 
Error Minimization Model. Several different algorithms 
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can be used with this model to determine the solution, 
such as standard error back propagation with fixed 
learning rate, error back propagation with line 
minimization (also called steepest descent), quasi­
Newton, and conjugate gradient. In the second model, 
acceptable deviations of the target and computed output 
are explicitly specified as constraints and the objective 
function is to minimize the sum of the squared weights. 
This model is called the Weight Minimization Model. 
These two models are then applied to the XOR and 3-
Parity Problems. The resulting solutions of the Weight 
Minimization Model are more robust than the Error 
Minimization Model. The Weight Minimization Model 
is also applied to a copper price forecasting model to 
demonstrate the use of the technique on a larger 
practical problem. 

1.1 Review of the Literature 
An important factor in applying neural networks to 
business is the proper training of the network. This is 
especially true for applications that synergistically use 
expert systems, neural networks, Lotus compatible 
worksheets, and/or dBase compatible files. For 
example, Lyons [3] describes a methodology to 
integrate neural networks and expert systems for merger 
& acquisition analysis. The book and software of 
Lyons [5] contains the PC software which demos the 
system described in Lyons [3]. Lyons [4] describes 
how AI technology can be used technology transfer. 
References such as Freeman [I], Kosko [2], Maren [6] 
and McClelland [7] discuss the art of training a neural 
network with the Error Minimization Model and various 
versions of the back propagation algorithm. In the 
recent article, Van der Smagt [9] analyzes these 
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algorithms along with quasi-Newton and conjugate 
gradient algorithms for the Error Minimization Model. 
This current paper extends that analysis by applying 
these algorithms to the Weight Minimization Model. 

1.2 Overview 
In Section 2 of this paper, the Error Minimization 
Model is defined. For the XOR problem, the model is 
encoded using a Lotus compatible worksheet to 
minimize the sum of the squares of the deviations of the 
target and computed output. The model is solved with 
either the Lotus or Excel solver, and the computational 
experience is discussed. The solution does suffer from 
the usual problem of over training. In Section 3, the 
Weight Minimization Model is presented where the 
acceptable deviations of the target and computed output 
are specified as constraints and the objective function is 
to minimize the sum of the squared weights. The result­
ing weights provide a robust solution. The experience 
of using the worksheet solvers in training the XOR and 
3-Parity neural networks is included. In Section 4, the 
Weight Minimization Model is applied to a copper price 
forecasting model. This paper assumes that the reader 
has familiarity with training neural networks. 

2. Error Minimization Model 
In this section, the Error Minimization Model for the 
traditional three-layer feedforward neural network 
architecture is presented. It is described in precise 
mathematical terms so as to compare it with the Weight 
Minimization Model of Section 3. 

2.1 Statement of Error Minimization Model 
The objective of the Error Minimization Model is to 
minimize the sum of the squares of the deviations of the 
target and computed output. To define this 
mathematically, first the equations to compute the 
output of the neural network will be specified followed 
by the expression for the error. Let X; P denote the input 
value to the i-th input processing element for the p-th 
training pattern, where i equals I tom, the number of 
input processing elements and p equals I to q, the 
number of training patterns. Thus, the net input for the 
p-th pattern into the j-th processing element of the 
hidden layer can be computed as: 

ne11; = J;w/ xip - ~- (1) 
i 

where wi is the weight of the connection from the I-th 
input element to the j-th hidden element, and 0/ is the 
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bias term. The h superscript refers to quantities in the 
hidden layer. Next, the sigmoidal activation function is 
used to compute the output of the j-th processing 
element of the hidden layer as: 

h ] 
out1P = (2) 

In a similar fashion, the net input into the k-th 
processing element of the output layer can be computed 
as: 

o {""" o h ao 
netkp = L- wkJ out1P - vk (3) 

j 

where wk/ is the weight of the connection from the j-th 
hidden element to the k-th output element, 0/ is a bias 
term and n is the number of processing elements in the 
hidden layer. The o superscript refers to quantities in 
the output layer. Again, the sigmoidal activation 
function is used to compute the output of the k-th 
processing element of the output layer as: 

0 1 
outkp = (4) 

Now that the equations to compute the output of the 
neural network are specified, the objective function of 
the Error Minimization Model may be defined as: 

min£=½ };(tark -outk;J2 (5) 
kp P 

where tarkp denotes the target value for the k-th output 
processing element of the p-th training pattern and 
outk/ satisfies Equations (1) - (4). 

2.2 Implementation of Error Minimization Model 
The Error Minimization Model for the XOR problem is 
encoded in a Lotus compatible worksheet and solved 
with either the Lotus or Excel solver. The patterns are 
entered in the worksheet as depicted in Figure 1. An 
initial set of small random numbers is used as a starting 
point for the weights and bias terms for the two hidden 
processing elements and the one output processing 
element. After the worksheet solver is invoked, these 
numbers are replaced with the final solution as shown 
in Figure 2. The results of encoding Equations (1) and 
(2) for the two hidden elements is shown in Figure 3. 
The similar results of encoding Equations (3) and (4) 
for the one output element is given in Figure 4 along 
with the deviations from the target values and the value 
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of E as determined by Equation (5). 
Concerning the performance of the solvers for 

different sets of initial random numbers for the weights 
and bias terms, the Lotus solver frequently gave the 
message that it could not solve the XOR problem. 
However, when the same worksheet was input into 
Excel, the Excel solver frequently solved the XOR 
problem within 30 seconds on a 486 PC. The weights 
and bias terms of a typical solution are given in Figure 
2, with the corresponding errors shown in Figure 4. 

PATTERNS 
Input Target 

p X1 X2 
1 0 0 0 
2 0 1 1 
3 1 0 1 
4 1 1 0 

Figure 1 - Patterns for XOR Problem 

Weights Bias 
Layer Neuron From Neuron 

1 2 
Hidden j=1 6.771183 -19.4905 -15.1135 
Hidden j=2 -116.55 148.6741 -35.4626 
Output k=1 -22.7804 -25.1157 -35.6946 

Figure 2 - Weights for XOR Problem 

Hidden 
p Net 1 Net 2 Out 1 Out2 
1 15.11354 35.46258 1 1 
2 -4.37698 184.1367 0.012407 1 
3 21.88472 -81.0872 1 6.1E-36 
4 2.394203 67.58689 0.916384 1 

Figure 3 - Data for Hidden Elements 

Output Errors 
Net 1 Out 1 Tar-Act (Tar-Act)"2 

-12.2015 5.0E-06 -5.0E-06 2.5230E-11 
10.29626 0.999966 0.000034 1.139BE-09 
12.91421 0.999998 2.5E-06 6.0654E-12 
-10.2967 0.000034 -3.4E-05 1.1386E-09 

Obj Fct: l .154BE-09 

Figure 4 - Data for Output Element 
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3. Weight Minimization Model 
As can be seen in Figure 4, the absolute deviations of 
the target and output are all less than 10-4. For most 
business applications, it is not necessruy to have such 
high precision. Many times, achieving higher precision 
on the training set of data, leads to poorer performance 
evaluating new data. This is called overtraining. To 
overcome this with the standard error back propagation 
method, the training process is monitored and stopped 
when it is felt that the summed squared error is 
sufficiently small. However, what frequently happens 
is that some patterns have small errors while others 
have unacceptably large errors. This is the motivation 
behind the second model, the Weight Minimization 
Model. 

The objective of the Weight Minimization Model is to 
minimize the sum of the squares of the weights and bias 
terms subject to the constraints that, for each pattern 
and each output element, the deviation of the target and 
output is acceptably small. By analyzing each training 
pattern, the analyst can feel confident that the pattern is 
appropriate and should be kept or it is inappropriate and 
should be eliminated. Sometimes the training data has 
inconsistencies. When this is the case, no training 
method will work because there is no solution. The old 
saying, "Garbage in, garbage out," is especially true 
with neural networks. The training data must be 
analyzed for inconsistencies. The Weight Minimization 
Model provides the analyst a method to do this analysis 
explicitly. 

3.1 Statement of Weight Minimization Model 
The objective function for the Weight Minimization 
Model is defined as: 

min w = Erw}J2 + Er~-~2 

ij j 

+ J;(w/;2 
+ J;(8/)2 

(6) 

jk k 

subject to the constraints that 

I tarkp - outk; I ~ errkp (7) 

where errk P denotes the acceptable error of the k-th 
output processing element for the p-th training pattern, 
tark P denotes the target value of the k-th output 
processing element for the p-th training pattern and 
outk/ satisfies Equations (1) - (4). 
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3.2 Implementation of Weight Minimization Model 
for the XOR Problem 
The worksheet implementation of the Weight 
Minimization Model is a straightforward modification 
of the worksheet created for the XOR Error 
Minimization Model. To implement the objective 
function of Equation (6), the squares of the weights and 
bias terms are computed as shown in Figure 5. For the 
solver, this cell is identified as the optimal cell. To 
implement the constraints of Inequality (7), an 
additional column is added adjacent to the Errors 
columns, as shown in Figure 6. Please note that since 
the actual output cannot exceed 1.0 nor go below 0.0, 
the absolute value stated in Inequality (7) can be 
replaced by the one-sided inequalities given in Figure 6. 
For the solver, these cells are identified as the constraint 
cells. 

Concerning the performance of the solvers for the 
Weight Minimization Model, here too the Lotus solver 
usually gave the message that it could not solve the 
problem. However, the Excel solver frequently solved 
the problem within 30 seconds on a 486 PC. The 
weights and bias terms of a typical solution is given in 
Figure 5, with the corresponding errors shown in Figure 
6. Please note how the absolute values of the weights 
and bias terms are much smaller than for the solution of 
the Error Minimization Model as given in Figure 2. In 
fact, the sum of the squared weights and bias terms is 
40,023 for the Error Minimization Model versus 244 
for the Weight Minimization Model. Also the values of 
the weights and bias terms of the solution to the Weight 
Minimization Model (see Figure 5) have a symmetry, 
which one would suspect from the symmetry of the 
patterns and network architecture. 

The solution of the Weight Minimization Model is 
more robust than the Error Minimization Model in two 
respects. This can be verified visually for the XOR 
problem because the solution is three dimensional. This 
is not true of the copper forecasting problem presented 
later, which is six dimensional. For example, Figure 7 
shows a three dimensional plot of the neural network 
output of the Error Minimization Model as a function of 
x1 and x2. Note how sharply changing and asymmetrical 
the output is. By contrast, Figure 8 shows the output of 
the Weight Minimization Model. This surface is 
smooth and symmetrical. In general, one solution is 
more robust than another solution if small changes in x1 

and x2 result in small changes in the output. This is not 
true of the Error Minimization solution for values of x 1 

and x2 in the neighborhood of the sharply dropping 
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cliffs. Here, a little change in x1 and x2 can cause the 
output to jump from the floor of the valley to the top of 
the plateau. A similar solution for the copper 
forecasting model would cause the forecast to vary 
greatly due to small changes in the input variables. 
Because of this, the solution of the Weight 
Minimization Model is more robust than the Error 
Minimization Model. 

Another aspect in which the solution of the Weight 
Minimization Model is more robust than the Error 
Minimization Model is with respect to the initial 
random weights. For the Error Minimization Model 
making small changes in the initial random weights can 
cause large changes in the location and orientation of 
the cliffs, whereas the shape of the Weight 
Minimization solution changes very little. 

3.3 Implementation of Weight Minimization Model 
for the 3-Parity Problem 
The worksheet implementation of the Weight 
Minimization Model for the 3-Parity Problem is a 
straightforward modification of the worksheet created 
for the XOR Weight Minimization Model. The new 
variable is denoted by x3 and the additional four 
patterns are appended to the Pattern Matrix. One 
additional processing element is affixed to the input 
layer and another processing element is attached to the 
hidden layer, both fully connected. Figure 9 shows a 
typical solution. • 

Concerning the performance of the solvers for the 3-
Parity Weight Minimization Model, here too the Lotus 
solver usually gave the message that it could not solve 
the problem. However, the Excel solver solved the 
problem several times within 5 to 8 minutes on a 486 
PC. Please note how the values of the weights and bias 
terms of the solution (see Figure 9) have a symmetry, 
which one would suspect from the symmetry of the 
patterns and network architecture. These results also 
indicate that this solution of the Weight Minimization 
Model is robust. 

Weiahts Bias 
Laver Neuron From Neuron 

1 2 
Hidden J=1 4.702212 -4.7022 -2.46581 
Hidden J=2 -4.70219 4.702182 -2.46581 
Output K=1 -5.8776 -5.87761 -8.63767 Obj Fct: 

Sum of sq. Wts 78.76757 78.7675 86.76968 244.3047 

Figure 5 - Modification for Objective Function 
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Errors Constraints 
Tar-Act (Tar-Act)"2 

-0.1 0.01000001 0 Tar-Act >=-0.1 
0.1 0.010000021 0 Tar-Act <=0.1 
0.1 0.00999999 1 Tar-Act <=0.1 

-0.1 0.010000019 0 Tar-Act >=-0.1 
0.020000021 Constraint satisfaction: 

1=Yes 0=No 

Figure 6 - Modification for Constraints 

-0.SlS 

Figure 7 - 3D Plot of Error Minimization Model 
Solution 

4. Time Series Forecasting 
A powerful aspect of neural networks is that they can be 
used to create nonlinear forecasting systems which use 
more than one time series as input. To illustrate this, a 
case of predicting the scrap copper spot market price 
index will be considered. The values of the copper price 
index for the time period from January I 989 to 
December 1993 were obtained from the Survey of 
Current Business [8] and encoded in an Excel 
worksheet. Figure IO shows a partial listing of the 
copper price index for the year I 992. Two other time 
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0.5 

X2 

• 0 

Figure 8 - 3D Plot of Weight Minimization 
Model Solution 

Wemts Bias 
Laver Neuron From Neuron 

1 2 3 
Hidden j=l 4.30269 -4.49167 4.30337 -2.46128 
Hidden j=2 -4 "'"" 5.0t'iVf.!. -4:00-143 -??RF.~I 

Hidden 1=3 3 41254 -3.63727 3.41301 666029 
Outnut k=l -1319687 -13.66774 -7.15128 -958061 UbJ ~ct: I 

Sum o1 sa. Wis 92.6764 102.9601 106.3326 133.8946 434.7636 

Figure 9 - Solution of 3-Parity Problem 

series which may be related to the copper index are: 
• Manufacturers' new orders for consumer goods 
and materials industries in 1987 dollars (bil. $), 
and 
• Index of new private housing units authorized by 
local building permits (1967= 100). 

The values of these two time series for January 1989 to 
December 1993 were obtained from the Survey of 
Current Business and included in the worksheet. Figure 
10 shows the values of these series for most of 1992. 
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4.1 Copper Forecasting Model 
A reasonable neural network model to forecast the 
future one month change in the copper index would 
consist of five input processing elements (PEs), three 
hidden layer PEs, and one output PE. The five input 
PEs are associated with the input data as follows: 

• PE 1 - Manufacturers' Orders 
• PE 2 - New Homes 
• PE 3 - Copper Price 
• PE 4 - Last One Month Change 
• PE 5 - Last Two Month Change. 

The data for the fourth PE is found by subtracting the 
value of the previous month's copper index from the 
present month. In a similar fashion, the data for the fifth 
PE is found by subtracting the value of the copper index 
two months earlier from the present month. These two 
time series supply the change and rate of change 
information to the forecast. 

To train the neural network, the data from the three 
year time period March 1989 to February 1992 is 
selected. The data for each of the five input PEs and the 
one output PE is normalized to range between -1. 0 and 
1.0. Figure 11 gives a partial listing of the normalized 
data. Equations ( 1) thru ( 4) are encoded in the 
worksheet as shown in Figure 12. Note that since the 
data has been scaled from between -1.0 to 1.0, 
Equations (2) and (4) are modified to 2/(1+ exp(x))-1 
so that they range from -1.0 to 1.0. 

4.2 Solution Procedure 
The first step of the solution procedure starts with 
initializing the weights to a set of random values, whose 
values vary from -0.3 to 0.3. Figure 13 shows a typical 
set of initial weights. The range form -0.3 to 0.3 was 
determined by experimentation, however little 
difference in the overall solution was noted for the 
initial random weights varying from the small range of 
-0.1 to 0.1 to the large range of -3.0 to 3.0. 

The second step of the solution procedure is to invoke 
the Solver so as to find an initial feasible solution. The 
Solver Parameters are set as follows: 
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• Changing Cells - the neural network weights 
• Constraints 

■ absolute value of the error (target - output) 
for each pattern is less than an acceptable 
error tolerance (0.5) 
■ absolute value of each weight is less than 
3.5 

• Target Cell - not specified 
• Options - max time 3600 seconds, iterations 

10,000, prec1s1on 0.1, tolerance 10%, use 
automatic scaling, estimates quadratic, derivatives 
forward, and search Newton. 

It should be noted that the error constraints are 
truncated as follows: 

If target> 0.4 and output> 0.3, then error= 0.0. 
If target <-0.4 and output< -0.3, then error= 0.0. 

The rationale for this is that if the normalized copper 
price is up by 0.4 and the forecast is greater than 0.3, 
such as 0.8, then this is an acceptable forecast and the 
model should not try to make the error any smaller. 
Rather it should concentrate on learning the differences 
between up and down forecasts. Then the solver is 
invoked and usually runs for 10 minutes or more. The 
typical response is that the Solver cannot find a feasible 
solution which satisfies all of the pattern constraints. 

The third step is to inspect the results for 
inconsistencies. It is noted that approximately eight 
patterns have large deviations with the forecasts. Five 
of these patterns are not consistent with expectations. 
These months are May 1989, July 1989, April 1990, 
June 1990, and November 1991. For example, in May 
1989, all the five inputs are positive, yet the future one 
month change is negative. This is the difficult 
subjective aspect of developing a forecasting model. If 
too much data is omitted, then critical relationships are 
eliminated. However, keeping inconsistent data results 
in poor model performance. 

The fourth step in the solution procedure is to remove 
these months from the constraints and to use the Solver 
to minimize the sum of the squared weights with the 
remaining constraints. The rationale for this is that by 
minimizing the weights, rather than the errors, a smooth 
surface will be created as demonstrated by the XOR 
problem. Figure 14 shows a typical set of final weights. 

4.3 Evaluation of Forecast 
The above neural network model can be used to forecast 
the change in the copper price one month in the future. 
Figure 15 shows the results for the first ten months 
outside of the training data (March 1989 to February 
1992). For the first three months, March, April, and 
May 1992, the forecasted change in copper price was 
about 2 or 3¢, and the actual changes ranged from Oto 
5¢, which is acceptable. In June 1992, the forecasted 
change is -0.6¢ when the actual change is 10.6¢. This 
is an unacceptably large error. For the next four 
months, starting in July 1992, the actual changes in 
copper prices decrease for every month with a 
cumulative drop of 22.4¢. For this same period, the 

Copyright© 1995 Software Engineering Press 



forecast also predicts a decrease for every month, but 
the cumulative drop is only 11.3¢. For the next two 
months, both the forecast and actual changes are close. 
However, for the year 1993, the actual change in copper 
is negative for every month from January to October 
while the forecasted change in copper is positive for 
every month. This is unsatisfactory. The overall 
evaluation of the model is mixed. Perhaps retraining the 
model every three months on the last three years of data 
would improve perfomiance. However, the incorrect 
sign of the forecasts for most of 1993 indicates that it 
may be wise to try other time series than manufacturers' 
orders and/or new homes. 

Mfrs New Copper 
Month Oders Homes Price 
Dei>-92 110.00 93.80 0.834 
Nov-92 105.54 89.20 0.793 
Oct-92 104.29 90.30 0.841 

Sep-92 101.65 88.80 0.895 
Aug-92 101.84 85.70 0.986 

Jul-92 102.35 86.80 1.017 
Jun-92 102.92 84.30 0.911 
May-92 101.14 84.20 0.873 
Apr-92 102.21 84.10 0.825 
Mar-92 100.66 86.30 0.827 

Figure 10 - Partial Data for Copper Data 

Normalized Data for Tralnlni: (First 3 Years) 
Dala normalized belween -1 and +1. 
Normalized= 2'(ac:tual - min)/(max - min) - 1 
Actual 
Min 92.4800 62.7000 0.5720 -0.1170 -0.1940 -0.1170 
Max 114.6000 139.4000 1.0840 0.1060 0.2010 0.1060 

Con$lants for normalization • determined manually from Ile above actual min. ma, 
Min 90.0000 60.0000 0.5000 -0.1200 -0.2000 -0.1200 
Max 115.0000 140.0000 1.2000 0.2000 0.2500 0.2000 

Input PE 1 Input PE 2 Input PE 3 Input PE 4 Input PE 5 Oulput PE 
Last Last Future 

Mir$ New Copper 1Monf-l 2Mont, 1 Mont, 
Month Odem Homes Price Change Change Change 
Feb-92 -0.1816 -0.2150 0.0114 -0.0687 0.2000 -0.4188 
Jan-92 -0.3088 -0.3525 -0.0714 0.0062 -0.0356 -0.0687 
Deo-91 -0.3648 -0.3850 -0.1896 -0.4000 -0.2578 0.0062 
Nov-91 -0.0328 -0.5376 -0.1200 -0.3063 -0.1244 -0.4000 

Figure 11 - Partial Normalized Data 
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Hdden OuplJ 
Nell Nel2 Net3 Out 1 Out2 OUl3 Net1 OU1 
0.7211 1.4858 -0.3538 0.3457 0.6309 -0.1751 -0.1610 -0.0803 
1.1348 0.9131 -0.6429 0.5134 0.4273 -0.3108 -0.0473 -0.0237 
1.0294 0.5834 -0.3372 0.4736 0.2837 -0.1670 -0.0463 -0.0231 
1.2046 0.7729 -0.7176 0.5387 0.3683 -0.34-42 -0.0843 -0.0421 
1.4668 0.3801 -0.9179 0.6248 0.1878 -0.4292 -0.1325 -0.0662 
1.2247 0.4352 -0.6610 0.5458 0.21~ -0.3145 -0.1564 -0.0775 

Figure 12 - Partial Computations for Hidden 
and Output PEs 

Table of Random Weights Using Formulas Bias 
Ne .. on From Neuron 

1 2 3 4 5 
j=1 0.0427 0.1927 -0.0321 0.1927 0.2497 -0.0245 
j=2 0.2738 -0.1984 0.1183 -0.1835 -0.1956 0.1064 
j-3 0.2440 0.0029 -0.0233 0.1253 -0.0555 0.2427 
k=1 -0.2444 -0.2054 0.0589 none none -0.1212 

-0.3 Min waighl 0.110302 Formula 
0.3 M"" weight 

Figure 13 - Initial Weights 

W•ighls Bias 
I.ayer Neuron From Neuron 

1 2 3 4 5 
Hd<Mn j•1 0.0282 0.3920 -0.7174 1.3~ 0.0007 0.3996 
Hdd.n j-Z -0.0026 0.4216 0.1370 -0.5820 0.2698 -0.1295 

Hdd.n f"3 -0.3354 0.9353 -3.2581 -3.2526 1.3697 0.2830 

0~ k=1 3.2111 -3.2684 1.4010 none none -1.13181 
Sum of sq. Ylls 10.4245 11.8885 13.1111 12.7962 1.9488 1.5375 I 

Figure 14 - Final Weights 

Fore casted Actual 
Change Olange $ Error 

in Copper in Copper in 

Month Price Price Forecast 

Dei>-92 0.040 0.056 0.016 

Nov-92 0.026 0.041 0.015 

Oct-92 -0.011 -0.048 -0.037 

Sep-92 -0.040 -0.054 -0.014 

Aug-92 -0.061 -0.091 -0.030 
Jul-92 -0.001 -0.031 -0.030 

Jun-92 -0.006 0.106 0.112 

May-92 0.022 0.038 0.016 

Apr-92 0.027 0.048 0.021 
Mar-92 0.027 -0.002 -0.029 

Figure 15 - Forecast 
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5. Conclusions 
This paper has presented two models for training neural 
networks. The first conclusion is that, for the basic 
XOR problem, the Weight Minimization Model produc.:. 
es a more robust solution than the Error Minimization 
Model. The second conclusion is that the Weight 
Minimization Model can be successfully extended to the 
3-Parity Problem and that the resulting solution is also 
robust. Future research will investigate the higher order 
parity problems. 

Another conclusion is that the Weight Minimization 
Model can be applied to practical time series forecasting 
problems, as demonstrated by the copper price index 
forecasting model. With this model, the analyst can 
identify and eliminate inconsistent training patterns and 
then determine the weights. In general, the Weight 
Minimization Model encoded in a Lotus compatible 
worksheet provides the analyst with a flexible 
environment to develop neural networks. Future 
research will investigate larger neural networks. The 
authors welcome test cases. 
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Abstract 
This paper compares two different training 
strategies for multilayer perceptrons to 
predict quarterly stock market excess returns. 
Finance research suggests that quarterly 
stock market excess returns are to some 
extent predictable, but only marginal 
attention has been paid to possible 
nonlinearities in the return generating 
process. The paper discusses input selection, 
examines the two training strategies, and 
evaluates multilayer perceptron performance. 
Several performance measures are 
calculated, and a test is performed whether 
the mean squared errors of the various 
models differ significantly. Strong nonlinear 
effects appear to be absent, but the multilayer 
perceptron predictions produce a much 
higher payoff when applying a 
straightforward tactical asset allocation 
policy. 

1. Introduction 
Finance research suggests that monthly, 
quarterly and annual excess returns are to 
some extent predictable assuming a linear 
model specification. Only marginal attention 
has been paid to possible nonlinearities in the 
return generating process. HIEMSTRA 

(1993,1994B) applies multilayer perceptrons 
(MLPs) to predict quarterly excess returns. 
The motivation to consider MLPs is their 

Christian Haefke 
Department of Economics 
Institute for Advanced Studies 
Stumpergasse 56, A-1060 Vienna, 
Austria 
email: chris@ihssv.wsr.ac.at 

universal approximation capability (HORNIK 
STINCHCOMBE WHITE 1989), and robustness 
when distributions are non-Gaussian 
(LIPPMANN 1987). This paper compares two 
MLP training strategies to predict the 
quarterly excess return on the S&P500 and 
uses OLS as a simple benchmark. HIEMSTRA 

(1994B) trains MLPs by backpropagation, 
varying the number of hidden nodes and using 
cross-validation to determine optimal stopping 
(WEIGEND ET AL. 1990). We extend this 
research by considering an alternative way to 
train MLPs, and by including a formal test 
whether the mean squared errors of the various 
models differ significantly. The additional 
strategy which we consider seeks to minimize 
the in-sample error of MLPs with varying 
numbers of hidden nodes using the Polak­
Ribiere Conjugated Gradient (PRCG) 
algorithm. In a second step it selects a net of 
particular complexity using an estimate for the 
prediction risk. 

First we discuss excess return prediction and 
input selection. Section 3 discusses the 
generation of out-of-sample predictions. 
Section 4 discusses the two MLP training 
strategies. Section 5 presents the MLP results 
and compares them to OLS. Section 6 presents 
the results of a straightforward investment 
strategy based upon the MLP and OLS 
predictions, and section 7 contains 
conclusions. 
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Table I: Regression Statistics 

2. Predicting Excess Returns 
Evidence has been accumulated that a 
significant part of the variation in stock 
market returns can be predicted using 
information known at the time of prediction, 
e.g., CAMPBELL (1987), FAMA FRENCH 
(1989), FERSON HARVEY (1991) PESARAN 
TIMMERMANN (1994). These studies 
invariably apply linear modelling, with a 
limited number of independent variables. In 
particular evidence has been accumulated that 
ex ante information on inflation, interest rates, 
the business cycle, and valuation measures like 
the dividend yield, can be used to predict 
monthly, quarterly, and annual excess returns. 

This study focuses on quarterly excess returns. 
The linear model we use as a benchmark can 
be found in HIEMSTRA (1994B), tables 1 and 2 
present the in-sample OLS results on the entire 
data set. The model uses four inputs: dividend 
yield (YSP), short term interest rate (SIR), 
inflation rate based on the consumer price 
index (CPI), and the change in the 12-month 
moving average of the industrial production 
index (DIP). YSP and SIR are instantaneously 
available, and so the latest observations prior 
to the forecasted period were used to predict, 
i.e. the values at the end of the preceding 
month. Macroeconomic information is 
available typically on a monthly basis with a 
lag of some 20 days, and so DIP and CPI were 
used with a 2-month lag. The data set consists 
of 93 quarterly observations covering the 
period 1970-1993, ofYSPt-1, DIPt-2, SIRt-1, 
and CPit-2. The desired output is the S&P500 
quarterly excess return, defined as total return 
(price movement plus dividends related to the 
initial investment) minus the risk-free rate of 
return, the 3-month T-bill rate. 
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Table 2: Coefficients oflinear model 

Coefficients Standard t Statistic 
Error 

Intercept -2.87 3.43 -0.84 
YSPt-1 4A3 1.26 3.52 
CPlt~2 -LOO 0.39: ~2.54 
SIRt-1 -0.76 • 0.37 -2.03 
DIPt-2 . -6.78 2.12 -3.20 

The R2 has a satisfactory value for predictions 
at this frequency, and all coefficients pass the 
test for significance at the 95% level. The 
signs of the coefficients correspond to the 
findings of other studies, YSP having a 
positive coefficient, and the other variables 
having a negative coefficient. 

3. Generating Out-of-Sample 
Predictions 

Given the small sample size at the quarterly 
frequency, and the noisy character of the data, 
it is crucial to design sufficient out-of-sample 
results to reliably estimate generalization. 
PESARAN AND TIMMERMANN ( 1994) apply a 
recursive approach to predicting excess 
returns, in which case all data available at 
time t is used to forecast the excess return at 
time t+ 1 .. Cross-validation and bootstrapping 
are examples of resampling techniques (see for 
example WEISS AND KULIKOWSKI 1991). 
Cross-validation uses all data for testing, and 
consumes considerable less resources than 
recursive prediction or bootstrapping. We 
apply 10-fold cross validation to estimate 
generalization. The 10 test sets were combined 
to form out-of-sample estimations on the entire 
data set. 

4. Estimating the Multilayer 
Perceptrons 

The MLP architecture we use is the standard 
MLP architecture for nonlinear regression 
(HA YKIN 1994) with bias weights and one 
hidden layer. The hidden units have tanh 
activation functions, the output unit has a 
linear activation function. Inputs were 
normalized to have mean zero and unit 
variance. The question of network design 
concentrates on the number of hidden nodes. 
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The motivation to use backpropagation is to 
stop training before the in-sample minimum on 
the error function is reached ( early stopping), 
based on the assumption that in the initial 
stages of learning the net picks up the most 
overt and accessible patterns (THORNTON 
1992). The iterative character of 
backpropagation allows to stop learning if at a 
certain stage in the learning process the net 
starts fitting noise, which may be well before 
the error function reaches its minimum on the 
training set. WEIGEND ET AL. (1990) suggest 
to set part of the training data apart, 
introducing a cross-validation set in addition 
to the train and test sets, and stop training at 
the point where the error function on the cross­
validation set has its mm1mum. True 
generalization is estimated by the performance 
on the original test set. To apply early 
stopping, it is necessary to select the number 
of hidden nodes in advance. The sample size is 
a constraint on the number of weights in order 
to produce reliable training. A rule of thumb is 
that there should be at least five training 
examples for each weight (KLIMASAUSKAS 
1992). HIEMSTRA (1993,1994b) proposes a 
MLP with 2 hidden neurons for quarterly 
excess return prediction. 

On the other hand, · WHITE ( 1991) points out 
that overtraining and overfitting should be 
separated. "In the statistical context there is 
no such thing as overtraining, because the 
closer one gets to 0n the better. " 0n denotes 
the estimator for the true parameter vector 0n 
of the underlying process. So, given a network 
of some complexity, the goal is to find the 
global minimum of the error function, and 
from the set of alternative algorithms (e.g., 
ordinary differential equations, second order 
algorithms, Levenberg-Marquardt, see for 
example SARLE (1994)) any algorithm that 
efficiently m1mm1zes in-sample error is 
applicable. Overfitting occurs when there are 
too many free parameters in the MLP, while a 
network with too few hidden units has no 
capacity for satisfactory internal 
representation and will be unable to learn 
properly. To select the network with the right 

complexity, we apply sequential network 
construction (SNC) (MOODY UTANS 1994). 
We start out with 1 hidden unit and estimate 
the network. Then a hidden unit is added, and 
the net is retrained. This is repeated until the 
hidden layer contains a predetermined 
maximum number of nodes. The fit of each 
network is evaluated using an estimator of its 
prediction risk (i.e. the expected out-of-sample 
performance). We estimate prediction risk for 
each net using the Schwartz Information 
Criterion (SIC), (SCHWARTZ 1978, RISSANEN 
1978, 1980, 1987) which produces very 
conservative models, and which can be used 
for nonlinear and ARCH models (GRANGER 
KING WHITE 1992). An application of this 
criterion can be found m HAEFKE 
HELMENSTEIN (1995). The SIC of model ). is 
computed as follows 

p 
SIC= logMSE + N log N (1) 

with MSE being the mean squared error, N the 
number of observations and· P the number of 
parameters 1. For each of the 10 cross­
validation sets we estimated MLPs using 
PRCG2

, selecting the appropriate complexity 
through SIC (SWANSON WHITE 1992). 

1 We used the number of weights, an alternative is 
Moody's effective number of parameters {MOODY 

1992). 

2 Every single net was estimated using the PRCG 
algorithm, as provided by GAUSS. This is a local 
optimization algorithm, and so training was 
repeated five times. The net with lowest in-sample 
error was selected. 

Copyright© 1995 Software Engineering Press 



5. Evaluation and Comparison of Out-
of-Sample Results 

Table 4 compares the SIC-optimal complexity 
approach with the results for backpropagation 
using 2 hidden neurons (BPN2) and OLS 
reported by HIEMSTRA (1994B). Error rate 
refers to the ratio of correct sign predictions to 
all predictions. Business value calculates. the 
sum of the excess returns for those occasions 
that the predicted excess return is negative, 
and indicates the benefits obtained by 
implementing a timing strategy for the whole 
period of 93 quarters that exits the sto~k 
market when the expected excess return 1s 
negative. R2 is computed as the squared 
correlation of the predicted and the actual 
values. Theil's coefficient of inequality 
considers the case of a no-change forecast and 
assumes a value ofless than one if the forecast 
outperforms a no-change forecast (THEIL 
1966). The MLP models outperform OLS in 
terms of correlation, error rate and business 
value. The poor results on MSE (and NMSE) 
of the SIC-optimal MLP are explained by the 
high mean of the predictions of this model. 

Table 4: Comparison of out-of-sample results of the 3 approaches 

/. ·. ·. · SIC.;optbnal BPN2 / 6i:,S ••• •• ••· ••• 

tsE • \ !rl:Y. ••••· ~t~~~? ~%~~? > ~rJE< /fcfosso•···.•·••···· >o.os41•· •• <~:~;~f•.•·•·· .. 

e;Jli~!!l , Ii~ ii:< 
An F-test w~s • performed to test whether the 
variances of the residuals of the three models 
are significantly different from each other. If 
so, one model outperforms the other because a 
larger variance of residuals is inferior. 
Assuming under the Ho that the variances of 

t Not significantly different from I at the 95% 
confidence level. 

• Significantly different from O at the 95% 
confidence level. 
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3 • • 
the residuals are equal , the F-test stat1st1c 
reduces to: 

(2) 

where F follows an F-distribution with (N-P1), 
(N-P2) degrees of freedom, N denoting the 
number of observations and P1 and P2 the 
number of parameters for the respective 
model. The F-test did not reject the null 
hypotheses of identical MS Es. 

6. Asset Allocation 
Figure 1 compares the performance of asset 
allocation strategies using the three models. 
The left panel of figure I shows policy 
efficient frontiers. A policy efficient frontier 
(HIEMSTRA 1994A) represents the annualized 
ex post risk-return properties of a particul~r 
tactical investment policy for those strategic 
portfolios that, given the policy, produced the 
highest return for the respective risk 
exposures. The investment policies shown 
operate on a strategic portfolio consisting of 
stocks and bonds, and exit the stock market 
when the excess return prediction is negative. 
The policies were tested on the period 1976-
1993 (net of trading costs), with the Shearson­
Lehman Aggregate Bond Index representing 
bond returns. The bottom line indicates the 
results of a buy-and-hold policy, a 100% 
bonds portfolio located at the low end, a 100% 
stocks portfolio located at the high end. The 
line in between shows the results of a tactical 
policy using OLS predictions. The solid up~er 
line and the dashed line show the results usmg 
the predictions of the SIC-optimal MLP and 
BPN2, respectively. The latter two lines 
basically collapse, reflecting a striking 
similarity in the two neural net models from 
this point of view. 

3 A t-test confirmed that the mean of the residuals 
is not significantly different from zero at the 95% 
confidence level. 
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Figure 1. The left panel shows policy efficient frontiers, the right panel the relative value of a 1976 investment when adopting a strategic 
stock weight of I (net of trading costs). In both cases, buy-and-hold is the bottom line, the line above buy-and-hold represents OLS results. 
The solid upper line and the dashed line show the results using the predictions of the SIC-optimal MLP and BPN2, respectively. 

Annual Retur-n 

Figure 1 shows that active management has a 
dramatic payoff. For a particular risk 
exposure, an OLS-based policy can add well 
over 100 basis points annually, and both 
neural nets can generate a similar additional 
return on top of that. The panel to the right 
shows the relative value over time of an initial 
investment in 1976 when the three policies 
operate on a strategic portfolio of I 00% 
stocks. 

7. Conclusion 
The MLP models that we estimated improve 
over OLS in terms of correlation, error rate, 
and business value. We did not find 
indications for strong nonlinearities, as OLS 
captures most of the predictability 
demonstrated by the MLPs. Also, on the basis 
of the F-test we cannot reject the Ho that the 
out-of-sample MSEs of the two MLP models 
and OLS are equal. However, in terms of 
added value when applying a straightforward 
tactical asset allocation policy, the differences 
are very significant. The SIC-optimal MLP 
results are particularly compelling, since this 
model reflects a purely formal approach to 
MLP estimation that lets the data determine 
model complexity. 
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Abstract 

This article discusses how neural networks and 
semantic grammars may be used to locate and 
understand .financial statements embedded in 
news stories received from on-line news wires. 
A neural net is used to identify where in the 
news story a .financial statement appears to 
begin. A grammar then is applied to this text in 
an effort to extract specific facts from the 
.financial statement. Applying grammars to 
.financial statements presents unique parsing 
problems since the dollar amounts of .financial 
statements are typically arranged in multiple 
columns, with small paragraphs of text above 
each column. Text therefore is meant to be read 
both vertically and horizontally, in contrast to 
ordinary news text, which is read only 
horizontally. 

1 Introduction 

Each year more information becomes 
available in electronic form. Some of this comes 
from well known, general sources such as UPI, 
Reuters and the Internet; still other data comes 
from lesser known sources such as the PR 
NEWSWIRE and BUSINESS WIRE, which 
supply financial and other information. 

However, for information to be useful it 
must be either indexed or digested to suit each 
individual's or company's needs, inasmuch as it 
is inevitable that much of the news collected will 
turn out be of little or no interest. For an 
overview of the attempt to solve this problem via 
indexing techniques, and an account of indexing 
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techniques to large data sets such as MEDLINE, 
see [3]. This source discusses retrieval methods 
and ranking algorithms that help make the data 
that has been archived more accessible. The 
methods employed take advantage of word 
stemming, Boolean queries, word-weighting and 
vectoring schemes. See Addison, et al, [l] for a 
discussion of indexing techniques specifically 
applied to Real-Time news. 

An additional method to aid in the 
processing of large amounts of news requires that 
the news be understood. Unfortunately this 
understanding is not easily arrived at in software. 
See Shirmer and Kuehn, [5] for a discussion of 
understanding news via word experts and neural 
nets; they describe a method whose goals are 
similar to those described here. Also see 
Bearden, et al, [2] for detailed descriptions of 
how grammars may effectively mimic human 
understanding in limited domains. 

The present article offers a partial solution 
to one problem in electronic news understanding: 
the understanding of financial statements 
embedded in text. Figure 1 represents the upper 
portion of a typical financial statement. 

TYPICAL COMPANY, INC. 
CONSOLIDATED FINANCIAL INFORMATION 

UNAUDITED (000's) 

Net sales 

Gross profit 

Three Months Ended 
October31 

1993 1992 

$64,314 $63,831 

$32,560 $34,281 

Figure 1 

Six Months Ended 
October 31 

1993 1992 

$121,037 $122,180 

$61,931 $63,963 
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Such a financial statement might be 
embedded within an accompanying news story 
that tells the reasons for the rise or fall of that 
company's profits, sales, etc. Characteristic of 
such a financial statement is its columnar 
presentation of numerical information. Figure 1 
has no fewer than four columns of numbers, each 
representing the financial results for a different 
time period. 

For a human to read such a document 
presents surprisingly few problems. The column 
headings, which are isolated paragraphs of text 
suspended above their respective columns, are 
easily read as distinct paragraphs. These columns 
are then readily scanned for the sales and profit 
information they contain. Unfortunately, for a 
computer to accomplish this same visual task 
requires that it have the same visual sense that a 
human does. It is not clear how to arrive at this 
visual sense in software, however. 

For this reason a method was developed that 
did not depend on a visual sense of the financial 
statements, but rather on its grammatical sense. 
Although this method of understanding a 
financial statement may not accurately reflect 
how a human reads such a document, it will be 
shown that the method is a reasonably effective 
way for a computer to understand financial 
statements. 

2 Using Neural Nets to Find a Financial 
Statement 

Before a financial statement may be 
examined for its grammatical sense, it is 
necessary first to locate one. This task is 
surprisingly difficult to accomplish via 
programming logic. The first problem is that 
there is no single recognizable feature that marks 
the start of a financial statement. And secondly, 
there are blocks of text, particularly news story 
headlines announcing earnings results, that look 
like the start of a financial statement, but are not. 
Experience has shown that neural networks are 
effective in recognizing handwriting, speech and 
visual patterns though a process of statistically 
based feature extraction [ 4]. For these reasons a 
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backpropagation network was used to find the 
start of financial statements in each news story. 

In order for the neural net to find the start of 
the financial statement, a batch program was 
written to supply it with a "moving window" of 
fifteen lines of text, where the neural net's single 
output was trained to produce a score of 1 if the 
fourth line of this "window" was the start of a 
financial statement, and to produce a O otherwise. 
For each of the 15 lines the neural net was told 
about: 

1) the line's length, 
2) the percentage of letters in the line that 

were in capitals, 
3) the number of leading spaces in the line, 
4) the number of embedded spaces in the line, 
5) the percentage of the characters in the line 

that were digits, and, 
6) a Boolean value that told whether or not 

the line was centered. 

In addition the neural net was told about two 
other characteristics of the line: specifically 
whether certain keywords, such as inc, and 
company occurred in the line; and secondly, 
whether words such as month, quarter, year, 
financial, and consolidated were present. In 
total, the neural net had 120 inputs, representing 
8 characteristics, pertaining to 15 lines. 

When preparing the training data (i.e., 
development data) and test data (i.e., holdout 
data), a line was regarded as containing the start 
of a financial statement if it had a company 
name, at least one date, and at least one column 
of numbers. The requirement that a company 
name be present was an arbitrary requirement 
that might not be suitable in all circumstances. 
The line containing the company name was 
regarded as the start of the financial statement. 

3 Using Semantic Grammars to Parse a 
Financial Statement 

Once the start of a financial statement has 
been identified, it must be analyzed and 
understood. When the financial statement of 
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Figure 1 is rearranged as a stream of text, it 
appears as in Figure 2. 

TYPICAL COMPANY, INC. <RETURN> CONSOLIDATED 

FINANCIAL INFORMATION <RETURN> UNAUDITED (000's) 

<RETURN> Three Months Ended Six Months Ended <RETURN> 

October 31 October 31 <RETURN> 1993 1992 1993 1992 

<RETURN> Net sales $64,314 $63,831 $121,037 $122,180 

<RETURN> Gross profit $32,560 $34,281 $ 61,931 $ 63,963 

<RETURN> 

Figure 2 

A close examination of this stream of text 
and others similar to it reveals underlying 
regularities that may be exploited by using a 
semantic grammar. Semantic grammars, which 
are described in [2], are an effective means for 
understanding sentences within a restricted 
domain. The world of financial statements is 
clearly such a restricted domain, but can 
financial statements be viewed as sentences with 
their own grammar? 

To resolve this question several hundred 
financial statements were analyzed to uncover 
sentence-like regularities. . From this analysis a 
context-free grammar and a lexicon emerged that 
allowed a large percentage of financial 
statements to be processed. 

HEADING ::= for-the 12-PL end for-the 34-PL end RETURN end 
12-PE end 34-PE RETURN 1-Y-E 2-Y-E 3-Y-E 4-Y-E RETURN 

12-PL ::= 12-N-L 12-T-L 

12-PE ::= 12-M-E j 12-M-E 12-D-E 

34-PL ::= 34-N-L 34-T-L 

34-PE ::= 34-M-E j 34-M-E 34-D-E 

Figure 3 

220 

A portion of the context-free grammar is 
shown in Figure 3, in particular, that portion of 
the grammar that helps interpret four-column 
financial statements. In this figure ,and the 
remaining figures the symbol : : = is read as is 
defined as, which follows [2]. 

12-N-L : := 3 I 6191121 three I six I nine I twelve 

12-T-L ::= week I month !year I weeks I months 

34-N-L ::= 3 I 6191121 three I six I nine I twelve 

34-T-L ::= week! month jyear I weeks I months 

12-M-E ::=Jan !Feb !Mar !Apr !May I Jun I etc. 

12-D-E ::= first I second I third !fourth !fifth I etc. 

34-M-E ::=Jan jFeb !MarjAprjMayjJun I etc. 

34-D-E ::= first I second I third !fourth !fifth I etc. 

1-Y-E ::= 199011991 j 1992 j 1993 I 1994 j 1995 I etc. 

2-Y-E ::= 1990 I 1991 j 1992 j 1993 j 1994 I 1995 I etc. 

3-Y-E ::= 1990 I 1991 I 1992 I 1993 I 1994 I 1995 I etc. 

4-Y-E ::= 1990 I 199l I 1992 I 1993 I 1994 I 1995 I etc. 

for-the ::= for the !for 

end ::= ending I ended 

Figure 4 

Likewise a portion of the lexicon used is 
shown in Figure 4. 

4 One Special Problem 

One characteristic of grammars that are 
designed to understand natural language is that 
the form of the representation is unimportant. 
Accordingly, if in a grammar a verb phrase is 
represented as VP, VerbP or V-P, it does not alter 
the effectiveness of the grammar in the slightest. 
This is not entirely the case when parsing 
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:financial statements, however. With :financial 
statements it is necessary, once parsing is 
complete, to distinguish between a dollar amount 
found in the first column, and a dollar amount 
found in the second column. It is also necessary 
to distinguish between a "period end date" that 
applies only to column one, and a period end date 
that applies to columns three and four. The 
easiest way to do this is to build "cases" into the 
language that are analogous to the cases used in 
normal languages, and to reflect these case 
differences by using the symbols of the grammar 
itself. Accordingly, a period end date that 
applies only to column one is represented in the 
grammar as 1-PE, while a period end date 
applying to columns three and four appears as 
34-PE. This small restriction on the formation of 
the grammar has valuable practical consequences 
when at a later time the meaning of the parsed 
:financial statement must be determined. It allows 
the components of the parse tree to be processed 
with relative ease to find what period end dates, 
and what period lengths, apply to which columns. 

5 Neural Network Technical Details 

The neural network used had a hidden layer 
of 16 nodes, in addition to its input layer of 120 
nodes, and its single output node. The training 
data was composed of26,880 lines of text, which 
contained 228 financial statements. This data 
was captured from the PR NEWSWIRE and the 
BUSINESS WIRE on Nov. 11, 1993 and Nov. 
24, 1993. The single output was trained to be a 
1 in the presence of a :financial statement, and a 0 
otherwise. Training on the data was terminated 
when the worst error for any member of the 
training data set was no greater than .25. This 
was accomplished after 135 training iterations. 

The test data was composed of 13,736 lines 
of text, which contained 125 :financial statements. 
This data was captured from the PR 
NEWSWIRE and the BUSINESS WIRE on Dec 
10, 1993 and Dec 17, 1993. When validating 
using the test data, an output node score greater 
than .1 was treated as signifying the presence of 
a :financial statement. 
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6 Neural Network Results 

When the network was run against the test 
data, it proved effective. 118 of 125 :financial 
statements were identified for a rate of 94.4%. 
Among the 13,611 lines that contained no 
statement, just twelve were wrongly identified as 
:financial statements, for an error rate of .0881% 
(less than 1 in a 1,000). 

In general the network performed very 
effectively, with only occasional lapses for 
"unusual" :financial statements. An unusual 
:financial statement might be one whose company 
name is not centered, but rather appears flush 
left, or one whose company name lacks the word 
incorporated, co., or inc., etc. 

7 Grammar Results 

A program employing a more robust version 
of the grammar and lexicon described earlier 
proved fairly effective in parsing :financial 
statements. Specifically, the headings of 72 of 
the 125 :financial statements were understood by 
. the grammar (here the word heading refers to the 
lines that tell start and end dates, as well as 
period lengths). The grammar was slanted 
towards understanding income statements and it 
:frequently failed in circumstances where it met 
with some other form of statement, such as a 
statement of cash flow. Adding new statement 
types to the grammar can readily expand its 
comprehension, however. Currently it supports 
only sixteen. 

Problem cases arose as a consequence of the 
wide variety of :financial statements present in 
news stories. In particular, "unique" financial 
statements typically appeared at times other than 
the end of a quarter, and sometimes appeared to 
be edited by hand for special release. 

Still other problems arose from the phrases 
in thousands and in millions that sometimes 
acted as a multiplier on all of the dollar amounts 
of the financial statement, or sometimes on just a 
limited portion of it. It is hard to anticipate the 
variety of ways this multiplier might appear, and 
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failure to anticipate correctly leads to a very 
large error. Complex code had to be written to 
handle these cases, as well as to search the lines 
of text following the headings for the specific 
financial information required: e.g. net income, 
total sales, etc. This task was done using 
traditional programming methods. 

One lesson learned is that the neural 
network ideally should provide more information 
than merely where a financial statement starts. 
For instance, it is useful to know where a 
statement ends (so as to avoid "falling through" 
to unrelated text and data). Likewise it is useful 
to know specifically on which line the grammar 
should be applied. This line is often many lines 
after the company name. Lastly, it appeared that 
a moving window of just 15 lines was too short 
for a proper understanding of some statements. 

8 Conclusions 

The above problems notwithstanding, it 
proved possible to process financial statements 
embedded in news stories. The method used also 
proved flexible enough to accommodate new 
financial statement types as they were 
discovered. In addition, the grammar used 
showed a large degree of resistance to 
misinterpretation. If text other than a financial 
statement was presented to the grammar, it would 
readily reject it as unparsable. Currently, the 
system described has not been developed into a 
deployable system, but the results achieved here 
indicate that these methods can be used to create 
a practical system to automate the understanding 
of financial statements. The general conclusion 
is that grammars may prove more effective in a 
wider array of contexts than is readily apparent. 
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Abstract 

Underwriters and investors are both 
interested in knowing, in advance, the price at 
which an initial public offering ( I PO) will trade 
at the end of the first trading day. In this paper, 
we propose neural network models to predict 
initial returns for IPOs. Using data from the 
mid-1980s, which include 1423 observations, we 
develop neural network models as well as 
regression models. The neural network models 
which include 4 input nodes, 3 hidden nodes, 
and I output node consistently outperform the 
regression models. 

1.0 Introduction 

It has been observed that investments in initial 
public offerings (IPOs) yield positive average 
initial returns. There is no obvious reason why 
the issuer does not extract the right price from 
the investors at the time of issue. Several 
information-based theories have been proposed in 
the finance literature to explain this anomaly. 
However, regression models have not been able 
to predict the first-day trading price and the 
expected initial returns with reasonable success. 

In this paper, we propose neural network (NN) 
models to predict the initial returns using a set of 
ex ante variables. Our purpose in using neural 
networks is two-fold: (1) To build a NN model 
which can predict the first-day trading price with 
reasonable accuracy and (2) to compare the 
predictive quality of NN models against 
regression models for this application. 
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We begin our discussion with a regression 
analysis of the full data set and several subsets of 
the full data set. We then use these models to 
benchmark the performance of the NN models. 
Next, we build two sets of NN models. The first 
set of NN models was generated using a 
commercially available software package, 
Brainmaker. The second set of models was 
generated from an original, and more flexible, 
code. Our results indicate that neural networks 
can be used with a fair degree of success for 
predicting initial returns on IPOs. Using Mean 
Absolute Error (MAE) as our measure of 
performance, we found that our best model using 
Brainmaker (from experiment 1; see Table 6) 
outperformed our best linear regression model by 
about (1030-968)/1030 = 6.02% and it 
outperformed our best nonlinear regression model 
by about (1007-968)/1007 = 3.87%. The best 
model based on our original code (also from 
experiment l) outperformed our best linear 
regression model by about 8.74%, and it 
outperformed our best nonlinear regression model 
by about 6.65%. 

2.0 Background 

The phenomenon of abnormal initial returns to 
IPOs has attracted a lot of attention in the finance 
literature, and several theories have been 
proposed to explain this puzzle. Benveniste and 
Spindt [ 1] argue that information-gathering 
activities by underwriters during the pre-issue 
period affect the level of initial returns. They 
observe that changes in the offer price between 
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the filing of the prospectus and the offer date are 
a function of information gathered from investors 
during the pre-issue period. When positive 
feedback is revealed through high demand for the 
issue, the final offer price will exceed the 
expected offer price. When negative feedback is 
revealed by low demand, the offer price is set 
below the expected value. If investors reveal their 
true demand, the issuer will increase the offer 
price. To induce the investor to reveal 
information truthfully, the issuer has to promise 
an increase in allocation of shares. Thus, 
investors face a trade-off between increased 
allocation and underpricing. However, if 
allocations cannot be increased beyond a certain 
point, then the investor has to be rewarded for 
truth-telling mainly through underpricing. 

The above theory yields several natural 
hypotheses which were then tested by Hanley [2]. 
Hanley identifies several variables, such as offer 
amount and underwriter's reputation, which may 
affect the initial returns. The ordinary least 
squares (OLS) regression between the initial 
returns and the variables (Table 3 of the Hanley 

Variable 

Initial Returns 

Percent Change in the Offer Price 

Offer Amount 

Percent Change in the NASDAQ Index 

Reputation of the Underwriters 

Key to Abbreviations 

Po = Offer Price 

paper) indicates that about 17.8% of the total 
variation can be explained by the variables. 
While many predictions made by Benveniste and 
Spindt have been validated in Hanley [2], the 
relatively low R2 value might be explained by one 
of the following three reasons ( or a combination 
of these): (1) One or more explanatory variables 
have been omitted from the model; (2) there is a 
nonlinear relationship between initial returns and 
one or more of the variables identified; and (3) 
the data set has a large random noise component. 

3.0 Experimental Method 

3.1 Overview 

In this paper, we first build linear and 
nonlinear regression models to predict the initial 
returns used by Hanley. These will serve as 
benchmarks for our neural network models. We 
then build neural network models to explain and 
predict the initial returns using the same 
variables. Our premise is that the initial returns 

Definition 

(P1 - Po )/Po 

{Po - Pe }/Pe 

NPo 

(M1 - Mo )/Mo 

Average market share for 1983 - 1987 

Pe = Expected Offer Price= midpoint of the offer 
P1 = Price at the end of the first trading day 
N = Number of shares 
Mo = NASDAQ index at the time of preliminary filing 
M1 = NASDAQ index on offer date 

Table 1. Definition of Variables 
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may not be linearly related to these variables. If 
significant nonlinearities exist, a neural network 
model might be able to capture these 
nonlinearities better than either a linear or 
nonlinear regression model. If so, this would 
improve the predictive power of the model. Our 
results are based on two sets of NN models. The 
first set of models was built using Brainmaker. 
The second set of models was generated using 
our original code. Both Brainmaker and the 
original code use the backpropagation algorithm 
for training the network. Brainmaker allows the 
setting of a variety of parameters such as the 
sigmoid slope, learning rate, error threshold, 
number of neurons, and number of hidden layers 
by the user. However, the original code allows 
the user more flexibility. For example, it allows 
the user to set a different sigmoid slope for each 
neuron and it allows the pruning of a fully 
connected network. 

3.2 Data 

For this study, we used data on 1430 firm 
commitment IPOs from January 1983 through 
September 1987 compiled from Investment 
Dealers' Digest Corporate Database reports. 
This represents the entire population for this 
period. We describe each variable in Table 1. 
The first variable listed, initial returns, is our 
dependent variable. Based on Hanley [2], we 
choose percent change in the actual offer price 
from the expected offer price, offer amount, 
percent change in the NASDAQ index, and 
underwriter's reputation as our independent 
variables. Although Hanley [2] includes other 
variables in her explanatory regression model, we 
omitted these variables in our models since these 
were ex post variables which cannot be used for 
prediction. 

3.3 Experimental Design 

Our investigation involved three experiments 
using four different models in each experiment. 
These included a regression model, a nonlinear 
regression model, a neural network model 
generated by Brainmaker, and a neural network 
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model generated by the original code. All of the 
neural network models were composed of 
multilayer perceptrons which were trained 
using the backpropagation algorithm. The data 
were divided into three subsets: A, B, and C. 
These subsets were obtained by partitioning the 
data alphabetically. Seven of the 1430 
observations were deleted due to missing data. 
This left 1423 usable observations. 

Figure 1 illustrates the experimental 
procedure. In experiment 1, we trained the 
models on subset A and tested them on subset B. 
After we had determined the best model from 
several iterations of training and testing, we 
validated the model on subset C. In the case of 
the regression models, we determined the 
equation of the fitted line from the training 
subset. We then predicted the dependent 
variables in the test set using this equation. In 
experiment 2, we reversed the order of training 
and testing. In this case, we trained on subset B 
and tested on subset A. Again, we validated the 
model on subset C. In experiment 3, we 
combined subset A with subset B. We then chose 
the best parameter settings and training 
procedures from the previous two experiments. 
We trained the data using these settings and 
procedures. After training, we tested on subset C. 
With these restrictions, we were able to validate 
the model with the test set. 

4.0 Regression Analysis 

4.1 Linear Regression Models 

Before we developed the regression models for 
the individual training subsets, we generated the 
regression analysis for our reduced model 
(Hanley's model less the ex post variables) using 
both SPSS and Microsoft Excel over the full data 
set. The data in Tables 2 and 3 and Figures 2 
and 3 were generated from these packages. To 
begin, the overall fit of the first regression model 
looks good. As can be seen from Table 2, the F­
test for overall fit and the t-test for the individual 
variables are statistically significant at a= 0.05. 

This model also has reasonably low 
multicolinearity and little autocorrelation. As was 
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Figure 1. Visualization of Experimental Design 

Regression Statistics for Dependent Variable, Initial Returns 

Multiple R 0.4190 Durbin-Watson 
R Square 0.1756 Mean VIF 
ADJ. R Square 0.1732 
Standard Error 0.1578 
Observations 1423 

ANOVA 

1.9495 
1.2043 

df ss MS F - statistic 
Regression 4 7.5200 1.8800 75.4958 
Residual 1418 35.3110 0.0249 
Total 1422 42.8310 

Coefficients Standard Error t - statistic P-value 
Intercept 0.1206 0.0060 20.2669 0.0000 
Percent Change 0.3853 0.0304 12.6669 0.0000 
Offer Amount -0.0007 0.0002 -3.0148 0.0026 
NASDAQ 0.3772 0.0653 5.7720 0.0000 
Average Market -0.3525 0.1059 -3.3288 0.0009 
Key to Abbreviations 

Initial Returns: Percent increase in the selling price of an IPO at the end of the first 
trading day over its offer price 

Percent Change: Percent change in the actual offer price from the expected offer price 
quoted in the preliminary prospectus 

Offer Amount: Offer amount 

NASDAQ: Percent change in the NASDAQ index from file date to offer date 

Average Market: Average market share of the lead underwriters 

Table 2. Simple Linear Regression over the Full Data Set 
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Figure 2. Histogram of Standardized Residuals from the Simple Linear Regression Model 

expected, we found that the removal of the ex 
post variables from the full model, described by 
Hanley, slightly reduced the adjusted R2 value. In 
the first of our regression models, we found that the 
amount of unexplained variation is quite high. This 
fact alone makes the use of regression for prediction 
of the dependent variable problematic. 

The simple linear regression model also appears to 
violate the normality assumption. Figure 2 clearly 
indicates that the residuals are not normally 
distributed. In support of this graphical evidence, we 
determined that there are a total of 30 outlying 
residuals (2.1 % beyond ±3cr). Nineteen of these are 
beyond ±4cr from the mean. We could not justify the 
removal of any of these outliers. If the residuals 
were normally distributed, the expected percentage 
of outliers would be less than 0.26%. 

4.2 Nonlinear Regression Models 

After studying the partial residual plots of the 
individual variables, we concluded that performing 
nonlinear transforms on the dependent variable­
initial returns-and on the independent variable­
offer amount-were appropriate. Using the Box­
Cox procedure (for details, see Johnson and 
Wichern [3], pp. 164-166), we determined that the 
natural log transformation was appropriate for 
both. In the case of initial returns, we added 1 
to each value to ensure that all of the values were 
positive before taking the iog. We then regressed 
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over the new set of variables. While the R2 value 
improved, we discovered that the variable-average 
market--did not pass the t-test. We attempted a 
transformation on this variable using the Box-Cox 
procedure, but the t-statistic did not improve to the 
extent that we could _include average market in the 
model. Hence, we limited the final regression model 
to three independent variables. 

The resulting model was the best that we tested. 
The F-statistic improved by 38.8%. little 
multicolinearity remained in the model, and the 
adjusted R2 value improved to over 20.5%. The 
regression results for this model are given in Table 
3. Although the resulting model has improved, the 
histogram of standardized residuals (Figure 3) 
indicates that this model still probably violates the 
normality assumption. Based on this analysis and 
the low R 2 value, we hope that the neural network 
models will outperform regression. 

4.3 Regression over the Training Subsets 

In Table 4, we present a summary of the 
regression models over the training subsets. 
While not shown, the F-tests and t-tests in these 
models were consistent with the full data set 
models. Overall, these models are similar to the 
full data set models. In particular, we see that the 
adjusted R2 value improves in each model that 
uses nonlinear transforms. There is, however, 
one significant difference between these models 
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Re_aression Statistics for Dependent Variable, T-lnitial Returns 
Multiple R 0.4549 Durbin-Watson 1.9495 
R Square 0.2069 Mean VIF 1.0791 
Adjusted R Square 0.2052 
Standard Error 0.1235 
Observations 1423 

ANOVA 
df ss MS F-statistic 

Regression 3.0000 5.6503 1.8834 123.3890 
Residual 1419.0000 21.6599 0.0153 
Total 1422.0000 27.3103 

Coefficients Standard Error t -statistic P-va/ue 
Intercept 0.1453 0.0089 16.2566 0.0000 
Percent Change 0.3421 0.0234 14.6494 0.0000 
T-Offer Amount -0.0275 0.0035 -7.7990 0.0000 
NASDAQ 0.3410 0.0511 6.6672 0.0000 

Kev to Abbreviations 

T-lnitial Returns: Percent increase in the selling price of an IPO at the end of the first 
trading day over its offer price; transformed with the function In( Initial Returns+ 1 ) 

Percent Change: Percent change in the actual offer price from the expected offer price 
quoted in the preliminary prospectus 

T-Offer Amount: Natural log of the offer amount 

NASDAQ: Percent change in the NASDAQ index from file date to offer date 

Table 3. Regression over the Full Data Set using Nonlinear Transforms 
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Figure 3. Histogram of Standardized Residuals from the Regression Model with Nonlinear Transforms 
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Subset A 
Regression Without 

Transforms 
Multiple R 
R Square 
ADJ. R Square 
Standard Error 
Observations ===~ 

Subset B 
Regression Without 

Transforms 
0.4007 Multiple R 
O. 1606 R Square 
0.1534 ADJ. R Square 
0.1540 Standard Error 

474 Observations 

Subset A+ B 
Regression Without 

Transforms 
0.4478 Multiple R 
0.2005 R Square 
0.1937 ADJ. R Square 
0.1559 Standard Error 

473 Observations 

Regression With Regression With 

0.4234 
0.1793 
0.1758 
0.1547 

947 

Nonlinear Transforms Nonlinear Transforms Nonlinear Transforms 
Multiple R 0.4337 Multiple R 0.4934 Multiple R 0.4626 
RSquare 0.1881 RSquare 0.2434 RSquare 0.2140 
Adjusted R Square 0.1829 Adjusted R Square 0.2386 Adjusted R Square 0.2115 
Standard Error 0.1243 Standard Error 0.1185 Standard Error 0.1213 
Observations 474 Observations 473 Observations 947 

Table 4. Summary of Regression Models over each of the Training Subsets 

5.0 Neural Network Models and the full data set models: the adjusted R2 

value for subset B is much higher than the 
adjusted R2 value for the full data set model. 
Later, we will see that the underlying cause of 
this departure will have a detrimental effect on 
the predictive power of neural network models 
trained on this data. 

Table 5 lists the features and training 
procedures of the neural network models. We 
found that the models generated by Brainmaker 
required more fine-tuning than the original code 
during training to generate acceptable results. 

Brainmaker Models 

Architecture: 4 input nodes; 3 hidden nodes; 1 output node 
Sigmoid slope*: 0.7 begin; 0.4 end 
Learning rate: 0.5 begin; 0.1 end 
Momentum: 0.5 begin; 0.1 end 
Error thresholdt: 0.125 ( scaled )begin; 0 end 
Stopping criteria: 1500 iterations 
Procedure: Reduce the parameters incrementally in a stepwise fashion when either 

of the following criteria are met: 1) 200 additional iterations have elapsed; 
2) trainina MAE is not improvina 

Original Code Models 

Architecture: 4 input nodes; 3 hidden nodes; 1 output node 
Sigmoid slope*: 0.3 node 1, 0.4 node 2, 0.5 node 3 begin; increment by 0.2 after 100 iterations 
Learning rate: 0.2 
Momentum: 0.4 
Error thresholdt: 0 
Stopping criteria: 200 iterations 
Procedure: Increase siamoid slope after 100 iterations as indicated above 
* Sigmoid slope ( p ) : Xi = tanh( ui / p ) 
t Error threshold: Only backpropagates error, if absolute error> threshold 

Table 5. Architecture and Training Procedures for the Neural Network Models 
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This was accomplished by changing several 
parameters during training to avoid early 
convergence. In addition, Brainmaker performed 
better when the models were trained slowly. We 
accomplished this by slowly reducing the error 
threshold. In this respect, the original code was 
superior to Brainmaker, since we could conduct 
more experiments with the original code in the 
same amount of computer time. 

6.0 Results 

Table 6 presents the results of the model testing 
and validation for each experiment. In each case, 
the neural network models outperformed both 
simple linear regression and nonlinear regression. 
In addition, with the exception of the third 
experiment, the original code outperformed 
Brainmaker. Overall, models trained on subset B 
(experiment 2) did not have the predictive power 
of the others. As we observed in the discussion of 
the regression analysis of subset B, the data in 
this subset had significantly less unexplained 
variation than the full data set. Based on this 
observation, we believe that subset B is less 
representative of the full data set than subset A. 

7.0 Conclusions 

Average positive initial returns on IPOs is a 

real-world phenomenon which has puzzled 
financial experts for a long time. Although some 
progress has been achieved in understanding the 
factors which affect this phenomenon, serious 
effort has not been devoted to building models to 
predict the initial returns. Prediction of this sort, 
we believe, should be of importance to large 
institutions which regularly participate in the IPO 
market. It can be used, for example, as a guide 
when deciding the number of IPO shares to be 
purchased. This paper has taken a positive step 
in this direction. Using an original code and 
Brainmaker, we have built models which predict 
the initial returns on IPOs with a fair degree of 
accuracy. 

As a result of our experiments, we have found 
that the neural network models consistently 
outperform the regression models over similar 
data sets. In addition, the neural network 
performance is satisfactory in an absolute sense: 
Our best model had a validated MAE of 0.0940. 
With this information, we could state that an IPO 
whose predicted initial return was over 9.40% 
would probably have a positive initial return. 
While this will not be true in every case, 
investors who use this information should be able 
to reduce their overall risk when using these 
models as a guide. 

Re ression NL Re ression Brain maker Ori inal Code 
Testing Testing Testing Testing 

Ex. Subset MAE Subset MAE Subset MAE Subset MAE 
1 B 0.0981 B 0.0940 B 0.0900 B 0.0889 

C 0.1030 C 0.1007 C 0.0968 C 0.0940 

Table 6. Comparison of the Predictive Power of the Tested Models 
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INTRODUCTION 
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Contemporary bankruptcy research 
examines accounting data for matched-pairs, failed 
and non-failed, of firms. It employs statistical tests to 
detect the accounting data that bests discriminates 
between failed and non-failed firms. Recently, neural 
networks have been added to the statistical 
techniques in bankruptcy studies. Bank failure 
studies, generally, follow a similar research design; 
however, a bank's health can be categorized in more 
than two groups. Federal Depositors Insurance 
Corporation's examiners can place a bank in one of 
seven groups. This is done on the basis of hard 
accounting data and evaluator judgment. In addition, 
local economic conditions and other exogenous 
factors place a much more important role in bank­
failure than corporate bankruptcy studies. 

This research examines data on 
approximately 225 banks, including 46 failed banks, 
for the period 1987-1992. Two back propagation 
neural network models will be initially developed. 
The first model seeks to simply distinguish between 
failed and non-failed firms, and the second model 
seeks to match the 225 banks with their FDIC 
examiners' classification. The results of both models 
are compared with the results of quadratic 
discrimination models. Almost all bank-failure and 
corporate bankruptcy studies that employ neural. 
networks have used back propagation. It is powerful 
and well understood; however, in bank studies we 
often wish to consider data which is evaluative, non­
exact, that is, fuzzy data. This is particularly true in 
bank studies when dealing with exogenous data, 
such as multiple indicators of local economic 
conditions. A third neural network model is 
examined in this study - one based on Fuzzy ART 
architecture. This model will be used to classify 
banks into multiple groups. 

MODELS OF BANK FAILURE 

Although there was a large pre-World War 
II literature focusing on bank closings, few studies 
were able to distinguish operating from closed banks 
(Meyer and Pifer, 1970 ). Secrist (1938) argued that 
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single measures - be they ratios or annual changes -
could not discriminate between failed and non-failed 
banks; however, he believed discrimination could be 
achieved by means of multivariate statistical 
methods. In a very real sense, most contemporary 
bank failure studies can be seen as a subset of the 
classic statistical approaches to bankruptcy 
prediction. The premiere multivariate study of 
bankruptcy was Altman 1968 paper. It has become 
the benchmark against which most other bankruptcy 
studies are measured. Altman utilized the statistical 
technique of multiple discriminant analysis and 
found that bankruptcy could be explained quite 
completely by using a combination of five (selected 
from an original list of twenty-two) financial ratios. 
Linear Discriminant Analysis (LOA) is a statistical 
technique, developed by Fisher (1936 ), which is 
used to classify an observation into one of several a 
priori groupings dependent on the observation's 
individual characteristics. It is used primarily to 
classify and make predictions in problems where the 
dependent on the observation's individual 
characteristics. It is used primarily to classify and/or 
make predictions in problems where the dependent 
variable appears in qualitative form, e.g. male or 
female, bankrupt or non-bankrupt. After group 
classifications have been established, LOA attempts 
to derive a linear combination of these 
characteristics which "best" discriminates between 
the groups. Linear Discriminant Analysis requires 
certain assumptions about the data: ( 1) each group 
follows a multivariate normal distribution; (2) the 
variance-covariance matrices of the groups are 
equal; and (3) the prior probabilities are known. 

Altman ( 1977) applied quadratic 
discriminant analysis to predicting performance in 
the Savings and Loan industry. This study differed 
from the classic corporate failure studies in two 
important points (1) it utilized three classification 
groups - banks with serious problems, temporary 
problems, and no problems; and (2) the use of trends 
of accounting ratios. 

Pettway and Sinkey (1980) proposed using 
both accounting data and market information as a 
means of an early warning system for problem 
banks. 
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There have been several attempts to apply 
expert systems methodologies to the bankruptcy 
problem and the allied problem of creditor 
evaluation. Elmer and Borowski (1988) developed an 
expert system to evaluate the financial health of 
Savings and Loan (S & L) institutions and predict 
their failure. Their expert system took publicly 
available information and produced a single index to 
measure an institution's health. The rules were 
derived from the Federal Home Loan Bank Board 
(FHLBB) Examination Objectives and Procedures 
Manual and individuals' expertise. This system 
worked with five ratios drawn from CAMEL 
framework - CAMEL being an acronym for 
(C)apital, (A)ssets, (M)anagement, (E)arnings, and 
(L)iquidity. It, however, excluded the (M)anagement 
component since that was a subjective, quality 
measure. The S & L industry is seen as not being 
homogeneous; this system had the ability to identify 
thrifts with unusual characteristics and thus improve 
its own reliability. 

The system's single index is a weighted 
average of scores for the four characteristics -
(C)apital, (A)ssets,, (E)arnings, and (L)iquidity 
measures. The relative importance (the weights) for 
the four were derived from a poll of S & L 
presidents. Ten ratios are used to generate the scores 
for the four characteristics. The production rules 
treat these ratios either in the context of peer group 
comparison or with respect to fixed cutoff values. 
These rules provide sufficient flexibility to allow for 
changes in the industry. 

The author tested this expert system's 
predictive capability against a logit analysis based on 
an Altman (1977) study ofS & Ls and another study. 
Their test used 60 matched pairs of failed and non­
failed S & Ls form 1986. On that data the two 
statistical approaches outperformed the expert 
system by a very slight margin. A second test was 
conducted. Here the models were used to predict 
failure 1-6, 7-12, and 13-18 months prior to failure 
for data for the first half of 1987. In the earliest time 
period prior to failure the expert system was as good 
a classifier as the Altman model and better than the 
second statistical model. As one moved further away 
from the failure date, the correct classification rates 
for the three models declined; however, the expert 
system's declined at a more modest rate. For the 
period 13-18 months prior to failure, the expert 
system correctly classified nearly 62% of the sample 
while Altman' s model's value was approximately 
48% and the second statistical model's value was 
33%. The authors conclude that the expert system 
approach appears to be robust and that "correlational 
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studies have difficulty adapting to new circumstances 
and are subject to error due to samples from which 
they are derived". 

A study that compared the performance of a 
neural network model with a logit regression was 
Salchenberger, Cinar and Lash's (1993) study of 
S&L Thrift failures. As with the case of corporate 
failure, there have been numerous studies of thrift 
institutions. These studies have used linear 
discriminant analysis, quadratic discriminant 
analysis, logit, and probit. Salchenberger et. al. drew 
upon these prior studies to select an initial list of 29 
financial variables. These were reduced down to five 
by means of stepwise regression. The training data 
consisted of 100 failed S and Ls, and 100 non-failed 
S and Ls. These were matched by both asset size and 
geographical region. They used, in effect, four 
holdout sample which consisted of matched pairs of 
thrifts. The first three sample consisted of failed and 
non-failed institutions 6, 12, and 18 months prior to 
failure. The total sample sizes were 116, 94, and 48, 
respectively. The fourth sample consisted of75 
failures matched with 329 non-failures. This fourth 
holdout sample was designed to more accurately 
represent the proportions of failed to non-failed 
institutions. They used a back propagation neural 
network with one hidden layer which had three 
nodes. In addition, a logit model was run on the 
initial training set. For both the logit and neural 
network models, two cutoff points (.5 and .2) were 
used. As previously mentioned, the lower cutoff 
point reduces the chance of a Type I error. For the 
training set and the 18 month holdout sample, the 
neural network statistically outperformed the logit 
model in forecasting failures. For the training set, he 
neural network model was also more robust when it 
came to lowering the cutoff point to .2; 
misclassifying fewer number of non-failures. For the 
fourth holdout sample, the neural network, again, 
was statistically superior in classifying failed 
institutions and non-failed institutions when the 
cutoff point is equal to .2. The authors conclude that 
the neural network model yield more useful results 
than the logit model, particularly when the data is 
reflective of the total population of thrift institutions. 

Tam and Kiang (1992) have published two 
studies in which they applied neural networks to the 
study of commercial bank failure. The latter is 
perhaps the most comprehensive study in comparing 
neural network methodology to alternative 
approaches. In it 'they compare a neural network 
model's performance with a linear discriminant 
model, a logistic model, the ID3 algorithm, and the k 
Nearest Neighbor (kNN) approach. This last 
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approach is a non-parametric classification 
technique. It does not have any requirement for 
functional form nor does it assume normality in the 
distributions. The data was collected for the period 
1985-87 and consisted of 59 failed and 59 non­
failed banks. They were matched not only on the 
basis of assets but also on charter type and number of 
branches. Nineteen ratios, drawn from prior studies, 
were selected for use in this research. Although 15 of 
the 19 ratios were not normal in their distribution, 
they were used "as is" since attempts at 
transformation did not produce normal distributions. 
Tam and Kiang used two back propagation 
architectures - one with no hidden layer and another 
with one hidden layer which contained 10 nodes. 
They modified the learning function to consider both 
the differing probabilities for failure and non-failure 
and the differing costs of misclassification. The 
study considered two probabilities for failure and 
eight misclassification costs. The models were tested 
on data one and two years prior to failure. 

For the training set, one year prior to failure 
the neural network with the hidden layer 
outperformed all other approaches; however, two 
years prior to failure discriminant analysis had the 
lowest total misclassification rate followed by the 
hidden layer neural network. Both neural networks 
had lower substitution risks ( expected cost of 
misclassification) than the discriminant analysis 
across all combinations. The neural network with the 
hidden layer tended to outperform the two layer 
neural network. 

The models were tested on a holdout sample 
of 44 paired failed and non-failed banks. The neural 
net with the hidden layer the best overall classifier 
one year prior to failure while the logit model scored 
best two years prior to failure with the hidden layer 
neural network coming in second. Since the results 
for the models for the training and holdout sets were 
inconsistent with regard to relative accuracy for the 
two time periods, Tam and Kiang used a jackknife 
method of estimation. Utilizing this method, the 
hidden layer neural network produced smaller total 
misclassification rates, for both time periods, than 
the other models. The neural network with no 
hidden layers tended to perform at a rate comparable 
to the discriminant function model. 

These last studies clearly indicate the 
potential benefit to be derived from using neural 
networks in the study of bank failure. 
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DATA AND RESEARCH DESIGN 

The first phase of this study will be data 
collection. Presently, the authors are planning a full 
study of all banks in the New England region; this 
paper will discuss the results obtained for a subset, 
namely, banks in the state of Massachusetts. Data 
was obtained from several sources - state published 
data bases; Sheshunofjs; The Bank Quarterly: 
Ratings and Analysis; interviews with bank 
executives and FDIC examiners, and a Freedom of 
Information request of the FDIC. Financial data was 
collected for each failed instituion for the three years 
prior to its failure. Failed banks were matched to 
non-failed banks, initially, on the basis of asset size 
and bank type - state, federal or national. In addition 
to controlling the selection of banks by size, we 
stratified by SMSA location. For each of the banks a 
set of financial ratios will be computed. Based upon 
prior studies, the research will compute twenty-six 
financial ratios. We also computed for the twenty­
six ratios their annual rates of change. These 
variables were examined to determine the degree of 
correlation amongst themselves and T-tests and 
factor analysis were conducted to examine which 
variables were most significant, in terms of 
differentiating between failed and non-failed banks. 
This was done to reduce the data set. 

In addition to these ratios, exogenous 
economic data for each SMSA location was 
gathered. This exogenous data and elements of the 
evaluations of the FDIC examiners can, at times, be 
imprecise. As an example, the designation of the 
local economy or the bank's management may be 
classified as god, fair, or poor. Such concepts need 
to be processed into its fuzzy logic equivalent. Fuzzy 
ART neural network, which will be reported in a 
subsequent paper, will allow for a quantification of 
such imprecise notions. 

The authors employed four neural network 
back-propagation architectures designed to predict 
failed from non-failed banks. The architcture of the 
first model (NNl) consisted often nodes in one 
hidden layer; the second model (NN2) had twenty 
nodes in one hidden layer; the third model (NN3) 
had five nodes in the first hidden layer and five 
nodes in a second hidden layer; and the fourth model 
(NN4) had ten nodes in the first hidden layer and ten 
nodes in a second hidden layer. Based on the 
aforementioned statistical analysis, the data set was 
reduced to eleven financial ratios, six rates of change 
variables and the type of institution. The forty-six 
failed banks were segmented into two groups -
thirty-one were used in a training sample and the 
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remaining fifteen were assigned to the test sample. 
Care was taken to assign failed banks to either 
training or testing sample based upon the year of 
failure. The training consisted of thirty one nonfailed 
banks while the testing sample consisted of 210 
non-failed banks. This last sample represents nearly 
all the non-failed banks in the state. In addition to 
the neural network model, the data was tested using 
upon quadratic discriminant analysis (QDF). This 
classification scheme was used because of evidence 

of its superiority to linear discriminant analysis in 
bankruptcy studies (Mahmood and Lawrence, 1987). 
However, the authors plan to test the data for 
deviations from multivariate normality to which 
QFD analysis is sensitive. We also plan to Probit 
and Logit analyses to evaluate the data. The results 
of the QFD and back-propagation neural network are 
presented in Table 1. The authors plan to extend this 
analysis for the Massachusett's data by employing a 
Lachenbruch validation test design. 

TABLE 1. 
• • · • • · • : · :_· _.. ·. ·_.-·- · _. ·-: · • .-_.. · • • • • _- • • ir..~,iJ.t.ing Se.:t • _. : • • • • • ·-· • • · • · . _· • •• • • • • ·, • :_. · ::··· • • ·-·· • • ·-· . ·1.~i-!~itl • ·-' ·-· • • • :_ ': · • • • ·-: ·, · • ·-: • • ·-· ·_·,·:· ·,:,··:-:-: 
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The results indicate that the neural network 
with twenty nodes in two hidden layers outperforms 
all competing formulations. 

Currently, the authors are examining how 
well neural networks can match the five category 
classification scheme used by FDIC examiners. This 
stage of the research will require a close linkage with 
such examiners in order to determine what specific 
variables they utilize. 

Following that work, the next set of neural 
network models will incorporate fuzzy data that will 
consist of examinors evaluation of bank management 
and economic conditions. 

A complete bibliography is available from the 
authors upon request. 
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Abstract 

In this paper the task of developing a genetic­
based system for the building of optimal hedging 
strategies by means of derivative securities is 
addressed. The analytical potential of a genetic 
model as well as the representation issues connected 
with this approach are discussed. An attempt has 
been made to integrate the genetic maximization 
procedure with information available on the 
underlying price distribution, using a probabilistic 
.fitness function. Finally some implementation 
details are considered. A genetic based model is 
likely to be both a flexible and an efficient tool of 
analysis, when problems are characterized by 
uncertain knowledge and complexly structured 
solution spaces. 

1. Introduction 

We call derivative product a security whose value 
depends on one or more other variables which are 
called the bases of the product (Ingersoll, [7]). 
During the last two decades, the development of such 
financial instruments has been enormous driven by 
the search for arbitrage opportunities as well as by 
the need for more efficient hedging strategies, arisen 
with the increased volatility of interest rates, 
exchange rates, and commodity prices. 

As a consequence, derivatives are also object of a 
huge number of studies, addressing first of all the 
problem of valuing and pricing securities under the 
most various market circumstances. The task of 
building derivatives with desired characteristics is 
treated in the wider framework of financial 
innovation and design of securities. A key feature 
both in building and in valuing derivative products 
consists in the identification of a financial structure 
that mimics the characteristics of the desired product 
starting from the basis and the risk-free asset. 

Both pricing and optimal hedging problems have 
been addressed in rigorous mathematical contexts. 
Modem derivative pricing theory relies on the 
seminal paper by Fisher Black and Myron Scholes 
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[2]. The design of optimal hedging instruments under 
given exposure conditions has been studied by Allen 
and Gale [ 1] in a firms' value-maximizing context 
and by Duffie and Jackson [5], who studied the 
pareto-optimal allocation of resources connected with 
equilibrium conditions in futures markets. 

At the same time, a considerable research effort 
has been undertaken to develop tools of analysis of 
economic systems, which were capable to treat 
dynamic, highly non linear, complex phenomena 
without relying on unrealistic, oversimplifying 
assumptions. Among these tools, some models 
borrowed from mathematics, physics, biology, and 
computer science are currently at the core of modern, 
non-traditional financial analysis. Chaos theory, 
fuzzy logic, artificial neural networks, and genetic 
algorithms are receiving increasing interests from 
students and are often synthetically referred to as the 
field of soft computing. 

Being concerned mainly \vith non stable and far 
from equilibrium systems, soft computing tools are 
naturally well suited to address the topics of hedging 
strategies and risk management. 

A similar approach was undertaken by Chorafas 
[3], who discussed the application of a genetic 
algorithm to the problem of managing off-balance 
sheet operations, representing combinations of 
financial instruments by means of chromosomes built 
up by a random-based process. 

In this paper we will follow a building block 
approach (Smithson, [ 11]) to the construction of such 
'teplicating portfolios': and we will discuss how to 
use the framework provided by so-called genetic 
algorithms (see Goldberg, [6]) to address the task of 
building derivative securities. 

2. The Problem 

The four fundamentals off-balance-sheet 
instruments issued to manage financial risk are: 
forward contract, future contract, swap contract and 
option contract. In fact, one of these instruments may 
be issued to hedge a firm's risk profile, more than 
one of these may be combined to suit with a 



particular exposure or one or more may be issued 
together with a debt instrument to build up a so­
called hybrid security. These four building blocks 
can thus be assembled to give customized solutions to 
hedging problems, that is to optimization problems 
(minimizing the expected cost of funds/maximizing 
the expected rate of return), given the probability 
distribution of the underlying price. 

In tum, each of the four blocks is made up of the 
same fundamental components: the exercise price (the 
price at which the basic asset will be traded); the time 
to maturity; the payoff per period; the payoff at 
maturity; the cost of the contract. Managing these 
five variables we can specify each of our building 
blocks as well as a debt instrument and, thus, by 
assembling several packages of these five 
fundamental variables we can build virtually every 
kind of hybrid instrument. 

Let Pt be the underlying price in period t, P* be the 
strike price, T the number of (elementary) periods to 
maturity, IT the payoff per period before maturity, 
IT* the payoff at maturity and C the cost of the 
contract. Given the risk exposure of a firm to a 
particular price P, in the form of a functional 
relationship U = f'{P*, Pt), we wish to find, if 
possible, a string of the following form 

which gives us the best available hedge without 
giving up all potential gains or, alternatively, gives 
the same payoff profile of an existing product at a 
lower cost (or a higher expected payoff at the same 
cost). 

The second possibility is ruled out in absence of 
arbitrage opportunities, but even the first goal has no 
non-trivial solution if nothing can be said about the 
probability distribution of the underlying price. 

3. The Genetic Approach 

Genetic algorithms are computational devices 
designed to explore the solution space of an 
optimization problem by generating successive 
'\)opulations" of solutions according to the laws of 
genetics and natural selection. By processing string 
structures through three fundamentals operators -
Reproduction, Crossover, Mutation - and following 
probabilistic transition rules, genetic algorithms find 
the maximum of a function codified in the strings and 
representing the fitness, as a biologist would say, or 
the payoff, as an economist would say, of each string. 

The applications of genetic algorithms are not 
confined to the area of optimization. The simulation 

of systems characterized by life-like behavior, often 
called artificial evolution, was addressed by Collins 
[4] and by Scandizzo [9], in the framework of 
evolutionary economic models. 

It is interesting to note that the theoretical 
foundations of genetic algorithms rely on a 'building 
block argument" which in some way recalls the 
building block approach discussed in the previous 
section. The main theorem about genetic algorithms 
is the schema theorem [6], which states that, in 
subsequent generations of a genetic algorithm, short, 
low order, above average schemata receive 
exponentially increasing trials. A schema is a string 
where, in one or more position, the original symbol 
was substituted with a wildcard mark (*) and 
represents all the strings that match it in all positions 
other than the wildcard. For example, the following 
schema 

l***l** 

represents all the strings with a 1 in the first and in 
the fifth positions, no matter what symbols are 
carried in the remaining positions. 

A consequence of the schema theorem is the so­
called building block hypothesis, that can be stated as 
follows [8]: "A genetic algorithm seeks near-optimal 
performance through the juxtaposition of short, low­
order, high-performance schemata, called the 
building blocks." 

Without taking the similarity too far, we can argue 
that genetic algorithms are computational devices 
particularly well suited to solve optimization 
problems whose solution spaces exhibits 

Suppose the value V of a firm is exposed to 
changes in price P as in Figure 1. 

/),_V 

!),_ p 

Figure 1 

A perfect risk hedging is possible issuing a future 
or a forward on P, but this would eliminate all 
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possible gains from a rising of P. For example, if the 
probability distribution of P in the next period is such 
that there is a high probability of a substantial 
decrease in P, a small probability of a little increase, 
and virtually no possibility of significant increases, 
then we can combine a future contract with two 
option contracts, a call and a put, with exercise 
prices set such that selling the call yields more than 
what must be paid to buy the put1 

. 

Figure 2 shows the resulting risk profile. 

Figure 2 

The solution may be represented in terms of our 
five basic variables as follows: 

Forward 
P1=P1;P*=P'*;T=T';Il=0;Il*=P1-P'*;C=C'. 

Sell a call 
P1=P1;P*=P''*;T=T';Il=0; 
Il*=-max{0;P"*-P1}; C=C". 

Buy a put 
P1=P1;P*=P'''*;T=T';Il=0; 
Il*=max{P1-P"'*} ;C=-C"'. 

where C ">C" '. 
We have presented a relatively simple problem 

and a possible solution, given a synthetic description 
of our expectations about the underlying price, but 
neither we followed a rigorous maximization 
procedure nor we fully explored the solutions space, 
so we cannot be sure there isn't a different 
combination of our basic building blocks yielding a 
higher net payoff. 

We suggest that a way to explore systematically 
this kind of solutions to hedging problems may be 

1 For a wider discussion of this example see Smithson 
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found by customizing genetic algorithms to process 
strings representing combinations of the basic 
financial instruments, and to consider a fitness 
function whose value depends on the payoff of the 
derivative product represented in the string. 

An initial population may be built up by creating 
a set of basic instruments - each one defined by five 
values for variables P*, T, n, IT*, C, and by 
randomly generating - a large number of strings 
combining these basic blocks. 

The resulting population will be characterized by 
an average fitness and by a certain level of genetic 
variance. The fitness function should be based on the 
expected net payoff of the solution represented by 
each string, on the inherent exposure as well as on 
information about future values of the underlying 
price. If a sufficient level of initial variance is 
available, the application of genetic operators -
reproduction, crossover, and mutation - will lead the 
population to converge on a string with the maximum 
attainable value of the fitness function. 

The strings on which the algorithm will converge 
will be the best performing solution to the problem 
represented by the price exposure together with the 
price distribution. 

4. Implementation Notes 

To describe our genetic algorithm we must specify 
the nature of populations processed, the selection 
mechanism, the operators used to generate new 
populations, the fitness function, how it is coded in 
strings, and how can it be calculated. 

Population 
The population consists of strings of the form • 

whose positions are interpreted as the variables 
discussed in blocks of five from left to right. 

Selection mechanism 
The classical roulette wheel selection mechanism 

(Goldberg [2]) chooses at random individuals for 
reproduction with a probability which is larger the 
larger the fitness of the individual. Because we may 
wish to explore more than one solution, other 
selection strategies may also be used that allows the 
algorithm to converge to more than a single genotype 
at the same time. It has been shown ( Collins [ 1]) that, 
in spatially structured populations, selection models 
linking the probability of mating to distance among 
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individuals (non-panmictic strategies) 1s likely to 
exhibit superior performance. 

Operators and the fitness function 
In the implementation of the familiar operators of 

reproduction, crossover, and mutation, we must take 
into account that non every combination of values in 
the basic blocks will result in a legal solution to our 
problem. Thus the operations of crossover and 
mutation are likely to be executed in a positional 
manner, that is cutting a string for crossover only 
between a block and another as the following string 
shows. 

IP* IT I TI I TI* I Cl P* IT I TI I TI* IC I 
i i 

not legal legal 

The evaluation of the fitness function which 
drives the selection mechanism, depend; on a 
variable, the underlying price P, whose values are 
unknown. 

We will use a fitness function of the form 

n T IT 
I, I, jt t -c. 
j=l t=l (l+r) 1 

where n is the number of simple derivatives (building 
blocks) simultaneously represented in the string, r is 
an appropriate discount rate, and the Tijt=fj(P/, P1) 
are calculated generating at each step a random value 
for Pt, sampled from a distribution that synthesizes 
our knowledge about the future trend of the 
underlying price. 

5. Conclusions 

I have presented the general structure of a system 
conceived to treat risk management problems by 
building proper combinations of the basic derivative 
securities. The main characteristics of such a system 
are flexibility, the possibility of including available 
information on the underlying price, and the 
possibility of systematically exploring and comparing 
different complex solutions. 

The general structure of the system proposed is 
summarized in Figure 3. 
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Inherent 
exposure Population 

Derivative 
products 

Figure 3 

Distribution of P 

Such a system may be used both for optimization 
purposes and to perform simulation experiments 
under different conditions. 

This paper is just a first attempt to explore the 
potential of genetic-based systems to handle risk 
management problems systematically, and a great 
number of possible applications is probably still to be 
discovered. 

Two topics, however, are of immediate interest: 
to show whether the schema theorem still holds for a 
stochastic fitness function as the one suggested, and 
to test the system on different computing platform to 
assess its computational complexity as well as its 
effective power. 
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Abstract 

This paper proposes the use of recurrent 
neural networks in order to forecast currency 
futures. Recurrent networks, in which activity 
patterns pass through the network more than 
once before they generate an output pattern, 
can learn extremely complex temporal 
sequences. Selected recurrent architectures 
are compared in terms of prediction accuracy. 
A trading strategy is then devised and 
optimized The profitability of the trading 
strategy, taking into account transaction costs, 
is shown for the different architectures. The _ 
methods described here, which have obtained 
promising results in real-time trading, are 
applicable to other markets. 

1. Introduction 

For years opposing views existed between the 
trading and academic communities about the 
statistical properties of foreign exchange rates. 
Traders considered exchange rates to have 
persistent trends which permitted mechanical 
trading systems ( systematic methods for 
repeatedly buying and selling based on past 
prices and technical indicators) to consistently 
generate profits with relatively low risk. 
Researchers, on the other hand, presented 
evidence supporting the random walk 
hypothesis in the behavior of exchange rates. 
When prices follow a random walk the only 
relevant information in the historical series of 
prices, for traders, is the most recent price. The 
presence of a random walk in a currency 
market is a sufficient, but not necessary, 
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condition to the existence of a weak form of 
the efficient market hypothesis, i.e. that past 
movements in exchange rates could not be used 
to foretell future movements. 

While there is no final word on the diatribe 
between practitioners and academics about the 
efficiency of currency markets, the prevalent 
view in economic literature that exchange rates 
follow a random walk has been dismissed by 
recent empirical work. There is now strong 
evidence that exchange rates returns are not 
independent of past changes. Before the advent 
of nonlinear dynamics, statistical tests for the 
random walk were usually conducted by 
verifying that there was no linear dependence, 
or that autocorrelation coefficients were not 
statistically different from zero. However, the 
lack of linear dependence did not rule out 
nonlinear dependence, the presence of which 
would negate the random walk hypothesis. 
Therefore, many tests were often inappropriate 
and some conclusions were questionable. 
Recent evidence has clearly shown that while 
there is little linear dependence, the null 
hypothesis of independence can be strongly 
rejected, demonstrating the existence of 
nonlinearities in exchange rates. [3, 5, 17] 

The problem of predicting exchange rates, 
characterized by nonlinearities and high noise, 
seems to defy complex methods. Currency 
markets are to some extent still an enigma for 
economic theory. Sophisticated empirical 
econometric models using fundamental data to 
predict low-frequency (monthly or lower) 
exchange rates changes are characterized by 
parameter instability and poor forecast 
performance. Even recent nonlinear extensions 
of existing models do not provide any 
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improvements in the ability to forecast 
currency movements. [ 13] 

With respect to the issue of the weak form of 
efficiency of the exchange rates markets it 
would seem very difficult to obtain positive 
results using only high-frequency ( weekly, daily 
or even intra-day) past prices. Available 
evidence suggests that even nonlinear non 
parametric statistical methods have yet to show 
positive results in out-of-sample prediction. 1 

Also, although the evidence of nonlinearities in 
exchange rates is compatible with the existence 
of low-dimensional chaos, only mixed results 
of chaotic behavior ( and therefore short term 
predictability) have been obtained.2 

Surprisingly, though, there are anomalies in 
the behavior of the foreign exchange markets 
that cannot be explained under the existing 
paradigm of market efficiency. New evidence 
has emerged, which reinforces previous tests, 
on the profitability and statistical significance 
of mechanical trading systems in currency 
markets, and negates the weak form of 
efficiency. [2, 10, 11] It seems that technical 
trading rules are able to pick up some of the 
hidden patterns in the inherently nonlinear price 
series. Mechanical trading systems appear to be 
the only approach that has demonstrated some 
validity. It should be used as a base on which 
to build on. 

2. ANN as a Forecasting Tool 

The potential advantages and limitations of an 
Artificial Neural Network (ANN), and in 

1 For example, Diebold et al. [6] used locally-weighted 
regression on weekly series of IO OECD spot exchange rates, 
without being able to improve upon a simple random walk in 
out-of-sample prediction. The random walk had the lowest 
Mean Squared Error in at least 5 out of IO cases for all the 
models they considered. 
2 De Grauwe et al. [5] applied some of the available 
techniques (rescaled range analysis and time delay method) 
to daily exchange rates and found only weak support for the 
occurrence of chaotic structure for the $/JY and BP/$. They 
found no evidence of chaotic behavior for the $/DM, in the 
period 1971-1990. In other tests, [6] found no evidence in 
favor oflow-dimensional "regular" chaotic dynamics. 
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particular of a multilayer feedforward neural 
network, over other statistical methods or 
expert systems are well known. ANN s are 
universal function approximators, and being 
inherently nonlinear are notoriously good at 
detecting nonlinearities, but suffer from long 
training time and a very high number of 
alternatives as far as architectures and 
parameters go; they are also prone to 
overfitting data. Another common critique that 
is made about ANNs is that they are "black 
boxes", more difficult to decipher than 
traditional time series econometric models or 
expert systems. Critics go on to say that 
knowledge of the value of the weights and • 
biases in the network gives, at best, only a 
rough idea of the functional relationships. 
Thus, even if ANN s are based on causally 
related data, the resulting model may not give a 
great amount of insight into the strength and 
nature of the relationships within it. This 
elusiveness of ANNs is the price to be paid in 
return for their being model-free estimators. 

However, even when using econometric 
models it is an accepted fact that one cannot be 
sure about the direction of causal effects 
among different variables. As Fischer Black 
says [1]: "The trouble with econometric models 
is that, while they purport to tell us something 
about causal relations between variables, they 
almost invariably rely on correlations to imply 
causation. While correlations can tell us 
something about how variables are statistically 
related, they tell us little about how they are 
causally related." Furthermore: "Understanding 
a model helps only in that it may give us 
confidence that the coefficients will be stable 
through time. 11 Thus, econometric models share 
the same ambiguity in respect to their 
interpretation as do ANNs. 

Recurrent neural networks (RNNs), in which 
the input layer's activity patterns pass through 
the network more than once before generating 
a new output pattern, can learn extremely 
complex temporal patterns. Several researchers 
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have confirmed the superiority of RNNs over 
feedforward networks when performing 
nonlinear time series prediction. [ 4, 12] 
Recurrent architecture proves to be superior to 
the windowing technique of overlapping 
snapshots of data which is used with standard 
backpropagation. In fact, by introducing time­
lagged model components, RNNs may respond 
to the same input pattern in a different way at 
different times, depending on the sequence of 
inputs. The appropriate response at a particular 
point in time could depend not only on the 
current input, but potentially on all previous 
inputs. The main disadvantage of RNN s is that 
they require substantially more connections, 
and more memory in simulation, than standard 
backpropagation networks. RNNs can yield 
good results because of the rough repetition of 
similar patterns present in exchange rate time 
series. These regular but subtle sequences can 
provide beneficial forecastability. 

3. Empirical Design 

The experiments, in order to be useful and 
applicable to real-time trading, must create 
conditions which are as close as possible to 
reality. Therefore, one must take into account, 
when using spot exchange rates, the interest 
rate differential among the currencies in 
question. Unfortunately, this crucial criteria is 
often overlooked. There will always be a 
difference between "paper" profits and real 
profits: the objective is to minimize it. By using 
forward rates or currency futures it is possible 
to overcome this problem because they already 
include a premium or a discount due to the 
differences in interest rates. Any trading system 
based solely on spot exchange rates is just an 
approximation, because it comes short of 
dealing with the problem of interest rate 
differentials. 3 The set of data used in the 

3It would be possible to use spot exchange rates by trucing 
into account overnight interest rates on spot interbank 
deposits for returns calculations, but at the price of more 
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experiments consisted of Th1M currency future 
(DM, SF, BP and JY) Opening and Closing 
prices from J an-1990 to Dec-1994. 

3. I .Adjusted Price Series Choosing the 
appropriate price series for currency futures is 
hardly a trivial matter and is the first step in 
building a trading system. Using individual 
contracts complicates the task of training and 
testing the system. The training and testing 
usually require a price data history that is much 
longer than the typical liquid trading period for 
an individual contract. Furthermore, the 
simultaneous use of individual contracts is 
difficult because it is necessary to combine a 
large number of individual results for each 
contract as well as dealing with possible 
divergences of trading signals when switching 
from the expiring contract to the next one. The 
commonly proposed solution is to create a 
single continuous price series by using the 
nearest futures prices, with a jump to the prices 
of the successive contract made at the 
beginning of the month or at a specified 
number of trading days before expiration. The 
fatal distortion of this system is that there could 
be significant price gaps created in the series at 
the roll-over dates, between the expiring and 
the subsequent contracts. The nearest futures 
series will create illusory price moves at the 
transition points, distorting both training and 
testing activities. In addition, the nearest 
futures series does not allow direct calculation 
of the profitability of a trading system. The 
solution adopted here is to use spread-adjusted 
continuous price series, by which, except for 
the most recent contract in the series, prices 
are adjusted by a constant that compensates for 
price differences which exist at roll-over dates. 
(16] This method alters the prices of the future 
contracts prior to the most recent one, but 
maintains identical price relationships, thereby 
avoiding the distortions mentioned above. 

approximations. In addition, the spread between bids and 
offers will tend to be greater for forward than for spot rates, 
increasing as the maturities grow longer. 
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The transition between contracts was 
performed seven days before expiration. 
Several sets of data were prepared: each one 
contained a training set of 424 consecutive 
trading days, a test set of 100 consecutive 
trading days ( which begins the day after the 
training set ends), and a validation set of 100 
consecutive trading days ( which begins the day 
after the test set ends). 

3.2.Generalization RNNs are predisposed, as 
are standard backpropagation networks, to 
overfit training data. Rather than learning the 
fundamental structure of the training set, which 
would enable them to generalize adequately, 
they learn insignificant details of individual 
cases. This problem is generated by two 
conflicting purposes of ANNs: they have to be 
as general as possible so that they learn a broad 
range of problems and yet they need to perform 
well in out-of-sample tests, on examples not 
previously seen. There are two approaches to 
the overfitting problem. The first one is to train 
the model on the training set and to evaluate 
the model's performance on the test set. The 
second approach is to use one of the many 
network pruning algorithms [19] to reduce the 
network size, thereby limiting the number of 
hidden neurodes and hence the number of 
parameters to be estimated. The solution I 
adopted is based on a parsimonious choice of 
the number of hidden neurodes as suggested by 
the generalization capability of the network on 
the test set. In this procedure I trained the 
network until convergence, observed the point 
at which the test set error began to rise, and 
then restored the network weights at the 
iteration cycle where the test set error was 
minimum. How well the network generalized 
was deduced by analyzing its performance on 
the validation set, and not on the test set as this 
was used to decide when to stop training, and 
therefore introduced a dangerous bias in the 
evaluation. 

3 .3 .Prediction accuracy and profitability The 
ultimate goal of the experiments is to create a 
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trading system, a set of interrelated rules to 
enter and exit the market, that produces 
profits. While accuracy is related to 
profitability, the trading system should not be 
evaluated using only standard statistical error 
measures (Mean Square Error and the like). As 
an example, a trading system might consistently 
miss a large number of small moves but 
correctly forecast a small number of large 
moves. Therefore, the researcher must take 
into account the out-of-sample profitability of 
the system, as well as its forecasting accuracy, 
when choosing the neural architecture, 
activation functions, data sets, and forecast 
horizon. To reiterate the concept, prediction 
accuracy is not the goal in itself, and it should 
not be used as the guiding selection criteria in 
the tests. While this simple concept is part of 
the wealth of knowledge of mechanical traders 
[16], it is rarely considered in tests undertaken 
by academics. 

3. 4. Outputs and Inputs Choosing the kind of 
outputs to be forecasted is an important 
decision. The most common options are: 

- actual price values, 
- first differences of prices, 
- returns, 
- binary signals, such as -1 short, 1 long. 

As currency futures are non stationary, it is 
better to analyze price changes in terms of 
compound return: rct = log(fi)- log(.fi- 1). 
Experiments, conducted with compound 
returns, have shown that the forecasting 
horizon must remain very short to obtain good 
results. One of the problems in forecasting 
actual prices is that activation functions tend to 
emphasize the importance of intermediate 
output values, so that the range of predicted 
values is compressed with respect to target 
values. Solutions range from using special 
forms of normalization to linear activation 
functions. 

Another critical point is to identify the 
appropriate set of inputs relevant for the RNN 
architecture and for the chosen output. In 
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particular, the inputs should be adapted to the 
"needs" of RNNs: they should have a temporal 
structure and should not be too numerous. 4 An 
analysis of alternative sets of inputs based on 
transformations of the set of data, drawing 
from the vast base of technical indicators was 
performed. This selection was based on 
previous work performed on the optimal 
choice of parameters of different technical 
indicators and on their combined use in trading 
systems.[18] Inputs were normalized to zero 
mean and two standard deviations for all three 
data sets. The output was normalized at zero 
mean and three standard deviations. 

4. Learning 

Prediction usmg a RNN involves the 
construction of two separate components: one 
or more recurrent layers which provide the 
temporal context, usually referred to as short­
term memory, and a predictor, usually the 
feedforward part of the network. The short 
term memory retains features of the input 
series relevant to the prediction task, and 
captures the network's prior activation history. 
The tests were performed with three variations 
of RNNs. They belong to the RNN family 
known as local feedback networks, where only 
local connections are activated. The rationale is 
that instead of learning with complex, fully 
connected recurrent architectures, redundant 
connections should be eliminated in order to 
significantly increase the network's 
generalization capability. The first architecture 
used is similar to that developed by Jordan [8], 
known as sequential network. The network has 
one hidden and one recurrent layer. The output 
layer is fed back into the hidden layer, by 
means of the recurrent layer, showing resulting 
outputs of previous patterns (Figure 1 )5. The 

4This implies that comparisons among standard back 
propagation and RNN should not be based on the same set of 
inputs, but on comparing "best practice" with "best practice". 
5Self-loops ofrecurrent neurodes are not shown in this and 
the following figures. 
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recurrent neurode allows the network's hidden 
neurodes to see their own previous output, so 
that their subsequent behavior can be shaped 
by previous responses. The recurrent layer is 
what gives the network its memory. Following 
the taxonomy proposed by Mozer [14], which 
distinguishes between the short term memory's 
content and form. The version I used was 
characterized by output-exponential memory. 

Figure 1. Recurrent Backpropagation with Output 
Layer Feedback Link 
(memory: output-exponential) 

/ --
,..✓--- Hidden , 

~:~~ ~-o---~l!Y_!l!: ___________ : 

Recurrent 
Layer 

With respect to the form of the memory, the 
use of an exponential trace memory acts on the 
series of inputs x(l), ... , x(t) creating a state 

- - -
representation [x1(t),x2(t), ... ,x1(t)], where 
each X; (t) is related to the input sequence by 
the function e; : 

I 

~;(t) = Le;(t- r)x( r) 
~] 

where e;(t) = (1- A)µ~ with O < A < 1. 
An important property of exponential trace 
memories is that X; (t) can be calculated 
incrementally: 

These memories can then be seen as 
exponentially weighted moving averages of 
past inputs. The exponential memory, used also 
for the other two versions, makes the strength 
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of more distant inputs decay exponentially. The 
rate of decay is governed by A . 

In the second version (Figure 2), similar to 
Frasconi et al. [9], the hidden layer is fed back 
into itself through an extra layer of recurrent 
neurodes. Both the input layer and recurrent 
layer feed forward to activate the hidden layer, 
which then feeds forward to activate the output 
layer. Therefore, the features detected in all 
previous patterns are fed back into the network 
with each new pattern. These recurrent 
neurodes remember the previous internal state. 

Figure 2. Recurrent Backpropagation with Hidden 
Layer Feedback Link 
(memory: transformed input-exponential) 
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Recurrent Layer 

In the third version (Figure 3), patterns are 
processed from the input layer through a 
recurrent layer of neurodes which holds the 
input layer's contents as they existed when 
previous patterns were trained, and then are 
fed back into the input layer. 

Figure 3. Recurrent Backpropagation with Input Layer 
Feedback Link 
(memory: input-exponential) 

Input Layer 
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The memory1s content is the dimension which 
differentiates the three versions of RRN. It 
refers to the fact that although it must hold 
information about the input sequence, it does 
not have to be a memory of the raw input 
series. In the three versions used here there 
were one-for-one linear connections between 
each recurrent neurode and, respectively, each 
output, hidden or input neurode. 

Issues such as learning parameters, number 
of hidden neurodes and activation functions are 
also important in determining the chances of 
success of different configurations of RNNs. 
Several alternatives regarding the parameters 
were tested. The best results were provided, 
contrary to the tests performed in [15] with 
standard backpropagation, by the symmetric 
sigmoid logistic activation function: 

ex - e-x 

f (x) = X -X 

e +e • 
where f(x) has the same shape as the 

standard sigmoid function, except that its range 
is [-1, 1] rather than [0, 1]. The learning rate 
was initially set at 0.05 and decreased gradually 
to 0.0005 during the first 500 passes, while the 
momentum term was fixed at 0. 1. The rate of 
decay A was set at 0.6. Choosing the 
appropriate number of hidden neurodes was 
extremely important. The configuration that 
obtained the best results m terms of 
generalization had 3 8 inputs, 5 hidden 
neurodes and 1 output. 

5. Trading Strategy 

The importance of the trading strategy ( entry 
orders, exit orders, number of contracts per 
trade, etc.) can hardly be underestimated. 
Research shows that identifying the appropriate 
trading strategy for each forecasting problem is 
vital to each system's trading performance. The 
forecast formulated by the three versions of 
RNN s is just the initial part of a trading 
strategy. The transformation from predictions 
into market actions is obtained by specifying a 
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set of rules to buy and sell currency futures. In 
particular, according to the uses of IMM, two 
types of orders were used: 
• Market Opening Only Order, where the 

order is filled only during the opening range 
at the first available offer (sell order) or bid 
(buy order); 

• Market on Close Order, where the order is 
filled at any time during the closing range. 

Each trade had transaction costs consisting of 
commission and slippage, the difference 
between the theoretical execution price and the 
actual fill price. It was assumed to trade one 
contract at a time and to have transaction costs 
equal to $80 per trade ($25 for commission 
and $55 for slippage). Transactions costs are 
very important in short term trading systems 
because they can have a dramatic impact on 
performance. The network's objective was to 
forecast the compound return of the following 
day's Open and Close. Using prices up to the 
Open at time t (Ot) the forecast was made two 
steps ahead for the Open at time t+2 (Ot+2). 
Similarly, using prices up to Ct+ 1 the forecast 
was made for Ct+ 3. For the sake of generating 
trading signals, it is possible to build a 
continuous price series Ft,---,Ft+n by alternating 
Ot and Ct prices. 

Trading Strategy 1 (TrStl): 

Entry rule at time t: 
1. If f(Ft+2) > x then 
2. If f(Ft+2) < -x then 
3. If -x < f(Ft+2) < x then 

Exit rule at time t+ 1: 

LongFt+l 
ShortFt+l 
Flat 

1. If f(Ft+3) > x then stay Long (if 1 at t), 
stop and reverse to Long (if 2), go Long (if 3) 

2. If f(Ft+3) < -x then stay Short (if2 at t), 
stop and reverse to Short (if 1), go Short (if3) 

3. If -x < f(Ft+3) < x then cover Short (if2), cover 
Long (if 1), stay Flat (if 3) 

where f( ) stands for the network's compound 
return forecast, r( ) is the compound return, 
and x is a numerical filter. 
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Trading Strategy 2 (TrSt2): 

Entry rule at time t+ J: 
1. If f(Ft+2) > [r(Ft+ 1) + x] then Long Ft+ 1 
2. If f(Ft+2)<[r(Ft+1)-x] then ShortFt+l 
3. If [r(Ft+ 1)-x] < f(Ft+2) < [r(Ft+1)+x] then Flat 

Exit rule at time t+ 2: 
1. If f(Ft+3) > [r(Ft+2) + x] then stay Long (if 1 
at t+l), stop and reverse to Long (if2), go Long (if3) 

2. If f(Ft+3) < [r(Ft+2) - x] then stay Short (if2 
at t+ 1 ), stop and reverse to Short (if 1 ), go Short (if 3) 

3. If [r(Ft+2)-x] < f(Ft+3) < [r(Ft+2)+x]then cover 
short (if 2 at t+ 1), cover long (if 1), stay flat (if 3) 

TrSt 1 is more realistic than TrSt2 because it 
forecasts and decides at time t to go Long, 
Short, or Flat. The purchase or sale of the 
future is then done at the next time step t+ 1. 
TrSt2, on the other hand, forecasts at time t, 
but waits until time t+ 1 to compare the 
subsequent market open or close with the 
forecast and then decides whether to buy, sell 
or do nothing. For this second strategy the 
slippage is likely to be significantly larger than 
for TrStl, because the fill is not made at the 
Open but immediately after, and a decision 
must be reached within a few seconds of the 
Close. 

Any sensible trading strategy should 
somehow restrict the number of trading signals 
because of the incidence of transaction costs. 
The filter x was used to provide a way to avoid 
as much as possible false signals. Its size was 
optimized using genetic algorithms based on 
the average profitability of the trading strategy 
across different RNN versions and periods. 

6. Evaluation 

The different versions of RNN were compared 
by focusing on the accuracy and reliability of 
the forecasts on training, test, and validation 
data. Differences in the architecture yield 
significantly different results. A standard error 
measure to evaluate the quality of predictions 
is the normalized mean squared error: 
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~ (observationt - predictiont)2 

NMSE = ~ter . 2 

~ (observat10nt - meant) 
L...JtEr 

where t = 1, ... ,N enumerates the patterns in 
each data set ( -r) used. The above is the ratio 
between the mean squared errors of both the 
prediction method and the method which 
forecasts by using the mean at every step. A 
value of NMSE = 1 thus corresponds to the 
value obtained by simply predicting the 
average. Yet, prediction accuracy statistics 
such as NMSE by themselves are of little use. 
The purpose is rather to build trading systems 
that would provide a consistent profitability on 
a risk-adjusted basis, with a high degree of 
confidence. 

The results in terms of profitability of the 
trading strategy, net of trading commissions 
and slippage, are shown for the different 
versions. Margin requirements are usually 
satisfied by posting Treasury Bills. The interest 
income earned is not accounted in the 
following performances. Therefore, reported 
net profits are based on trading profits only, 
and represent the return earned in excess of the 
T-Bill rate. In itself, mere profitability is not 
enough to evaluate the relative value of a 
trading system. Profit has to be computed 
across several different periods, as it could be 
an expression of one isolated period of 
extraordinary performance. In addition, other 
measures of relative performance are needed, 
such as: 

( Net Profit )(days /255) 
1 ROE= l+------ -

Max ValueFuture 

Return on Equity measures the relative 
unlevered profitability, being the annualized 
ratio between the net profit and the maximum 
value of the DM future contract in the period 
analyzed. 

250 

( Net Profit )(days/255) 1 ROC= l+------ -
2(MaxDr + InMar) 

Return on Capital expresses the dollar net 
profit relative to the funds required for trading 
by an individual trader who is subject to double 
margins. It is the annualized ratio of the net 
profit over twice the sum of the maximum 
drawdown on which the particular trading 
system would incur plus the initial margin 
required. It is measure of the efficiency in the 
use of capital of a trading system. Table 1, 2 
and 3 show the net profit, the percentage of 
correct trading signals, ROE, ROC, and NMSE 
for each strategy. The figures shown are for the 
last of the 5 different time periods used ( ending 
in December 1994) of the best network 
configurations. Each RRN version and trading 
strategy has its own filter, optimized using 
genetic algorithms. 

Table 1. Performance measures for RNN I 

Training Test Validation 
424 100 100 

TrStl (0.13) $37,488 $2,925 $2,750 
TrSt2 (0.17) $20,275 $1,950 $2,800 
%TrSig 1 69.1% 69.4% 55.6% 
%TrSig 2 45.2% 46.9% 45.7% 
ROE TrStl 24.9% 9.1% 8.6% 
ROE TrSt2 13.9% 6.0% 8.7% 
ROC TrStl 375.7% 124.3% 241.1% 
ROC TrSt2 203.2% 58.2% 234.3% 
NMSE 0.8949 0.9622 0.9699 

Combining the use of the validation set (in 
addition to the test set), with the use of 
different periods, adds greater reliability to the 
trading systems. Results here are reported only 
for the DM, though similar performances were 
obtained on the other currencies. Although it is 
probably unrealistic to expect any single system 
to work in all markets, a good system should 
demonstrate profitability at least in related 
markets such as is the case of currency 

' 
futures. In addition, if a trading strat_egy is 

Copyright© 1995 Software Engineering Press 



devised on currency futures very similar results 
can be expected by using forwards. 

Table 2. Performance measures for RNN 2 

Training Test Validation 
424 100 100 

TrStl (0.13) $40,675 $3,925 $8,437 
TrSt2 (0.17) $35,713 $3,788 $8,262 
¾TrSig 1 64.4% 63.3% 63.5% 
¾TrSig 2 54.4% 52.1% 51.0% 
ROE TrStl 26.9% 12.4% 27.7% 
ROE TrSt2 23.8% 11.9% 27.1% 
ROC TrStl 217.8% 256.9% 353.7% 
ROC TrSt2 191.2% 247.9% 383.5% 
NMSE 0.9519 0.9683 0.9795 

Table 3. Performance measures for RNN 3 

Training Test Validation 
424 100 100 

TrStl (0.05) $28,413 $200 $1,250 
TrSt2 (0.04) $36,063 $1,625 -$625 
¾TrSig 1 48.9% 46.0% 48.50% 
¾TrSig 2 43.8% 44.1% 43.00% 
ROE TrStl 24.0% 0.6% 3.9% 
ROE TrSt2 28.8% 5.0% -1.9% 
ROC TrStl 185.1% 3.2% 8.7% 
ROC TrSt2 232.4% 15.3% -9.3% 
NMSE 0.9654 0.9984 1.018 

RNN2 provides the best overall profitability. It 
is the best of the three versions even if it is 
judged in terms of smaller decay of 
performance going from the training set to the 
test set, and then from the test set to the 
validation set. RNNl 's results were not quite as 
good as those of RNN2, while RNN3 did not 
show a good generalization capability. 
However, these results should not be taken as 
the final verdict on the relative merits of the 
three versions of RNN. As far as trading 
strategies are concerned, TrSt2 had greater 
accuracy in forecasting large price movements 
than TrStl, even though the percentage of 
corr~ct trading signals was significantly 
smaller. This resulted in absolute and relative 
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profitability that were slightly less than those 
obtained by TrStl. 

Comparisons with standard backpropagation 
methods have shown that RNNl and RNN2 
have better profitability and generalization 
capacities. However, as there are an almost 
infinite number of configurations and 
parameters in standard backpropagation, I 
cannot say that it would be impossible to find 
one which could yield better results than RNNl 
and RNN2. Yet I can say for sure that in the 
many tests I performed between the two 
methods, RNNl and 2 always had better 
results. 

7. Conclusions 

RNN s, often avoided because of fears of time 
consuming training sessions, are particularly 
useful for financial forecasting applications. 
The methods described here are equally 
applicable to other markets. Tests have been 
carried out on equity indices, bond futures, and 
commodities with encouraging results. Yet 
they are particularly well-suited to forecasting 
foreign exchange markets due to the network's 
adherence to nonlinearities as well as the subtle 
regularities found in these markets. 
The above findings can be considered 
preliminary as I am in the process of expanding 
my research to the following areas: 

• comparisons of ANN s with standard 
statistical techniques; 

• comparisons of ANN s with mechanical 
trading systems; 

• application of Modem Portfolio Theory 
framework to ANN financial forecasting; 

• diversification of trading systems through 
the use of regime-switching models; 

• development of criteria to be used in the 
evaluation phase. 

The evaluation of test results is a very complex 
task because so many factors are involved. 
Certainly it cannot be based on isolated 
parameters but must. incorporate situations 
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which are true to life. Real-time trading, the 
ultimate test, shows that ANN s are not a 
"passing fad" as critics would have us believe. 
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Abstract 
This pape:c describes how to design and evalu­
ate custom financial swaps using CLP(R), a con­
straint logic programming language over the real 
numbers. A prototype analysis tool, Paws, was 
implemented and its analysis of a large real-life 
example is given to illustrate the techniques.1 The 
analyzer is useful to swap practitioners by allow­
ing quicker and more flexible experimentation over 
the design space than is currently possible with 
spread sheets. 

1 Introduction 

Swaps are financial instruments that allow two 
parties to exchange interest payments in perhaps 
different currencies. A swap is a powerful build­
ing block from which exchange networks can be 
built, resulting in redistribution of economic sur­
pluses and risks. Usually an intermediary designs 
and implements the swap network for a fee. A 
key criterion for a swap network to be viable is 
that no party must bear risk beyond its risk pref­
erence. For the intermediary, this often means no 
risk, i.e., all stochastic factors must "cancel out." 

This paper describes how to design and eval­
uate financial swaps with a constraint logic pro­
gramming language. We chose CLP(R), over the 

1 Paws is available by anonymous ftp 
from ftp. cs. uoregon.edu:pub/tick/paws. tar .gz. En­
quiries for obtaining CLP(!R) should be sent to 
joxan@watson.ibm.com. 
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real numbers [1, 5], for its robustness and avail­
ability. A prototype system was built, called 
Paws, which includes a sophisticated user inter­
face for entering and displaying design solutions. 
Paws is of interest to swap practitioners by allow­
ing quicker and more flexible experimentation over 
the design space than can be accomplished with 
current methods, e.g., spread sheets. For example, 
exploiting the ability of constraint languages to 
solve linear equations for any combination of un­
known variables, a swap network can be partially 
constructed without binding all the input param­
eters. The system will then return the relation­
ship among the unknowns, e.g., give the relation 
between two interest rates or long-term exchange 
rates to guarantee a profit within a certain range 
for a given entity. Using such a tool encourages 
flexible experimentation and optimization that is 
not possible with spread sheets, where the equa­
tions can be "solved" in only a rigid fashion. 

This paper is organized as follows. A brief 
overview of swaps is given in Section 2. Section 3 
reviews CLP(R). Section 4 discusses how the swap 
analyzer is designed and implemented in CLP(R). 
A large example, the Kodak swap, is explained in 
Section 5. The literature is reviewed in Section 6. 
Conclusions and future work are summarized in 
Section 7. 

2 Review of Swaps 

Hull [3], Macfarlane et al. [6], Shapiro [8], Smith 
and Smithson [9], and Wall [11], are just a few of 
the general expositions about swaps. The subtle 
assumptions involved in the zero-sum attributes 

253 



~ LIBOR 

Figure 1: Interest Rate Swap (Building Block) 

of the swaps are clarified by Turnbull [10]: our 
analyzer deals only with the simple model of no 
default risk and no hidden transactions costs ( see 
Smith and Smithson for issues [9]). The knowl­
edgeable reader may wish to skip to Section 3. 

2.1 Interest Rate Swaps 

Figure 1 illustrates the simplest interest rate swap 
wherein the two parties A and B have loans of the 
same principle amount, P. The type of loan we 
consider extends over some number of periods ti 

for 1 ~ i ~ n. Payments are made ( according 
to the interest rate) each period ti followed by a 
lump-sum payment of the entire principle at the 
last period tn. 

The swap consists of A making fixed interest 
payments of 11.35% to Bin exchange for receiving 
floating LIBOR payments from B. For example, a 
scenario in which this makes sense is when A has 
a floating-rate loan pegged to LIBOR and B has 
a fixed-rate loan. We do not show these lenders 
in the swap network shown in Figure 1. For rea­
sons of risk preference, A wants a fixed rate and 
B wants a floating rate, and so they swap interest 
payments. 

A swap is effectively a simultaneous exchange 
of bonds. Using net present valuation, we can 
compute any of these bond values: 

B 
p 

where Si is the loan interest rate for period i and 
r is a fixed market rate. Here we assume that the 
bonds are risk-free and have the same principle P 
and length of term n. If we relax our restriction 
of a fixed market rate, we get: 
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I I 11.35% 11.25% 

A 'LIBOR

0

1 B I, LIBOJ C I 
Figure 2: "Plain Vanilla" Interest Rate Swap 

where rk is the market rate·for period k (see Sec­
tion 2.3). Although the latter formula is imple­
mented in our swap analysis tool, for simplicity 
we explain swaps using the former equation. Thus 
for instance we see: 

P-~ 0.ll35(P) _ P 
~ (l+r)t; (l+r)tn 

P- t LIBORi(P) _ P 
i=l (1 + r)t; (1 + r)tn 

B1 -B2 

B2 -B1 

Another simplification is to remove the depen­
dence on LIBORi for all periods i. Hull [3] briefly 
discusses how to do this. Effectively, B 2 is the 
same for any value of n ~ l. Thus pick n = l 
to get the simplest relation, based only upon 
LIBOR1. Assuming that all parties are risk-free 
banks, this can be justified by having the ini­
tial bondholder pass the bond through to another 
party after one period. Thus all subsequent cash 
flows cancel, leaving only the cash flows at the end 
of the initial period. Effectively the rate floats to 
ensure that this simplification holds! 

From this simple building block we can build 
more sophisticated networks. Figure 2 shows 
dual offsetting swaps through an intermediary B. 
Clearly A effectively transforms a floating to a 
fixed loan, and C transforms a fixed to a float­
ing loan. B cancels its risk by passing the floating 
payments through from C to A. If we assume nei­
ther A nor C defaults, then B has no risk. In 
addition, B takes a profit of 0.1 % for its service. 
Valuation gives the additional equations: 

p _ t 0.1125(P) _ P 
i=l (1 + r)t; (1 + r)tn 

7rA B1 - B2 
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Bank of Japan Bank of America 

I A 1- 11% ($) ·1 B 

12% (Y) 

Figure 3: Currency Swap (Building Block) 

For this simple example, the profit to B can be 
computed more directly; however, in complex net­
works, the general formula is needed. To simplify 
things, we may elect to assume that the market 
rate is fixed over the length of the loan. In any 
case, it is critical for evaluating this formula in 
CLP(~) that the market rate(s) be known a pri­
ori, otherwise nonlinear equations arise. 

In addition to previous bond-like loans, amor­
tized loans, wherein the principle is incrementally 
repaid, are easily modeled. Our system supports 
a library of various types of loans. 

2.2 Currency Swaps 

Figure 3 shows a simple currency swap building 
block. Here parties A and B lend each other prin­
ciples in yen and dollars, respectively, of approxi­
mately the same value. They then pay each other 
interest based on those principles, until the end 
of the loan, when the principles are repaid. To 
alleviate foreign exchange risk at period tn when 
the principles are repaid, a forward exchange rate, 
F$/Y may be agreed upon in the swap agreement. 
For example, suppose the original principles are 
P$ and Py, where P$ = S$/Y Py at t0 given the 
spot exchange rate S$/Y· Then at tn, parties A 
and B might replace principles P$ and Py respec­
tively, where P$ = F$/Y Py. 

The previous bond valuation formulae still 
hold, where the dollar bond value is B1 and the 
yen bond value is B2 : 

1rA B1 - B2 = Sy;$B1 - B2 

1rB B2 - B1 = S$/YB2 - B1 

In the above we compute the current value of the 
swap to parties A and Bin today's yen and dollars 
respectively. 

From this simple building block we can build 
more sophisticated networks. Figure 4 shows dual 
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I A 1- 11% ($) [~.10-5% ($)' C 

12% (Y) 11.8% (Y) .__I____, 
Figure 4: "Plain Deal" Interest Rate Swap 

offsetting swaps through an intermediary B. Val­
uation of the swap follows from the previous dis­
cussion. A circus swap2 is a combination of plain 
vanilla interest rate swap and plain deal currency 
swap [3], i.e., basically the swap of Figure 4 with 
either currency's loans on a floating rate. We will 
see an example of this in the larger example dis­
cussed in Section 5. 

2.3 Discussion 

As shown, the building blocks for composing swap 
networks use elementary cash flow mathematics, 
which facilitate their expression in CLP(~). The 
key underlying stochastic variables - floating in­
terest rates, market investment rates, and cur­
rency exchange rates - are however problematic. 
There are several ways of viewing this problem. 

First, it is clear that the cash flows constituting 
any link in a swap network can be priced as accu­
rately as can a bond or future [9]. Hull [3] reviews 
bond valuation methods such as Monte Carlo sim­
ulation and lattice evaluation. For example, us­
ing a lattice method, we evaluate all states of the 
world with respect to interest rates, e.g., using Ho 
and Lee [2] or advanced models, and value the 
bond over each scenario. 

The problem of pricing all components of a 
complex swap network is more difficult. There 
appear to be two ways to structure the computa­
tion: evaluate the network "inside" the lattice ( or 
simulation), or estimate the term structure first 
and apply it to the network. We chose the latter 
technique for three reasons: 1) modularity: we can 
utilize available, sophisticated interest rate predic­
tion tools; 2) speed: we can run "what if" experi­
ments quickly; and 3) flexibility: future extensions 
of our tool will hopefully exploit CLP(~) to solve 
for traditionally stochastic variables ( see Section 
7). 

2 Picadilly or Ringling Brothers? 
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flat( Start, End,_,_,_, 0) :- Start>= End. 
flat( Start, End, Principle, Rate, MR, Value) 

Start< End, 
Value= Principle - Payments 
loan( End-Start, Principle, Rate/100, 

MR/100, Payments). 

loan( Time, In, Rate, MR, Value) :­
Time> O, Time<= 1, 
Out= In/ ( 1 +MR* Time), 
Value= Out* ( 1 +Rate* Time). 

loan( Time, In, Rate, MR, Value) :­
Time > 1, 
Out= In/ ( 1 +MR), 
Value= Next_Value + (Out* Rate), 
loan( Time-1, Out, Rate, MR, Next_Value ). 

Figure 5: Loan Valuation in CLP(?R) 

3 Review of CLP(~) 

CLP(?R) is constraint logic programming language 
over the domain of real arithmetic. Programs ap­
pear in syntax to be Prolog programs, i.e., data 
and control structures are the same. The seman­
tics of unification, however, are vastly different. 
We illustrate the language with a simplified ver­
sion of a loan of the type previously discussed, 
shown in Figure 5. This procedure computes the 
net present value of fixed interest loans with fixed 
market rates only. Procedure flat/6 has the fol­
lowing parameters: the Start and End periods of 
the loan, the Principle, the fixed loan Rate, MR 
(a fixed market rate), and Value (the net present 
value of the loan). 

If the length of the loan is not positive, the loan 
value is zero (flat/6 clause 1). Otherwise, the 
loan value is the principle minus the payments, 
computed by loan/5, starting at the next period. 
Procedure loan/5 computes the payment value 
in what can be considered an iterative ( or recur­
sive) manner; however,. the language lends itself 
to a more elegant declarative semantics. In effect, 
loan/5 ( and any procedure invocation in general) 
is true if the equations it engenders are consis­
tent over the domain of the reals. Furthermore, 
these equations are not necessarily evaluated in 
any strict order: CLP(?R) has an internal equation 
solver that is transparent to the programmer. 

The spawned equations form a recurrence. 
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Each successive value is equal to the next value 
plus the discounted principle multiplied by the in­
terest rate (loan/5 clause 2). The final value ( at 
the final period) also includes payback of the en­
tire principle (loan/5 clause 1 ). The final period 
can be fractional, requiring us to scale the loan 
and market rates by the remaining time. 

Examples of queries to this program are 
instructive. The value of a three year 
$100 loan at 10% assuming a 5% market 
rate is: flat(1,4,100,10,5,V) returns V = 
-13.6162. Alternatively we can solve for 
loan rate: flat(1,4,100,R,5,-14) returns R = 
10. 14. However, we cannot solve for the mar­
ket rate because the function is nonlinear in this 
variable. More strangely, we cannot solve for the 
time. For example, trying to solve for the ending 
period with the query flat(1,E,100,10,5,-14) 
returns: 

E <= 2 
1 < E 
114 = _t13 * (0.1*E + 0.9) 
100 = (0.05*E + 0.95) * _t13 

*** (Maybe) Retry? 

The "maybe" caveat in the result indicates that 
the non-linearity could not be removed and that 
the solution may be inconsistent. We can avoid 
CLP(?R) confusion by simplifying clause 1 of 
loan/5 as: 

loan( Time, In, Rate, MR, Value) :­
Time> O, Time<= 1, 
Value* (1 + MR*Time) =In* (1 + Rate*Time). 

There is an art to making such transforma­
tions! With this change, the system automatically 
solves: flat(1,E,100,10,5,-14) as E = 4.55. 

It is important to note that to solve for time, 
the final fractional scaling of the loan rate is re­
quired. Without this, loan/5 would not be able 
to ground the recurrence when solving for time 
(E), i.e., it loops forever. Although the analyzer 
we built uses loan procedures that are more so­
phisticated that this, the foundation is the same. 
Additional complexity arises from ( optional) vari­
able loan and market rates and amortization. 
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E 

EA= 

F 

FB = 

net2([P,R_mkt,T], Info, Libor, [Pi_A,Pi_B,Pi_C]) 
Info = [ AC, CA, CB, BC, AG, BH, FB, EA], 
Pi_A = AC_CF + AG_CF - CA_CF - EA_CF, 
Pi_B = BH_CF + BC_CF - FB_CF - CB_CF, 
Pi_C = CA_CF + CB_CF - AC_CF - BC_CF, 

13.25% LIBOR -1 o. 75 loan( P, EA, R_mkt, T, EA_CF ), 

AC= CB= 
11.35% 11.25% 

A C B 
CA= BC= 

LIBOR LIBOR 

AG= BR= 
LIBOR + 0.5 11.0% 

G H 

net1( Info, [ Pi_A, Pi_B, Pi_C] ) :-
Info= [ AC, CA, CB, BC, AG, BH, FB, EA], 
Pi_A = GA - AC - AG+ EA, 
Pi_B = FB - BH - BC+ CB, 
Pi_C =AC+ BC - CA - CB. 

Figure 6: Plain Vanilla Interest Rate Swap in 
CLP(R) 

4 Swap Analysis in CLP(?R) 

This section describes the design construction of 
the swap analyzer, as a series of increasingly so­
phisticated models. The analyzer is meant for fast 
prototyping of custom swaps rather than the de­
velopment of generic products. Figure 6 shows an 
interest rate swap and its straightforward transla­
tion into CLP(R) program, where the loan struc­
tures are identical except for the rates. Essentially 
each node in the network corresponds to an equa­
tion balancing the interest rates entering/ exiting 
that node. This simple "rate" methodology for 
evaluating the swap is possible because the loan 
principles and terms are identical. This model also 
assumes a fixed market rate. A typical query to 
this program is: 

?- net1( [ 11.35, LIBDR, 11.25, LIB0R, LIB0R+0.5, 
11.0, LIB0R+0.75, 13.25 ], Pi). 

Pi= [1.4, 1, 0.1] 

When the swap calls for differing principles or 
terms, then individual cash flows must be com­
puting using the bond valuation formula. This 
model'is considered in Figure 7, which shows the 
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loan( P, AC, R_mkt, T, AC_CF ), 
loan( P, CB, R_mkt, T, CB_CF ), 
loan( P, BH, R_mkt, T, BH_CF ), 
floan( P, CA, Libor, R_mkt, T, CA_CF ), 
floan( P, AG, Libor, R_mkt, T, AG_CF ), 
floan( P, BC, Libor, R_mkt, T, BC_CF ), 
floan( P, FB, Libor, R_mkt, T, FB_CF ). 

Figure 7: Cash-Flow Model in CLP(R) for Previ­
ous Network 

CLP(R) implementation of a cash-flow model of 
the previous network. We invoke the loan/5 and 
floan/6 procedures for a fixed principle of $100M 
and 5 period loan length. The net present values 
are computed from the cash flows rather than the 
interest rates as in Figure 6. Clearly we could 
give each loan independent principles and lengths 
if we desired. Interestingly, we need never de­
fine Libor: it will be instantiated as necessary 
and shared among the four floating loans. All un­
known LIBOR terms will cancel from the solved 
equations! For example, typical queries to the pro­
gram include: 

?- net2( [100,10,5], [ 11.35, 0, 11.25, 0, 0.5, 
11.0, 0.75, 13.25 ], _,Pi). 

Pi= [5.3071, 3.79079, 0.379079] 

?- net2( [100,10,5], [ X, 0, 11.25, 0, 0.5, 
11.0, Y, 13.25 ], _,Pi). 

Pi= [-4.19247*X + 53.454, 4.19247*Y + 1.04812, 
4.19247*X - 47.1653] 

These solutions are in dollars and are consistent 
with the previous (rate model) solution in terms 
of interest rates. 

Figure 8 shows an extended implementation of 
the network with full input parameters allowing 
each node to have a different principle and loan 
length. For example, given this procedure, we can 
query: 

?- net3( [ (90,6,11.35), (100,4,0), (100,5,11.25), 
(100,5,0), (100,5,0.5), (100,5,11.0), 
(100,5,0.75), (100,5,13.25) ], 

[L1,L2,L3,L4,L5,L6,L7,L8], Pi). 
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net3( Info, 1ibor, [ Pi_A, Pi_B, Pi_C] 
R_mkt = 10, 
Info= [ ( Pac, Tac, AC), 

( Pea, Tea, CA), 
( Pcb, Tcb, CB), 
( Pbc, Tbc, BC), 
( Pag, Tag, AG), 
( Pbh, Tbh, BH ), 
( Pfb, Tfb, FB ), 
( Pea, Tea, EA)], 

Pi_A = AC_CF + AG_CF - CA_CF - EA_CF, 
Pi_B = BH_CF + BC_CF - FB_CF - CB_CF, 
Pi_C = CA_CF + CB_CF - AC_CF - BC_CF, 
loan( Pea, EA, R_mkt, Tea, EA_CF ), 
loan( Pac, AC, R_mkt, Tac, AC_CF ), 
loan( Pcb, CB, R_mkt, Tcb, CB_CF ), 
loan( Pbh, BH, R_mkt, Tbh, BH_CF ), 
floan( Pea, CA, 1ibor, R_mkt, Tea, CA_CF ), 
floan( Pag, AG, 1ibor, R_mkt, Tag, AG_CF ), 
floan( Pbc, BC, 1ibor, R_mkt, Tbc, BC_CF ), 
floan( Pfb, FB, 1ibor, R_mkt, Tfb, FB_CF ). 

Figure 8: Cash-Flow Model in CLP(~) with Ex­
tended Parameters 

Pi= [ -62.0921•15 + 11.3422, 3.79079, 
62.0921•15 - 5.65605] 

which gives the profits when the fixed loan to A 
(from C) is extended to 6 periods on a reduced 
principle of 90 and the floating loan to C ( from 
A) is reduced to 4 periods. Note that the profit to 
B has not changed. The change in the profits to 
A and C are a function of the parameter 15 which 
is the last period LIBOR rate. The previous four 
LIBOR rates still cancel by the swap. As the loan 
lengths become more disparate, we expect to see 
more LIBOR rate terms in the solutions. 

This final model is similar to our prototype. 
Additional facilities include fixed amortized loans, 
principles in alternative currencies, and forward 
exchanges. The market rate is implemented in a 
manner similar to LIBOR. A fundamental differ­
ence is that in the analyzer we built, programs 
such as net3 are generated automatically from 
net specifications with are in turn generated from 
graphical input supplied by the user. Thus one 
crucial design philosophy we adopted was to shel­
ter the user from CLP(~). This impacted the flex­
ibility with which the system can be used, as is 
discussed below. 

Figure 9 shows the system overview of our cur­
rent prototype analyzer. The user interface [7], 
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graphics interface 
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gnuplot 

net descri ption 

------
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------------

network 
creation 

loan library 

vari able bindings 

------

cash flows 

' ' ' --------------------------------------------J 
Figure 9: Overview of the Paws System 

written in C, accepts graphical entry of the net­
work and translates it into a net description ac­
cepted by the analyzer, written in CLP(~). For a 
complete user's guide to the analysis tool, called 
Paws, see Scott [7]. 

The net description can have symbolic names 
for parameters, which if bound are returned as 
solutions. In addition, a profit is computed and 
returned for each node in the graph, which is the 
sum of its cash flows. Internal to the analyzer 
itself, the net description is used to invoke loan 
library routines that define various types of pay­
ments, such as simple or amortized. These in­
vocations return the cash flow values needed to 
compute the net present value profits. 

Examples of the user interface are illustrated in 
Scott [7]. The interface allows the user to graph­
ically specify the swap network, entering parame­
ters for each entity (node) and loan (edge). Either 
real values or symbolic names can be assigned to 
parameters. A sketch of the information is dis­
played on the illustrated graph, with detailed in­
formation available by explicit querying the inter­
face (with a mouse). The user can also specify 
constraints in terms of both symbolic input pa-
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rameters as well as profits. The use of this facility 
is illustrated in Section 5. 

The interface also translates variable bindings 
into graphics in the limited cases when the bind­
ing is an equation in one or two independent vari­
ables. We generate a nonparameterized graph de­
scription for gnuplot. This is also illustrated in 
Section 5. 

4.1 Symbolic Output 

Whenever expressing symbolic solutions in 
CLP(~), the issue of which symbolic variables 
in the formula are dependent and which are in­
dependent looms large. Flexibility in controlling 
the relative independence of variables is achieve'd 
with the dump/3 predicate [l]. dump/3 takes a list 
of variables as input, where the variables earlier 
in the list order are more independent than later 
variables. dump/3 displays dependent variables in 
terms of independent variables specified by this 
list. If we purposely remove certain independent 
variables from the list, we can receive symbolic 
answers among the dependent variables. 

Because of the great flexibility of output con­
trol, it becomes difficult for the analyzer to make 
autonomous decisions concerning symbolic out­
put construction. Sometimes a user may wish to 
see a certain relationship among variables that 
would not abide by any default we could pro­
vide. Therefore, in the user interface we pro­
vide the ability for the user to specify the dump/3 
control list explicitly. A default is presented: 
[11,12, .. ,M1,M2, .. ,U1,U2, .. ,Pi1,Pi2, .. ] 
where 11 is the LIBOR rate in period 1, M1 is 
the market rate in period 1, U1 is a user-defined 
variable, and Pi1 is the profit of node #1, etc. 
Any of these may be absent if inappropriate to 
the problem at hand, e.g., the market rate may 
be a given constant. 

By rearranging this list ( usually by variable 
type), the user can produce any relationships 
needed. For example, [U1,U2, ... ,Pi1,Pi2, ... ] 
would show the profits in terms of the user-defined 
variables and not the LIBOR rates. Another ex­
ample is: [M ,Pi1 ,Pi2] might plot each of the 
two profits as a function of a fixed market rate, 
whereas [Pi1 ,Pi2 ,M] might plot the fixed market 
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rate as a function of the two profits. By affecting 
the formulae produced by CLP(~), this control 
list indirectly affects graphs produced by gnuplot 
because independent variables are plotted along 
the X and Y axes. 

5 Kodak Example 

The Kodak swap [8] illustrates the complexity of 
swaps in practice, involving two currencies, three 
banks, an intermediary (Meryll Lynch), and a firm 
(Kodak). Without going into the detail of the 
swap agreement, we illustrate the original terms 
of the swap in Figure 10. Each :financial entity 
is given its own node in the graph, labeled by a 
node identifier. Edges are annotated with prin­
ciple amounts (in millions). This figure does not 
show the implicit five year structure of all loans, 
nor does it explicitly specify the periods when 
the currency exchanges are made ( when using our 
swap analyzer, such information must be entered). 
The swap analyzer can solve this version of the 
problem, where the result is 

11"1 -$9.49 

11"2 $26.8 

11"4 -11"3 - $17.2 

11"5 -$1.09 

11"6 $0.963 

for U.S. dollar amounts in millions, assuming a 
spot exchange rate of $1/0.75A. If we wanted 
the value of 11"3 ( or 7r 4) in detail, we would use 
an output control specification with LIBOR rates 
as the most independent variables, giving 11"3 = 
0.34110 + 0.3519 + · · · + 0.4611 - $32.9. 

The previous network was slightly modified 
with with two unknown parameters, Rate1 and 
Rate2 substituted for 7.35% and 7.85%, respec­
tively. A typical use of the system would be to 
view the profits as functions of these parameters. 
The internal solution produced are: 

11"1 -$9.49 

11"2 $26.8 

11"4 -11"3 + 3.99 * Rate2 - 32.9 

11"5 -(6.24 * Rate1) + 21.8 

11"6 6.24 * Rate1 - 3.99 * Rate2 - 6.29 
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Figure 10: Original Kodak Swap (Principles in Millions) 
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Figure 11: 3-D gnuplot of Profits 7!"5 and 71"6 

Any solution (left-hand side variable) that is 
a function of one or two independent ( right­
hand side) variables is displayed to the user via 
gnuplot. For example, profits 7!"5 and 71"6 are 
shown in Figure 11. Making the plots is more 
difficult than it may look and further research is 
needed.3 

3 The actual plots are in color! The intersection of the 
planes is a parametric equation, and thus the planes must 
all be parametric for gnuplot to display them together. 
This was done in Figure 11 "by hand." Our current sys-
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A further user facility is the incorporation of 
constraints in these and other (profit) parame­
ters. Suppose the user specifies that the profits 
of Meryll Lynch and Kodak are to be equal, by 
entering the constraint 7!"5 = 7r6 • The system can 
then simplify the solution: 

-$9.49 

$26.8 

-7!"3 + 3.99 * Rate2 - 32.9 

71"6 = -2.0 * Rate2 + 7.77 

0.32 * Rate2 + 2.25 

which is displayed as in Figure 12. Note that 71"4 

is a function of 7!"3 because both are dependent on 
LIBOR rates (which Meryll Lynch passes through, 
so 71"6 has no such dependency). The relationship 
between Rate1 and Rate2 to guarantee equal prof­
its is shown above. 

If we add the constraint 7!"3 = 71"4 , CLP(R) gives 
us the solution: 

7!"1 -$9.49 

tern produces only nonparametric equations, so we cannot 
compute and display plane intersections (yet). Finding a 
good vantage point and proper scaling of axes also remain 
unsolved problems. Currently we rely on gnuplot defaults. 
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Figure 12: 2-D gnuplot of Profits 1r5 and 1r6 

pi4 = pi3 

Figure 13: 2-D gnuplot of 1r3, 1r4, 1r5 and 7r6 

1r2 $26.8 

2.0 * Rate2 - 16.4 

-2.0 * Rate2 + 7.77 

plotted in Figure 13. Note that because 1!"3 and 1r4 

depend on floating rates in different ways (Bank 
B receives LIBOR whereas Bank C pays LIBOR), 
the only way to ensure that the profits are equal 
is to set Rate2 as a function of LIBOR itself. The 
above equations disguise this as 1r3 as a function of 
Rate2. However, if we modify the output control 
specification as: [L1, ... ,L10 ,Ratel ,Rate2] we 
get a direct relationship: Rate2 = 0.17L10+ • • • + 
0.23L1 - $8.24. 

From Figure 13 we see that a value for Rate2 
exists allowing the four profits to be equal. We 
could solve for this value directly by adding the 

Copyright © 1995 Software Engineering Press 

constraint 1r3 = 1r5 to the system, getting: 

1!"1 

1l"z 

1!"3 

Ratel 

Rate2 

-$9.49 

$26.8 

1!"4 = 1!"5 = 1l"6 = -$4.34 

4.20 

6.66 

meaning that they all lose money. The subtle dan­
ger with this solution is that it implies a constraint 
on LIBOR that may be unrealistic. A mecha­
nism for testing such an over-constrained floating 
rate is to set the output control specification to: 
[L1,L2, ... ,L9,L10]. If any constraints result 
then the system is over constrained. An empty 
output indicates a solution with no constraints 
and so everything is ok. A similar method can be 
used for testing market rates. We do not yet auto­
matically perform these checks within our system, 
but it is straightforward to do so. 

6 Related Work 

A related work in the field of financial engineer­
ing is OTAS ( Options Trading Analysis System) 
designed by C. Lassez et al. [4] at IBM Yorktown 
Heights. This system, also based on CLP(?R), 
evaluates the Black-Scholes solution to the partial 
differential equation describing an option's fair 
price. The arithmetic involved is more compu­
tationally intensive than that of swaps. Because 
the essential formula is non-linear in the volatility 
parameter, they explicitly linearize it. 

Smith and Smithson [9] use time-line notation 
for the cash flows in a swap. This graphical 
technique does not gracefully extend to complex 
swap networks. Furthermore, they suggest pricing 
methods based on futures and bonds, again, which 
don't gracefully extend to complex networks (see 
Section 2.3). 

7 Conclusions 

A financial swap analysis tool, Paws, was de­
scribed that can accept a high-level description 
of a swap network and produce functional rela­
tionships between unknown parameters, includ­
ing the net present value profits of each entity 
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in the system. The engine of the tool was built 
in CLP(R), exploiting its ability to perform sym­
bolic arithmetic over the reals, and the user inter­
face was built in C/Motif. The advantage of such 
a tool is the ability to quickly and flexibly design 
and evaluate custom swaps under incomplete in­
formation. Profits and parameters can be symbol­
ically constrained to reduce the search space and 
symbolic solutions can be graphically displayed to 
help users gain intuition about parametric rela­
tionships. These attributes make the tool supe­
rior to current analysis methods, specifically those 
based on spread sheets. 

There are two main directions in which we wish 
to extend our analyzer, both of which rely on sep­
arating market rate prediction from network valu­
ation. First, we might avoid rate prediction in cer­
tain cases, by making simplying assumptions that 
allow linearization of the valuation equation with 
respect to market rate, thus enabling CLP(R) to 
solve for it. More generally, we might open up the 
architecture of the analyzer. In such a "glass box" 
approach, the user will be permitted to write pro­
cedures describing custom payoffs ( e.g., a "floating 
floor-ceiling swap" [9]) or constrain term struc­
tures to be simple functions of time. Again, the 
motivation is to offer flexibility and speed of pro­
totyping, if accurate, estimates or simple models 
of stochastic variables are available. 

Acknowledgements 

This research was supported by an NSF Presi­
dential Young Investigator award, with matching 
funds from Sequent Computer Systems Inc., and a 
grant from the Institute for New Generation Com­
puter Technology (ICOT). Raul Clouse helped 
build the first prototype analyzer and David Scott 
built the user interface. I thank Bart Massey 
for many helpful discussions. Peter Stuckey and 
Roland Yap patiently explained the subtleties of 
CLP(~) to me. 

References 

[1] N. C. Heintz, J. Jaffar, S. Michaylov, P. J. 
Stuckey, and R.H. C. Yap. The CLP(R) Pro-

262 

grammer's Manual Version 1.2, 1992. 

[2] T. S. Y. Ho and S.-B. Lee. Term Struc­
ture Movements and Pricing Interest Rate 
Contingent Claims. The Journal of Finance, 
41:1011-1029, 1986. 

[3] J. Hull. Options, Futures and Other Deriva­
tive Securities. Prentice Hall, 1989. 

[4] T. Huynh and C. Lassez. An Expert 
Decision-Support System for Option-Based 
Investment Strategies. Computers Mathe­
matical Applications, 20(9/10):1-14, 1990. 

[5] J. Jaffar and J.-L. Lassez. Constraint Logic 
Programming. In SIGPLAN Symposium on 
Principles of Programming Languages, Mu­
nich, 1987. ACM Press. 

[6] J. Macfarlane, D. R. Ross, and J. Showers. 
The Interest Rate Swap Market: Yield Math­
ematics, Terminology and Conventions. Sa­
lomon Brothers Inc., June 1985. 

[7] D. H. Scott. A Tool for Designing Financial 
Swaps. Bachelor's thesis, The University of 
Oregon, December 1994. 

[8] A. Shapiro. Multinational Financial Manage­
ment. Allyn and Bacon, 4th edition, 1992. 

[9] C. W. Smith Jr. and C. W. Smithson, edi­
tors. The Handbook of Financial Engineer­
ing. Harper Business, New York, 1990. 

[10] S. M. Turnbull. Swaps: A Zero Sum Game? 
Financial Management, 16(1):15-21, 1987. 

[11] L. D. Wall and J. J. Pringle. Interest 
Rate Swaps: A Review of the Issues. In 
C. W. Smith Jr. and C. W. Smithson, edi­
tors, The Handbook of Financial Engineering, 
pages 230-254. Harper Business, New York, 
1990. 

Copyright© 1995 Software Engineering Press 



Fast Cost-Effective Computations of Derivatives 

Roy S. Freedman 
Inductive Solutions, Inc. 

380 Rector Place 
New York, NY 10280 

Inductive_Solutions@MCIMail.com 

Abstract 
The essential idea of this paper is that one should not 
separate the method of computing the expected present 
value of a derivative from its ultimate computing 
topology. In the following sections, we discuss the cost­
benefit issues involved with implementing several 
methods for computing derivative statistics on alternate 
computing topologies. We show how the choice of 
topology impacts the computing time for a particular 
example of a time consuming derivative valuation. We 
conclude by showing how all these factors can be 
represented as a case-based expert system, which can be 
used to help an organization assess its computing 
alternatives. 

1. Background: Algorithm Tradeoffs in 
Computing Derivatives 

We are concerned with the computational problem of 
deriving the expected value and other statistics of a 
derivative security f at time TO. When the underlying 
security S and derivative security f are modeled as 
stochastic processes, the problem can be solved by 
reformulating it as a boundary-value problem: if it is 
known that the derivative pays out fT at time T, we just 
compute its value backwards from the risk adjusted 
random price movements of the underlying from t=T to 
t= T0. The present value of f is just its expected 

discounted value in a risk-neutral world 

Expected Present Value= E[e•r(T-To)fT] (1) 

Here, r is the average instantaneous risk-free interest rate 
between t=TO and t=T. When the underlying S follows 

an Ito process, and if the derivative is a differentiable 
function of S and t, f=f(S,t), then by Ito's Lelillila, f also 
follows an Ito process: 

dS = µ(t,S) dt + cr(t,S) dz (2S) 
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df = (af1as)dS + [af/at + (l/2)ef(t,S)(a2f/as 2)J dt 
= [µ(t,s) (af/as) + af/at + (l/2)ef(t,S)(a2f/as 2)Jdt 
+ cr(t,S)(af/aS) dz (2f) 

and f satisfies the Fokker-Plank forward diffusion 
equation: 

af/at = (112)(a21as2)[cr2(t,S) tJ - (a1as)[µ(t,S) tJ 
given initial condition S(T 0) = s O (2FP) 

Here S(t) is the probability distribution of the price of the 
underlying at time t, µ(t,S) and cr(t,S) are the 
instantaneous drift and standard deviation rates, and dz is a 
Wiener Process that corresponds to Brownian motion. 
Note that if we know the probability distributions for 
S( t), and if we are given boundary conditions for f ( which 
define the derivative), then we can solve (2FP) and derive 
the probability distribution for f, so that the expected 
present value off can be computed from Equation (1). 

The above equations are valid for all derivative securities 
with S as the underlying stochastic variable [4]. A vector 
form of Equation (2S) and (2f) is valid if S depends on 
other Ito processes (for example, if µ or cr are Ito 
processes). Here, the correlations of the underlying 
processes are additional factors in the dt term in Equation 
(2t). 

Simplifications can be made: if the interest rate r is 
known to be constant, then it can be shown that the Ito 
process for [S(af/aS)-t] does not depend on dz - this 
"continuous" hedge is "riskless." Hence, in this case, f 
satisfies the Black-Scholes partial differential equation 

af/at = rf - (l/2)S2cr2(t,S)(a2f/aS 2
) - rS(af/aS) (2BS) 

Equation (2BS) can be solved if S(t) is known and the 
boundary conditions that define the derivative f are 
provided. For example, a boundary condition for a 
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European call option is 

At t = T, f(T) = fT = max(ST - X, 0) (2CO) 

In practice, in all but tbe simplest cases, tbe price 
movements of S and f follow stochastic processes that 
involve substantial amounts of computation. There are 
three general methods that have different computational 
consequences for computing European-style derivatives 
(tbe bolder bas no decisions to make during its life) and 
American-style derivatives (tbe bolder bas decisions to 
make during its life): 

Method 1. Analytic Approximation for 
Constant Parameters. If tbe derivative is a 
European-style derivative, and tbe Ito process in 
Equations (2S), (2f), and (2BS) bas constant µ(t,S) = µ, 
constant a(t,S) = a, and constant interest rate, then 
computationally nice expressions exist for tbe derivative 
security - tbe famous formulas derived by Black and 
Scholes. Analytic expressions also exist for 
approximating tbe values of American-style derivatives. 
In Method 1, tbe time required to compute tbe expected 
value of f is proportional to a constant factor G - the 
time required to evaluate tbe formula. In general, G 
depends on tbe efficiency of computation of special 
functions (like the normal distribution). 

Method 2. Recombining Lattice-Type 
Computations. If the Ito process in Equations (2S), 
(2f), and (2BS) bas constant µ(t,S) = µ, constant a(t,S) 
= <J, and constant interest rate, then the valuation of a 
European- or American-style derivative is usually 
computed by simulating tbe up-down price movements in 
a recombining binomial lattice. (Tbe lattice is a discrete 
form of Equation (2S-2f), and is also related to a discrete 
form of (2FP) and (2BS)). In this method, tbe time 
required to compute tbe value of a derivative depends on 
the number of time units N, wbereN = (T-To)/Lit, and~t 

is tbe smallest unit of time considered in tbe 
computation. In this method, a sequence of up 
movements followed by down movements are valued the 
same as the down movements followed by tbe up 
movements. At any given point in time To+ IBt, the 

price of tbe underlying may increase or decrease by an 
amount u and d witb probability p and (1-p) respectively. 
Hence, at time T0+ i~t, tbe price of tbe underlying may 

be any of a set of i+ 1 values: 

S u i d ,-J where i=0, .. N; j = 0, .. ,i. 
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A recombining binomial lattice must compute and store a 
total of (N+ l)(N+2)/2 prices for the underlying and 
derivative. For N=500, this requires approximately 105 

computations, and represents mucb greater computational 
overhead than Method 1. This method may require 
several orders of magnitude of computation tban Method 
1. 

Method 3. Non-Recombining Simulation. Iff 
is a European-style derivative, and tbe Ito process in 
Equations (2S), (2f), and (2FP) bas non-constant µ(t,S), 
non-constant a(t,S), and possibly non-constant interest 
rate, tben Method 2 may not work because tbe up values 
and down values of a price movement may not combine: 
a sequence of up movements followed by down 
movements are not valued tbe same as tbe down 
movements followed by tbe up movements. 
Consequently, in evaluating tbe possible price of S, after 
N time increments there are 2N+i possible prices (none are 
recombined as in Method 2; if recombining is allowed, 
there are only (N+ l)(N+2)/2 prices). In Method 3, where 
recombining is not possible, all 2N+i possible prices 
must be generated to get tbe "complete" distribution for 
the expected value in Equation (1). Pragmatically, this is 
impossible, since for n=500, this is approximately 10150 

prices. Tbe alternative here is to create a representative 
random "Monte Carlo sample" of f so that the 
expectation in Equation ( 1) can be computed directly from 
the random sample of prices, and not from the complete 
set of prices. In Method 3, tbe time required to compute 
the value of a derivative depends on tbe number of 
discrete time units N and tbe number of Monte Carlo 
samples M generated for f. Accuracy in tbe evaluation of 
f is a statistical problem relating to tbe standard error of 
tbe estimate of tbe sample mean. Since it is known that 
tbe standard error in computing an expectation is 
proportional to M112

, reduction of tbe error by a factor of 
2 necessitates increasing M by a factor of 4. 
Consequently, different "variance reduction" techniques 
could be employed [2]. Note that in using Method 3, a 
model for S can depend on other Ito processes: for k 
processes, a complete set of N time samples would 
require 2k<N+l) computations. Method 2 may require 
several orders of magnitude of computation more than 
Method 2. 

Methods (1), (2), (3) can also be combined. For 
example, one can value an American-style derivative with 
stochastic average interest rate and stochastic average 
volatility by generating Monte Carlo samples for rand a 
as input to a recombining binomial lattice for f. 
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Computational infrastructure is stretched when these three 
methods are used to value a portfolio of P derivatives. 
Consequently, the total amount of computation required 
for a portfolio is proportional to: 

P*G, for Method l 
N*P, for Method 2 
N*M*P, for Method 3 

and, in general, the computation time for each method 
corresponds to 

Methodl « Method 2 « Method 3. 

2. Incorporating More Computing 
Power 

There are tradeoffs in model accuracy and computing time 
in the three above Methods. These model tradeoffs are 
further compounded by the computational tradeoffs in 
alternative computing infrastructure. There are several 
ways of incorporating additional computing power to 
speed up the computation of derivatives, and the 
"obvious" answer of "getting a faster computer" may not 
be obvious, or may even be "obviously wrong." For 
example: 

"We have alot of programmers who write C 
applications. We have alot of Unix workstations, 
but most are efficiently used all day and all night. 
Our derivative evaluation application is based on 
Monte Carlo methods, and we need to improve 
the accuracy without sacrificing time." 

"We need to evaluate our very large portfolio in 
almost real time. We already have a 
supercomputer but we could use 2 more. Should 
we buy another million-dollar parallel processor? 
We have alot of idle workstations." 

"We run a lattice-type American-style valuation 
application each day on my entire inventory. We 
can do one evaluation each day. We keep getting 
more clients. Should I go back to a Black­
Scholes formula? My application runs on a PC 
and I do not understand parallel computation. We 
have no programmers on staff." 

The alternative computing topologies considered here are 
(listed in order of increasing cost): 
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1. Workstations 
2. Faster Workstations 
3. Networked ("Clustered") Systems, that could 

contain workstations, supercomputers, or both. 
4. Supercomputers 

Their general characteristics are summarized in Figure 1 

Number of Speed in Memory in Cost 
Processors MFLOPS MBvtes $K 

Workstation 1 1-25 32 <10 
Faster Workstation 1-4 >25 64 >10 

Cluste >1 >2000 >128 40 -4000 
Supercomputer >1 2000 >128 1 000-20000 

Figure 1. Alternate Computing Topologies 

The problem that we address in this paper is concerned 
with the cost effective computation of the expected value 
in Equation (1), with respect to the tradeoffs between 
Methods 1-3 and the above computing topologies. Note 
that these alternatives are not mutually exclusive, their 
boundaries are "fuzzy" and they may be combined. 

The essential idea of this paper is that one should not 
separate the method of computing the expected value in 
Equation (1) from its ultimate computing topology. 
Different topologies may be more cost-effective than 
other topologies. This is a point also made in [l], even 
though their evaluation was basically concerned with 
showing the computing potential of the cluster topology, 
not its cost-benefit tradeoffs with respect to an 
organization's requirements. 

In the following sections, we discuss the cost-benefit 
issues involved with implementing the above methods 
for computing Equation (1) on alternate computing 
topologies. We show how the choice of topology 
impacts the computing time for a particular example of a 
time consuming derivative valuation. We conclude by 
showing how all these factors can be represented as a 
case-based expert system, which can be used to help an 
organization assess its computing alternatives. 

3. Risk Tradeoffs of Alternative 
Computing Topologies 

The problem is: Given the algorithmic alternatives and 
parameters G, N, M, P as defined in Section 1, find a 
computing topology that minimizes the time and cost 
required for a valid computation. It is convenientto group 
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the costs into the categories of Opportunity Costs, 
Infrastructure Costs, and Algorithmic Costs. The first 
two costs are general and may be applied to any kind of 
alternative topology problem; Algorithmic Costs are 
specific to derivative computations. From another 
perspective, these costs can be used to describe 
potentially new benefits of changing to an alternative 
topology: if the business benefit does not outweigh the 
other costs, then there may be no cost-effective reason to 
change. 

Opportunity Costs. These costs reflect the risks 
associated with the nature of the routine function of the 
business. Assessed here are the costs of a late answer, 
cost of a wrong answer, cost of no answer, and cost of 
infrastructure breakdown. For example, a fixed income 
group may require real time evaluation of their entire 
derivative position 30 minutes before the monthly speech 
of the Federal Reserve Chairman. If this cannot be done, 
then there is an opportunity cost. 

Infrastructure Cost. These costs reflect the risks 
associated with maintaining the existing computing 
infrastructure as well as the additional risks of modifying 
the infrastructure to a new topology. Assessed here are 
Client-Server Costs (costs of additional workstations arxl 
servers, together with software); Network Costs (costs of 
network hardware and software); Infrastructure 
Modification Costs, Runtime Costs; and System 
Administration Cost. 

The cost and benefit tradeoffs can indicate whether 
"getting a faster computer" presents a good alternative: 
the network performance impact is almost as great as the 
computing processing. For example, purchasing a 
supercomputer may result in slower performance if the 
network the supercomputer is on is slow or is saturated 
with traffic. Figure 2 further illustrates the impact of 
network performance on computation. This table shows, 
for example, that during the time that one computer is 
sending another computer 1 Megabyte of data, the other 
computer could have done over 100 million floating 
point divides. This latency only gets worse for memory­
intensive computation. The derivative evaluation 
problem is more compute-intensive than memory 
intensive. On the other hand, some implementations of 
Method 2 may send large lattices around a network : for 
N=500, this would amount to about 1 Megabyte. 
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Ethernet (Network\ 
Regular Ethernet 
Fast Ethernet 
OC-3 
OC-24 
SP2 

To send 1MB No. of float divides 
reauires (secl... on 200MHz chio ... 

0.56 112,000,000 
0.056 11,200,000 

0.051612903 10,322,581 
0.006451613 1,290,323 
0.033333333 6 666 667 

Tiahtlv Coupled /Parallel Processor Backplane) 
100MB/sec bp 0.01 
320 MB/sec 0.003125 
640 MB/sec 0.0015625 
1200 MB/sec 0.00078125 

2,000,000 
625,000 
312,500 
156 250 

Figure 2. Network Speed vs. Computation 

Algorithmic Costs. These costs reflect the risks 
associated with maintaining the existing computing 
algorithm as well as the additional risks of modifying and 
porting the algorithms so they work on the new 
topology. Assessed here are the costs of optimizing an 
algorithm. While many compilers offer one such level of 
optimization, two other levels of analysis should also be 
performed. On a macro level, there is a cost-benefit 
analysis involved in determining the best combination of 
Methods 1-3. This is essentially the job of the model 
builder. From a micro perspective, there is a degree of 
algorithm optimization that is orthogonal to that 
produced by compiler optimizations. One such 
optimization is concerned with building a parallel version 
of the algorithm. The idea here is to implement the 
algorithm in such a way so that n-processors can solve 
the problem in (1/nth) the time as one processor. 
Moreover, new processors actually require 
"supercomputer style" optimizations (such as loop 
unrolling, blocking, and memory access patterns) to keep 
data paths efficient. 

At this point the tradeoffs between a weakly-coupled 
parallelism versus a fine-grained parallelism should be 
addressed. 

Method 3 is a problem that can be solved with weakly­
coupled parallelism: for example, Monte Carlo samples 
can be generated on two different processors, f can be 
evaluated, and the discounted expected value computed on 
a third processor. The first two processors are totally 
independent of each other (assuming they both do not 
generate the same set of "random" samples). 
Consequently, one can optimally expect a 2: 1 speed-up 
(minus the communication overhead discussed above). 
Weakly-coupledapplications requirerelatively little effort 
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in creating a parallel speed-up. 

Method 2 is a problem that can be solved with fine­
grained parallelism It can be shown that each 
computation along the diagonal of the lattice can be done 
in parallel. Consequently, an algorithm can be 
configured ( or "vectorized" by a skilled programmer) that, 
at time k, computes the values of S and f in the k+ 1. 
nodes on k+ 1 processors (see Figure 3). 

Figure 3. Fine-Grained Parallelism of 
Recombining Lattice Method 

Consequently, if N processors are available, instead of 
performing (N+ l)(N+2)/2 sequential computations, a 
fine-grained parallel implementation requires only (N+ l) 
sequential computations. Fine-grained parallelization 
usually requires more effort in modifying the algorithm 
than weakly-coupled parallelization. 

Both weakly-coupled and fine-grained parallelization 
techniques require a topology to support different 
parallelization operators. Fine-grained topologies often 
rely on semaphores, condition variables, and shared 
memory areas. Some of the operators for the weakly­
coupled topologies include: 

Broadcast. One processor node sends the same message 
to other nodes. The simplest broadcast operation is to 
start running all programs on all nodes. 

Scatter. One processor node sends a different message 
to each node. An example: in Method 3, we can use a 
scatter operation start running all programs with a 
different seed to the random number generator. 

Gather. Every processor node sends a message to ~ 
single member. An example: we gather the Monte Carlo 
sampled values f for averaging at processor node 0. 
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Barrier Synchronization. All processor node must 
reach the same point before any can proceed. An 
example: in the fine-grained parallelism of Method 2, 
computation must synchronize for each diagonal to be 
completed. 

4. Evaluating Tradeoffs: An Example 
The following problem, using the most compute­
intensive aspects of Method 2 and Method 3, was used as 
a benchmark in evaluating topology tradeoffs. S follows 
an Ito process with constant µ and cr, and f is an 
American-style derivative. We use a recombining lattice 
to find the expected value of f. Next, we vary the average 
instantaneous interest rate r in by taking 1000 Monte 
Carlo samples. Thus the value off is the sample average 
of 1000 lattice evaluations. The algorithm was 
implemented to support the weakly-coupled parallelism 
of Method 3. 

We compare the impact of several implementations in 
Figure 4. 

Time for 1 I Ime tor 1000 No.of 
Samole 1sec) Samoles 1sec) Processors 

Workstation 5 5000 1 
Faster Workstation 1 1000 1 

Cluster (PVM) 3 crashed 4 
Cluster (PVM/custom) 3 4-103 1 000 

Cluster-(PVM/SMP) 0.225 225 4 
Supercomputer 0.03 30 40 

Figure 4. Benchmark Performance of 6 
Computing Topologies 

The clusters were implemented under Parallel Virtual 
Machine, a package that permits the utilization of a 
heterogeneous network of parallel and serial computers as 
a single computational resource [7]. 

The three cluster implementations of the benchmark 
problem. In the first cluster inplementation, the 
benchmark problem crashed the system. There were too 
many Monte Carlo requests for the network task 
scheduler to handle the barrieroperations. In the second 
cluster inplementation, the problem was reconfigured to 
allocate one Monte Carlo sample to each processor. The 
time rquired to perform 1000 samples then dependedon 
the latency of the network: it is variable because the 
network is a shared resource. In the third cluster 
inplementation, the network was a dedicated high-speed 
backplane (see Figure 2). In this "Symmetric Multi­
Processing" implementation, only four processors were 
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allowed to be active at one time. 

These results show that the underlying network topology, 
is the crucial factor in designing cluster computing 
solutions. Similar results on cluster computing 
performance are discussed in [8]. 

5. An Expert System for Assessing 
Computing Alternatives 

We have collected several cases that can be used to assess 
the transition between alternative computing technologies 
for the optimal computation of Methods 1-3. There are 
16 basic cases, corresponding to the pairwise transitions 
between each of the 4 topologies, and the null transition 
- the alternative of keeping the computing topology the 
same. Our cases were derived by examining similar 
transition problems for other compute-intensive 
applications. Our case profiles include the attributes 
discussed in Section 2, concerned with opportunity cost, 
infrastructure cost, and algorithmic cost. As in other 
case-based reasoning systems, our cases contain typical 
examples and counter-examples (exceptions). We 
summarize the conclusions of the typical cases: 

Case I. Workstation to Workstation. 
Alternatives provide marginal gain in performance. 
Alternatives are too expensive. No skills to perform 
algorithm modification. Algorithm is difficult to 
parallelize. 

Case 2. Workstation to Faster Workstation. 
No algorithm modification required. Limited Budget. 

Case 3. Workstation to Supercomputer. 
Algorithm exploits utilization of vectors and vector 
operations. Budget for the supercomputer is available. 
Workstations all busy. Bad network infrastructure. 
Require consistent performance. Skills available to 
modify algorithm and optimize in FORTRAN. Low 
modification costs. 

Case 4. Workstation to Cluster . 
Have many workstations and budget is available to buy 
more workstations. Other departments will allow limited 
use of their workstations. Problem cannot be solved 
with supercomputers. 

Case 5. Faster Workstation to Workstation. 
Lose of Budget. 
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Case 6. Faster Workstation to Faster 
Workstation. Alternatives provide marginal gain in 
performance. Alternatives too expensive. No skills to 
do the rehosting. Algorithm is difficult to parallelize. 

Case 7. 
computer. 

Faster Workstation to Super­
Generally same as Case 3. 

Case 8. Faster Workstation to Cluster. 
Generally same as Case 4. 

Case 9. Supercomputer to Workstation. 
Lose of Budget. Performance not good enough to 
continue justification of Supercomputer. Algorithm is 
too memory-intensive and too large for the 
Supercomputer. Staff unable to program in FORTRAN 
to get maximum Supercomputer performance. 

Case I 0. Super Computer to Faster 
Workstation. Fast Workstations can provide 50% of 
Supercomputer performance at 10% of the price. 

Case 11. Super Computer to Cluster. 
Lose of Budget. Performance not good enough to 
continue justification of Supercomputer. There are 
many workstations available. Algorithm is too memory­
intensive and too large for Supercomputer. Staff unable 
to program in FORTRAN to get maximum 
Supercomputer performance. 

Case 12. Super Computer to Super 
Computer. 
Algorithm performance is satisfactory. New algorithm 
developed for supercomputer will not work on anything 
else: cost to reimplement is high. New model upgrade 
costs are low. 

Case 13. Cluster to Workstation. 
Solution is having a negative impact on business, 
primarily due to the saturation of the network. 
Performance at desktop is being hurt. Everyone is 
getting a workstation to exploit the computing 
capability. 

Case 14. Cluster to Faster Workstation. 
Same as Case 13. Can afford more power per desktop. 

Case JS. Cluster to Cluster. 
Future model of computing topology. Algorithm 
performance is satisfactory. New model upgrade costs are 
low. New faster network topologies becoming available. 
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Case 16. Cluster to Supercomputer. 
Solution is having a negative impact on business, 
primarily due to the saturation of the network. 
Performance at desktop is being hurt. Everyone is 
getting a workstation to exploit the computing 
capability. Algorithm exploits utilization of vectors ard 
vector operations. Budget available. Workstations all 
busy. Bad network infrastructure. Require consistent 
performance. Skills available to modify algorithm ard 
optimize in FORTRAN. Low modification costs. 

In operation, a problem profile representing attributes 
relating to the opportunity costs, infrastructure costs, ard 
algorithmic costs are entered in case fields. The expert 
system then compares each case to the problem profile, 
and then ranks all cases by similarity. 

It seems that as workstation costs decline, the cluster 
topology becomes more cost effective. However, as seen 
in the above cases, this alternative is not without 
problems. A better statement is that as workstation costs 
and networks improve, the cluster topology will become 
more cost effective. An important trend that can further 
improve cost-effective computation is the development of 
intelligent resource (process and processor) allocation ard 
network load schedulers built into all operating systems 
([3], [5],[6]). 
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An extended abstract 

1. Introduction 

On-line Help facilities provide users with a 
fast alternative to searching through manuals 
or calling support lines. This relative 
quickness, this immediacy, this promise of a 
quick-fix to an interrupted process, is 
probably what sells Help systems to budget­
conscious software development teams. I 
like to amuse such teams by telling members 
that any Help system I design will eliminate 
the need for telephone support or hardcopy 
manuals. This is droll only because in our 
everyday experiences with Help we see that 
manuals retain the advantage of depth of 
information and telephone support systems 
retain the advantage of customizing 
responses for the user's precise 
circumstances. And yet, there are no 
technology limitations enforcing this state of 
affairs. The better on-line Help is, the fewer 
the technical support staffing costs and 
manual development and production costs. 

There is a lot of consumer software on the 
market today that doesn't need Help, or that 
has Help as a nice-to-have extra. This is 
software with relatively few features, or 
simple features, or an obviousness or 
familiarity that makes Help redundant. 
Financial software, on the other hand, tends 
to be feature-rich. Financial calculations 
need to be subject to "proof' and 
"examination" (no black boxes, please); 
scenario manipulations can transform the 
functionality of a window; outside "feeds" or 
even products fold into each other; some 
functions lead to subordinate activities that 
must be completed before certain tools can 

be used; etc. Such richness makes Help 
essential, not peripheral, to financial 
software. If the software is used under 
intense time/transaction pressure, with huge 
amounts of money at stake, the need for 
first-rate Help is intensified. 

2. Roadblocks to "good" Help 

Good Help is not easy to find. There are 
three general conditions limiting Help and 
keeping it on the margins of its own 
potential. 

(1) Documentation development methods. 
The generally accepted procedures for 
document development inhibit the creation 
of complex Help. There are two pervasive 
scenarios. Under the first, a project sets up a 
separate documentation budget, then hires or 
assigns staff to write manuals and/or Help; 
writer access to developers' time decreases 
with the approach of the 
deliverable deadline. A variant scenario 
involves developers or programmers writing 
their own manuals and/or ;Help at the tail end 
of a project, using time available (instead of 
time needed) while improvising a look, feel, 
consistency, and depth for this 
documentation. An ambitious Help 
development methodology would make Help 
a thoroughly conceived, • parallel 
development effort rather than an ad hoc, 
adjunct activity. And it would customize 
Help features rather than rely on existing off­
the-shelf packages and standards (see 
below). 

(2) Emerging Help writing tools. These 
reinforce existing project methodologies 
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(above) by facilitating Help creation as an 
adjunct effort. For instance, some Help 
development software allows conversion of 
book files (as if an on-line manual equals an 
on-line Help facility!); some allows codeless 
Help window creation by any technical 
writer; some packages, marketed directly to 
programmers, promise speed, ease and 
comfort of use -- in other words, a quick end 
to a dirty little job. The whole range of Help 
development tools appeal to the developer's 
ease of use rather than the user's satisfaction: 
they are "writerly" rather than "readerly" and 
fall into that bane of good service, the 
"Easier for Them" syndrome [2], "them" 
being the providers rather than users. 

One sees this most sharply in the limited 
number of Help features designable with off­
the-shelf software and in the tendency to 
follow the standard of Help seen in 
Microsoft products. MS Windows Help 
features and functions are at least one 
generation removed from state-of-the-art but 
remain a standard because people encounter 
them constantly. I am sorry to say they are 
inadequate for the needs of deep, complex 
financial software. Sorry, because so many 
of you must design software to operate on a 
Windows platform and you do not have a 
choice in the matter. 

(3) Help is passive (dumb). To provide some 
of the value we get from live, technical 
support lines, Help needs artificial 
intelligence. 

3. Functions of today's passive Help 
systems 

While financial software gets smarter, Help 
systems remain simple and passive. 

Help systems currently can offer access to 
manuals (that is, function as on-line 
viewers); they can offer general (non­
specific) information; they can offer lists, 
tables or other arranged data; and they can 
offer Help in the context of an activity or 
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process. In the Microsoft paradigm, Help 
consists of topics accessed through menu 
selections, or searched for after data entry, or 
viewed via pop-up displays invoked by 
selecting "live" window objects. It also 
includes, if we broaden the meaning of Help, 
tutorials, demonstrations and "Wizards," 
which are "interactive assistants" that step 
users through some part of a process. [2] All 
of these are somewhat useful, but the 
(potentially) most useful Help information is 
about the user's current context. This 
context-sensitive Help has three aspects: 
what is it?; how does it work?; how does it 
relate to my task or objective? [3]. Since this 
context-based Help is harder to create than 
the lists, tables, search facilities, etc., it 
tends, in my buying experience, to get the 
shortest shrift in commercially available 
software. 

I once had the pleasure of working on a 
system which offered much context 
sensitivity. First, the developers ensured 
every object in the window was "live" and 
"wired." I then ensured that every field, 
every label, the title bar of every window, 
every box line that grouped functions, every 
spot of real estate in a window, had an ID 
and a unique bit of Help text. To get Help, a 
user moved the mouse pointer over any 
object and clicked the right mouse button. 
Up would come a window that described the 
object, told how to use it, and offered 
jumping-off points to more information. 
These were not static application windows, 
either. Some had hundreds of objects, some 
had multiple "parents" and "children," some 
had alternate data import sources, and 
because they involved complex financial 
scenario analytics, many allowed the user to 
rearrange column and row headings, to select 
among alternate calculations or denom­
inations, to activate or decommission 
functions and then to take the output to 
another window just as plastic and complex 
for further work. As massive and powerful as 
that Help system was, it could only provide 
limited context-type Help. For instance, on 
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the window level, it could tell you the 
purpose of the window; how to use it; what 
its objects do; where the output goes; what 
happens if you violate the sequence. Or, on 
the field level, it could tell you what the field 
represents; if the field is in a spreadsheet, 
what its position signifies; what input is 
allowed and what not; how the data will be 
used; what step should follow data entry; 
whether data is optional; etc. This is vastly 
more context Help than one gets from most 
programs, and yet, if we honestly consider 
the needs of the user, it is still not enough. 

4. Intelligent Help 

Context-sensitive Help can be dramatically 
helped by AL Since I am not an AI developer 
or programmer, my notion of the some of the 
children of an AI/Help marriage may seem 
fantastic. I offer them as reasonable from the 
perspective of a Help developer concerned 
with the usability of extremely complex 
software. Consider these possibilities for 
Help ( and consider it help in the broadest 
possible sense): 

Process analysis is something that already 
exists, on a simple level, in some strategic 
game software. The user elects to be tutored 
while doing and is rewarded with a stream of 
advice about the implications of inputs. In 
other words, there is an expert system effect. 
This seems easy and reasonable to require in 
applications that require large amounts of 
precise numerical data entered in exact 
order. Some of the content of this kind of 
Help can include information about input 
deviations, data completeness, sequence 
issues, fulfillment of preconditions, data 
format requirements, and possible next steps. 
It can prompt next steps, flag active rows and 
columns, flag active input fields, determine 
(by activity measurement) whether a task has 
been interrupted and provide summaries 
describing work done so far. 

Process mapping would provide a 
thumbnail sketch of where, in a complex 

274 

process, the user is. For instance, one 
hypertext software authoring product called 
Storyscape shows readers (users) 
diagramatically which piece of text, in a web 
of textual cross references, they are 
viewing. The diagram shows where the user 
came from and what next steps are available. 
The more variables involved, the more 
intelligence would be required. This 
information need not be diagramatic. 

Usability analysis would provide quality-of­
data information. Developers sometimes 
provide this in the form of an error message 
about an outcome: for example, a total must 
be an integer, or a number cannot be outside 
a range. A more sophisticated analysis 
would make a general statement about the 
usability of an output (what this number will 
be good for and what not). An even more 
sophisticated analysis would make general 
statements about the quality of a number: 
"This is the highest price allowed by law;" 
"The size of this spread fails to meet the 
transaction requirement minimum," etc. 

Efficiency measures are unlikely to be 
popular and are not necessarily intelligent. I 
note that for every document created in 
Microsoft Word, there is a statistical 
summary that includes time spent working 
on it. This can be useful. 

Query interventions (smart queries) recall 
the HAL computer in 2001: A Space 
Odyssey. At the high end of sophistication, 
they would combine process and usability 
analysis to stop error conditions early on, 
e:g., "You have not finished entering data 
and your total already exceeds that allowed." 
Or they might flag mode issues: "You've 
entered a prepayment speed appropriate to 
the PSA model, not the SMM model. Should 
I change your model selection?" They 
should not be limited to error detection, 
however, or they become no more than 
warning messages. They can initiate Help 
queries by noticing slow input, frequency of 
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errors, "erase and redo" activity and other 
signs of difficulty. 

Dynamic formula displays have a number 
of possible uses. There is tremendous utility 
in seeing the formula at work that represents 
the calculations underlying a GUI display. 
Financial workers who have to justify the 
numbers they generate have the least 
incentive to change software, unless they can 
look "under the hood" of an interface and 
satisfy themselves. Formula frames might 
inset themselves into any window displaying 
a GUI calculator; or they might run in 
separate windows (like Help text windows); 
or they might "crawl" across the bottom of 
the screen like tickertape. Formula displays 
might populate as data is entered; they might 
display the subcalculations in a way to allow 
step-by-step cross-checking; they might lead 
to Help text with descriptions of formula 
elements; they might even allow 
modification of the formulas themselves by 
the user. After the recent news about the 
Pentium, checking and verification systems 
might sell well. 

Error Help would use expert system 
approaches to analyze and recommend 
corrections to software error conditions. 
Perhaps time, memory, and storage are 
issues. And yet it is not unusual to see up to 
50 percent of an avionics system dedicated to 
duplication, self-testing, and error handling. 

Some advanced Help features would not 
need AI: 

State information is always useful, and the 
more dynamic it is, the better. This is 
sometimes seen as a strip of text at the 
bottom of a window. Unfortunately, it's often 
used merely to tell what the software is 
doing while the user is locked out of the 
system. State information is always available 
to X-Windows users, who can open an 
underlying UNIX system window that will 
act as a real-time log.( All the X-Windows 
users l know habitually do this, which 
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testifies to the appeal of this feature.) Some 
MS-Windows products satisfy this need by 
providing system information -- Central 
Point Software's Crash Guard, for example. 

Label modification should allow users to 
relabel objects and for the relabeling to not 
only stick, but to migrate into the Help and 
error systems. This accomodates Wall 
Street's habit of calling the same things by 
several names. 

File naming conventions must somehow 
transcend the limitations of DOS for those 
working in DOS or Windows. Perhaps an 
alias system can be devised that will save 
analysts from having to use numbers or 
cryptic abbreviations for all the scenario files 
they constantly must generate and retrieve. 

Stick-on commentary, in the form of virtual 
post-it notes, is already available as a feature 
for document viewers and groupware. It 
needs to be more widely available. 

5. Conclusions 

The commitment to user Help should 
increase in proportion to the complexity of a 
software product. The commitment to 
helping the user -- in a general sense -- may 
require junking the old developer­
documentor division of labor in favor of a 
codevelopment partnership. It definitely 
requires ridding ourselves of bad project 
habits and the straitjacket of bad paradigms 
and off-the-shelf Help development 
software. 
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Abstract 
Many computationally intensive problems are paral­
lel in nature. This means that at least theoretically, 
parallel solutions can be developed for these problems. 
A wide range of problems from the fields of scientific 
computation, databases and financial analysis fall into 
this category. So why is parallelism so rarely used? It 
is not the case that parallel processing platforms are 
economically infeasible: the economic advantages of 
adapting a network of workstations as a parallel plat­
form are well established. It is the extra cost of devel­
oping parallel programs that has made this infeasible. 

CALYPSO is a software system for writing parallel 
programs, and software support for distributed execu­
tion in a network of workstations. Recognizing that the 
amount of money saved by utilizing free CPU cycles 
in a network must out-weigh the extra developmental 
cost, it provides a simple interface for expressing par­
allelism. It shields the programmer from the nuances 
of remote execution, data partitioning and synchro­
nization, load balancing, and the dynamic behavior of 
multiple machines scattered all over the network. 

In this document we briefly introduce CALYPSO and 
describe a case study. We start from a sequential pro­
gram for the calculation of Option-Adjusted-Spread of 
the corporate bond index, and analyze ( a) the effort re­
quired to parallelize the program, (b) the performance 
gained, and (c) the behavior of the system in a network 
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where workstations can arbitrarily slowdown or crash 
at any time. The measured overhead of a CALYPSO 
program running on six workstations in presence of 
slowdowns and failures ranged from 7.9% to 16.3%. 
We finally conclude that parallel applications can be a 
cost effective solution to coarse-grain computationally 
intensive problems that exist in many financial appli­
cations. 

1 Introduction 
In the recent past, networks of low cost workstations 
and personal computers have become the norm in 
many academic and corporate institutions, and their 
number is growing rapidly. Even from their early days, 
researchers saw a tremendous hidden potential. 

1. Networks of workstations are a common com­
modity: they already exists, have been paid for, 
and are operational in many institutions. 

2. Their aggregate computational power rivals 
many supercomputers. Furthermore, their 
cost/performance ratio makes them an attrac­
tive alternative to relatively expensive hard­
ware. 

3. As many studies have shown [5,6], on average 
workstations are utilized 15% of the time. Thus, 
the hidden unutilized computing power that has 
already been paid for is phenomenal. 

Given the previous reasons, then why is it that par­
allel programs that utilize networks of workstations 
have not proliferated? A major reason is that the cost 
to harness this power is too high. That is, although 
networks of workstations are a good value in terms of 
raw computing power (meaning hardware), the cost 
to harness this power (meaning software development) 
still remains high and unattractive. 

Although there have been many years of work in 
providing software toolkits for parallel and distributed 
programming, it is generally believed that Writing a 
parallel program is still a hard task. This complexity 
arises because of many reasons: 

• The standard programming languages are se­
quential. Many parallel programming envi­
ronments require the programmer to learn a 

Copyright© 1995 Software Engineering Press 



new programming language and a very different 
computational and execution paradigm. This 
can be an expensive and a time consuming tran­
sition for many corporate organizations. 

• For multiple programs ( executing at different 
sites on a network) to work toward a common 
goal, they must exchange data. Different tech­
niques for data-sharing have large consequences 
on ( a) the performance, (b) the ease of program­
ming and debugging, and (c) the maintenance 
and portability of the program. It is generally 
accepted that message passing systems provide 
the best performance at the expense of pro­
grammability: they frequently require exten­
sive changes to a sequential program, and they 
are also hard to debug. In spite of such draw­
backs, PVM [7], for instance, is one of the most 
popular parallel programming· systems for dis­
tributed hardware. This demonstrates the acute 
need for providing such facilities. 

• Load balancing is a critical issue in the perfor­
mance of any parallel application. This becomes 
even more acute when we consider running a 
program on multiple workstations with differ­
ent speeds. In general, a substantial amount 
of the time and effort of development goes into 
proper load balancing issues - none of which is 
required for sequential programs. 

• When writing a sequential program, tolerating 
hardware (the machine itself) or software (the 
operating system) failures is usually not a con­
sideration. However, in order to allow long­
running programs to execute on multiple work­
stations, some of which we have no control over 
( e.g. they are located in another office), dealing 
with failures becomes an important issue. And 
again, this is an added complexity. 

R~cognizing that for a parallel programming system 
to gam acceptance in the "real world", (i.e. outside the 
research community) we address ease of programma­
bility as well as performance in the building of our 
prototype. 

CALYPSO is a software system that provides a paral­
lel processing platform on a network of workstations or 
personal computers. Several similar systems already 
e~ist. However? unlike those systems, CALYPSO pro­
vi1es '.'1-n except10nally easy programming interface by 
shieldmg the programmer from the nuances mentioned 
above: 

• it extends the C++ programming language by 
only four keywords to express parallelism, 

• provides a virtual shared address space to free 
the programmer from explicit data movement, 

• transparently . balances t?e work among avail­
able workstat10ns, allowmg faster machines to 
do more work, 
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• is resilient to machine failures and slowdowns. 

B:I'. pro:'iding these features our goal is to allow high 
utihzat10n of network of workstations, while allowing 
the effort to develop parallel programs to remain com­
parable with their sequential counterparts. 

The commercial and the administrative realities 
prohibit running "private" operating systems for the 
vast majority of potential users. Thus, CALYPSO re­
~uires no modification to the kernel of the host operat­
ing system. The current prototype runs under Sun0S 
but the system has been designed and implemented t~ 
be portable, and we expect ports to run on most Unix­
based operating systems as well as Windows NT. 

We feel that many computationally intensive 
coarse-grain problems can utilize CALYPSO to harnes~ 
the computational power hidden in many networks. 
In the next section we give a brief overview of CA­
LYP~O. In. Section 3 we consider a specific problem: 
0pt10n-AdJusted-Spread of a corporate bond index is 
?' typi_cal example of a c?arse-grain computationally 
mtensive problem. In sect10n 5 we report experimental 
results by parallelizing and measuring the performance 
of such application. We conclude by summarizing our 
findings. 

2 Overview of CALYPSO 

Simplicity is fundamental to CALYPSO. This work has 
its roots in several years of theoretical and systems re­
search. For the complete history see [4]. Here we 
briefly describe the CALYPSO Source Language (CSL) 
used to express parallelism, then proceed to discuss 
its fea~ures which are transparent to the user, and in 
many mstances to the programmer. CSL extends the 
standard C++ with only four keywords. Once a pro­
gram has been written, a translator reads in the ex­
tended C++ and outputs standard C++. This output 
is then compiled with a standard compiler and linked 
with the CALYPSO library to produce an' executable 
p~ogram. Th'.'1-t is all: the fact that this program is run­
mng on multiple workstations with dynamic behavior 
is hidden from the user. All the user experiences is 
a spee~up whenever there are idle workstations any­
where m the network. For a complete description of 
CALYPSO see [4,2,1]. 

2 .1 Language 
CSL extends the standard C++ with the following key­
words: shared, parbegin, parend, and routine. 

CALYPSO views the virtual address space of each 
process as partitioned into two disjoint areas: shared 
and private. Shared data is used to refer to the sec­
tion of the memory that is accessed by the concurrent 
~hreads of the parallel program. The keyword shared 
is_ used to declare this region, as shown at the top of 
Figure 1. In that example, variables i, j , k, and 
str are declared as shared variables. In general, any 
variable can be declared to be shared. 

In CSL, parallelism is expressed by one or more 
routine Statements within a parbegin ... parend 
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shared { 

}; 

int i, j, k; 
char str[100]; 

parbegin 
routine[S](int num, int id) { ... standard sequential code ... } 
routine[x+2](int num, int id) { ... standard sequential code ... } 

parend; 

Figure 1: Expressing parallelism in CALYPSO. 

structure. The body of a routine statement can be 
any valid C++ code, accessin~ (reading or writing) 
either (a) shared variables, (b) any locally declared 
variables, or ( c )the two parameters passed in as argu­
ments to the thread. Consider Figure 1 again. In that 
example two routines are defined within the parallel 
step. Five instances of the first routine are spawned 
in parallel-notice that the number of instances, five, 
corresponds to the number 5 within the brackets fol­
lowing the keyword routine. At runtime each in­
stance of the concurrent thread will get the number 
of instances (5) and its own instance number (from 0 
to 4), as input parameters. 

A key point here is to realize that the number of 
concurrent threads do not dependent on the number 
of workstations involved in the computation: in the 
case that there is only one machine working on the 
problem, the concurrent threads are executed one at a 
time, sequentially; and when multiple workstations are 
involved in the computation, CALYPSO distributes the 
load among all workers, giving faster machines more 
of the load - transparent load balancing. For ·ex­
ample, if 100 computations can be done concurrently, 
then the program can be written for 100 concurrent 
computations, and not as a function of available work­
stations. 

2.2 Transparent Features 
CALYPSO runs parallel programs on a set of worksta­
tions connected by a standard network and running a 
standard operating system. A CALYPSO computation 
utilizes a c~ntral manager process and a dynamically 
changing set of worker processes. 

For such a system to be effective, the development 
of parallel programs must be comparable with their 
sequential counterparts. A simple programming in­
terface is important for this, but alone, it is not suf­
ficient. There are many programming difficulties that 
arise in distributed environments that are not present 
on a single machine. These include partitioning of 
the workload, data sharing, load balancing and fault­
tolerance to name a few. In this section we briefly 
cover other aspects of CALYPSO that are hidden from 
the programmer for a good reason: they are consid­
ered nuances. 

• Separation of Logical Parallelism from 
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Physical Parallelism: Programs are logical 
entities. Thus, the parallelism expressed by a 
programmer is independent of the parallelism 
provided by the execution environment, which 
is tied to the availability of workstations. This 
mapping between the program parallelism and 
the execution parallelism is transparent in CA­
LYPSO. 

• Fault Tolerance: CALYPSO executions are re­
silient to failures. Worker processes can fail, 
and possibly recover, at any point without af­
fecting the correctness of the computation. Un­
like other fault-tolerant systems, there is no 
significant additional cost associated with this 
feature-in the absence of failures, the perfor­
mance of CALYPSO is comparable to a non-fault­
tolerant system. The impact of fault tolerance 
on performance is discussed in Section 5. 

• Dynamic Load Balancing: CALYPSO .au­
tomatically distributes the work load depend­
ing on the dynamics of the participating ma­
chines. The result is that faster workers do more 
work than slower workers. Not only there is no 
cost associated with this feature, but it actu­
ally speeds up the computation, as fast workers 
are never blocked waiting for slower workers to 
finish their work assignments-they bypass the 
slower ones. 

• High Performance: While providing the fea­
tures listed above, our initial experiments in­
dicate that the overhead is surprisingly small 
for coarse-grained computations. Later, we will 
provide detailed performance examples using 
a financial application problem. A sequential 
C++ program executes in 1730 seconds. With 
6 machines, a CSL program for the same prob­
lem takes 331.5 seconds. This yields a speedup 
of 5.2. That is, the total runtime overhead of 
CALYPSO which includes network communica­
tion, load balancing, fault tolerance, and other 
housekeeping tasks is only 14.9%. (This follows 
as, (6 • 331.5)/1730 - 1 = 0.14.9. We elabo­
rate on our performance metrics in Section 5.) 
In our experiments, under varying conditions 
of failures, slowdowns and changing number of 
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available machines, the total overhead varied 
between 7.9% and 16.3%. 

Application to Wall Street 
Problems 

Experimenting with CALYPSO we have come to the re­
alization that a number of the problems that require 
a significant amount of the computational power lend 
themselves easily to the CALYPSO paradigm and can 
be solved efficiently and with the minimum program­
ming effort in the CALYPSO framework. The objective 
of this work was to illustrate how CALYPSO can be 
utilized for the problems in the realm of finance that 
are currently considered to be too computationally in­
volved. 

One of these problems is the real-time or at least 
adequately fast computation of the characteristics of 
the market-weighted averages of the collection of secu­
rities grouped by a certain criteria-indices. Given the 
fact that indices can contain the large number of secu­
rities (e.g., there were 3,158 securities in the Lehman 
Brothers Corporate Bond Index as of March 29, 1995) 
it is impossible to calculate the statistics of the in­
dex sufficiently fast on the currently existing hard­
ware. Particularly complicated and computationally 
involved are the computations related to the calcu­
lation of the Option-Adjusted-Spread (OAS) and the 
embedded option value of a bond. 1 To illustrate how 
the performance of these computations can be signif­
icantly improved we have implemented the OAS index 
statistics calculations. We also demonstrate that a re­
markable performance improvement can be achieved 
without incurring much of the additional hardware or 
programming overhead. 

To calculate the OAS we utilized a binomial tree 
option pricing model as described by Black, Derman, 
and Toy [3]. Despite the fact that some of the sim­
plifications have been made, we believe that the com­
putational complexity of the problem has not been 
reduced significantly, especially from the viewpoint of 
the model's application to the index calculations. The 
experiments serve as a showcase of the magnitude of 
the improvement that CALYPSO can provide for the fi­
nancial problems with substantial computational com­
plexity. 

3.1 Overview of Corporate Bond In­
dex Statistics 

The following is the data flow of the index statistics 
calculation. 

1. The snapshot of the observed market data is 
input and analyzed. This data consists of the 
yields of the risk-free benchmark securities, US 
Treasury bonds with different maturities, which 

1 In the rest of the paper when referring to computing 
OAS we also refer to the embedded option calculations. 
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we call a yield curve. Yield curve, along with 
the number for the percent volatility of the short 
rate, serves as an input for the option-pricing 
model. 

2. The option pricing model calculates the value 
of the OAS for each bond in the index. 

3. And finally, the market-weighted average of the 
resulting OAS and option values are computed. 

The pseudocode for the index statistics program is 
illustrated in Figure 2. 

GetindexBonds () routine inputs the information 
about all of the bonds belonging to the index. The 
following inputs are collected: 

• Coupon 

• Observed price of the bond 

• Time to maturity 

• Coupon schedule 

• Type of embedded option 

• Redemption schedule 

GetTermStructure() inputs the array of long 
rates, that are the yields of the US treasury securi­
ties, as well as the volatility of the short rate. 

CalculateShortRateTree() routine calculates the 
short rate tree that corresponds to the term structure. 
The tree has one-month steps and a 30-year horizon. 

parbegin ... parend block calculates the OAS for 
all of the bonds belonging to index in parallel. It 
spawns as many threads as there are securities in 
the index and runs Price-To-OAS analysis on them. 
The PriceToOAS () routine, that is called for ev­
ery bond, takes as input the description of an in­
dex bond and the short-rate tree calculated by the 
CalculateShortRateTree() procedure. As the out­
put it produces: option-adjusted-spread, which is a 
measure of the incremental return provided by a non­
benchmark bond as compared to a risk-free treasury 
benchmark bond and option price, which is the price 
of the embedded option provisions. 

CalculateMarketStatistics() 
calculates market-weighted average of the OASes and 
option values. It does so according to the following 
formula: 

A OAS 
I:7-1 T; • (P; + A;) • OAS; 

verage = "'n 
L..,i=l T; • (P; + A;) 

where 

• T; is the total debt outstanding for the i-th bond 
in the index 

• P; is the price of the i-th bond in the index 

• A; is the accrued interest for the i-th bond in 
the index 

• OAS; is the option-adjusted-spread of i-th bond. 
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IndexBonds = GetindexBonds(); /* get the bonds in the index 

TermStructure = GetTermStructure(); I* input the treasury yield curve and volatility *I 

/* calculate short rate tree 
ShortRateTree = CalculateShortRateTree(TermStructure); 

parbegin /* run price-to-OAS for all securities in the index *I 
routine[number of bonds in index] { 

Results[num] = PriceToOAS(ShortRateTree, IndexBonds); 
} 

parend; 
I* calculate the statistics of the index OAS 

CalculateMarketStatistics(Results, IndexBonds); 

Figure 2: Pseudo-code for the index statistics program. 

3.2 OAS Calculation Model 
The option/ OAS calculation model implemented in 
this experiment is a version of the Black-Derman-Toy 
option pricing model, as described in [8], with minor 
modifications. This paper assumes the basic familiar­
ity of.the reader with the model; here we shall only 
briefly outline the algorithm of the computations per­
formed. 

We implement the model in an imaginary world 
where we adhere to the simplifying assumptions out­
lined in [8]. 

The algorithm for the OAS and option-value calcu­
lations is the following: 

1. Given the risk-free term structure calculate the 
short-rate binomial tree T. The length of the 
tree should be sufficient to accommodate for the 
length of a longest bond being evaluated, cur­
rently we produce a 30-year tree with monthly 
steps. 

2. Initialize OAS to 0.0, and c to 0.0001. 

3. Calculate the price Pl of a security with em­
bedded option using the short-rate tree T. 

4. Compare the Pl with the observed (market) 
price of the security P and if I Pl - Pl ::; c go to 
step 7. 

5. Shift the rates in the short-rate interest tree T 
by a spread (OAS). 

6. Go to step 3. 

7. Calculate the price of the BULLET (without op­
tion) bond P2 with the same characteristics as 
B, and using the value for OAS as it was calcu­
lated in steps 3-6. 

8. The difference between the Pl and P2 is the 
price of the option P3. 
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3.3 Further Parallelism 
Due to the nature of the index calculations, which are 
characterized by a large number of relatively coarse­
grain computations, there was no need to to exploit 
anything but the highest level of parallelization-one 
thread was allocated to do all of the calculations for 
one security. Considering, however, the fact that the 
same price-to-OAS module could be used in the indi­
vidual security computations outside of the index con­
text we briefly outline the steps of the algorithm that 
could have been run in parallel: 

• One security's price-to-OAS could have been run 
on a few workers simultaneously with different 
OAS assumptions. This would assure faster con­
vergence of the calculated price to the observed 
price value. This method would parallelize on 
the iterations. 

• Additional parallelization could be achieved by 
discounting different parts of the tree by the dif­
ferent threads. This would be a parallelization 
within the same step of the iteration. 

4 Application to Finance 
The described corporate bond index calculation prob­
lem is a real problem dealt with by any major financial 
firm that calculates the averages of the large collection 
of securities. The real-life bond OAS calculation prob­
lem would become even more time consuming if the 
following changes were to be made: 

• A finer grid tree (ideally with daily nodes) were 
generated 

• Multiple factors to describe the shifts m the 
yield curve were considered 

One could imagine numerous other applications 
that would significantly benefit from the utilization 
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of CALYPSO. Given the fact that CALYPSO is mostly 
geared towards coarse-grain computations, most of 
these applications would probably be the ones, where 
there are independent highly-intensive subproblems 
that may use the same logically shared input data 
and which outputs are to be combined after all these 
subproblems have been completed. There are various 
computationally involved problems that lend them­
selves easily to such a computational model. To name 
just a few we would suggest the following: 

• Mortgage-Backed-Securities (MBS) OAS calcula­
tions 

• Collateralized Mortgage Obligation (sMO) OAS 
calculations 

• Total return/return attribution horizon analysis 
under different yield curve scenarios 

5 Performance Experiments 

Measuring actual performance of CALYPSO is an on­
going activity. In this section we present performance 
results obtained by running a parallel program to com­
pute OAS of the corporate bond index. In every ex­
ecution we bore the cost of fault tolerance and any 
required load balancing. 

Results are shown for the following cases, all for the 
same CSL program: 

1. The program ran on identically behaving free 
workstations. Here we measured speedups when 
there were no failures and no slowdowns. 

2. The program ran on six free workstations for 
the first 100 seconds at which time it utilized 
100% of the CPU cycles. After which a subset 
of machines slow down by 50% for the dura­
tion of 200 seconds, and then returned to their 
original state. Here we measured the speedups 
when transient slowdowns occured, which are 
common in networks supporting multiple users. 
It also measured the effectiveness of the load­
balancing schemes implemented in CALYPSO. 

3. In this experiment we model transient machine 
availability. The program initially started on 
a subset of workstations. After 100 seconds, 
other workstations joined-in the computation, 
but for only a short period of time: 200 sec­
onds after joining the computation they were 
crashed. This experiment demonstrates ability 
to tolerate failures, as well as a measure of ef­
fective usage of transient idle workstations. 

All times reported are "wall clock" or elapsed times, 
not CPU or virtual times. As the initialization and 
output of the results are an artifice, the times were 
measured from the start of the OAS computation to 
its completion. 

In each experiment, we use up to 6 machines from 
the 3 profiles described below. Whenever a machine 
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is "available" to us, we are charged for its use, regard­
less of whether we are in fact able to benefit from its 
work or not. Hence, our results are based on quite 
conservative assumptions. 

For this experiment we define 3 machine profiles: 
Machine A, Machine B and Machine C. Each machine 
profile a-priori determines its behavior. Here are the 
descriptions of each profile, see also Figure 3. 

Machine A is available to us 100% for the duration of 
the computation. It is a regular machine, that 
does not fail or slow down during the execution. 

Machine B is available to us 100% for the first 100 
seconds, then 50% for the next 200 seconds, and 
then 100% for the rest of the computation. This 
models a transient network or machine slow­
down. 

Machine C is available to us 0% for the first 100 
seconds, then 100% for the next 200 seconds, 
and then 0% for the rest of the computation. 
This models a transient machine availability, as 
well as faults. 

5.1 Theoretical and Actual Speedup 

We now describe our cost model. Each machine profile 
P, is defined by the function availabilityp. Availabil­
ity is a function of time, and depicts the fraction of 
the CPU resource available to us from that machine. 
Thus, the availability of 1 denotes the machine is free 
and completely available, and the availability of O de­
notes that the machine is unavailable. Then, if the 
computation lasted for time T, the work that the ma-
chine gave us is ft:o availabilityp dt. This is the area 
of the shaded region for the time interval [O, T] in the 
graphs of Figure 3. 

In general we will have several machines in the com­
putation, say n machines with profiles, P1, ... , Pn, re~ 
spectively. Then if a sequential program takes time S 
to complete and a parallel computation lasts for time 
T, then the theoretical speedup that we can achieve is 
given by: 

I:7=1 ft:o availabilityp, dt 

s 
Since machine availability is an external function, 

we are accounting a "charge" whenever a machine is 
available-whether we use it effectively or not. Also 
given this charging method, it is obvious that we ac­
count for the all overhead that the system incui;s, 
which includes the time taken to move data between 
different machines, and any runtime overhead. 

5.2 Performance Results 
To obtain a fair comparison, we always compare the 
speedup of a CALYPSO program to what could have 
been achieved theoretically if every machine cycle were 
utilized effectively. The sequential program executed 
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Figure 3: Profiles of available machines. 

in 1730 seconds, and we use this number to calculate 
the theoretical speedup. 

We conducted 3 families of experiments, utilizing 
up to 6 workstations in each experiment, and we de­
scribe them in turn. For each experiment the re­
sults are graphed showing the total time, the actual 
speedup and the theoretically best possible speedup. 
It should be reiterated again that the same CALYPSO 
program was tested in all experiments, without any 
(compile- or runtime) alteration. 

The labels on the x-axis of the graphs denote the 
machines that were used in that experiment. For ex­
ample, 2A means two machines with profile A, and 
4A+2B means four machines with profile A and two 
machines with profile B were used. The left y-axis in­
dicates execution time, and the right y-axis denotes 
speedup. 

In the first experiment we examine how the per­
formance scales with the number of workstations. We 
ran the same CALYPSO program on 1 to 6 workstations 
with profile A, which devote all their resources to the 
computation. Refer to Figure 4. The execution times 
for 1, ~, 3, 4, 5 and 6 workstations were 1768, 922, 
624.5, 476.5, 392.5, and 331.5 seconds respectively. 

This family of experiments show that when there 
are no failures or slowdowns CALYPSO bears little 
overhead, even though it is "prepared" to handle such 
adverse cases. 

In the second family of experiments, we measure 
the speedup when transient slowdowns occur. Here 
we used 6 different combinations of profiles A and B. 
See Figure 5. The CPU utilization remains constant 
independent of the number of machines that slowdown 
during a computation. 

This demonstrates the ability for our runtime sys­
tem not to "charge" any extra penalty for dynamic 
behavior. Dynamic behavior is very common in a 
multi-user network of workstations. In many systems 
the effort of load balancing is left to the programmer, 
where as in CALYPSO it is provided transparently, and 
it has shown to be efficient. 

In the final family of experiments we measure the 
utilization of idle workstations, even if they are idle 
momentary. In addition, by using different numbers 
of workstations with profile C we investigate the effect 
of failure during a computation. See Figure 6. Here 
the efficiency ranges from 7.7% to 14.2%. 
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These experiments demonstrate the ability of CA­
LYPSO to utilize resources as they are available, even 
if availability changes over time. 

6 Conclusions 

We are working on further enhancements and exten­
sions to the system. We summarize and list some of 
the important properties of the system, especially as it 
is related to what has been discovered by us while ex­
perimenting with the corporate bond index statistics 
calculations. 

6.1 Performance 

The measured overhead is low. This is of a special sig­
nificance, as CALYPSO is able to execute programs in 
situations where other systems are inefficient or simply 
fail to execute. These are not the isolated situations 
either. We are targeting network of workstations with 
fluctuating processor loads, network traffic, and even 
crash-failed processes; if anything this is a conserva­
tive view of the real world. 

The performance improvement is significant. Bond 
index OAS calculations achieve near linear speedup, 
which means that changing the number of workers 
from m to n, where n 2:: m, increases the speed of 
computations by the factor of n/m (assuming that all 
of the workers have the same computational power). 

6.2 Programmability 

The programming interface is simple and easy to learn. 
We converted a sequential program that consisted of 
nearly 700 lines of C++ code into a parallel program 
capable of running on a network of workstations by 
simply modifying 26 lines of code. 

• It took us approximately two hours to transform 
a regular sequential code into a CALYPSO pro­
gram, which illustrates the ease of programming 
in this framework. The ease of programming is 
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Figure 5: Parallel computation on machines with A & B profiles. 

enhanced by the separation of logical and phys­
ical parallelism, shared memory model, trans­
parent data movement, and the simple style of 
expressing the parallelism. 

• Another factor is that an extension of the stan­
dard C/C++ is utilized. Therefore, program­
mers do not need to burden themselves by 
studying a new language or a new environment 
to improve the performance of their software. 
What may be even more important, is that 
a significant number of existing programs are 
in C/C++ which can be easily converted to 
take advantage of a substantial boost in per­
formance. 

• Shared memory-based programming model and 
"free" fault tolerance are of great importance. 
There are various other approaches that try to 
achieve the same objectives by utilizing Also, 
heavy-weight processes, file-based interprocess 
communication and some variation of a script-
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ing languages to glue them together. How­
ever, we argue that (a) CALYPSO is much more 
natural for a programmer to operate in terms 
memory data structures; with the scripting/file­
based communication, a significant amount of 
memory-to-file and file-to-memory data struc­
ture conversion has to be performed unless a 
langua~e provides built-in persistence mecha­
nism, lb) there is no need to mix different lan­
guages (programming language and a scripting 
language), and finally ( c) a programmer using 
the CALYPSO framework does not concern him­
self or herself with issues of fault-tolerance and 
load-balancing. 

6.3 Applicability 

• Hardware required to solve complex problems 
becomes much more affordable. Due to the re­
markable increase in speed many problems that 
would otherwise require expensive hardware to 
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Figure 6: Parallel computation on machines with A & C profiles. 

be solved in an adequate amount of time can 
be solved by a network of inexpensive worksta­
tions. Also, since the networking naturally fits 
the CALYPSO model, even under-powered, low­
cost personal computers can contribute their 
share to computations. 

• The configurability of the system is very high. 
This may mean that users can increase the 
speed of the computations at the runtiIPe, by 
adding additional workers. Therefore, users can 
exercise some control over the speed of the com­
putations even after the computations started. 

• Users are given the transparent access to the 
distributed resources located on the network, 
which insulates them from dealing with various 
issues of the network programming. 

• The system smoothly and efficiently adapts to 
fluctuating abilities of workers. 
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Abstract 

In a large and complex distributed computing 
environment, the failure of a single resource can 
impair multiple systems and affect many users 
dependent upon them. The combined automation 
of fault detection and fault notification increases 
the efficacy of the support function while 
simultaneously reducing its cost. A critical issue 
is the determination of whom to notify, based on 
the nature, location, and severity of the failure. 
BING, an intelligent and reliable contact and 
notification system, manages rosters of contacts 
and their relationships to various support entities, 
and provides email and pager notification, as well 
as acknowledgment and escalation facilities. 

1 Introduction 

The increasing complexity of distributed mission 
critical applications requires a cost-effective 
approach to systems management. In a distributed 
environment, the failure of a single shared 
resource may affect multiple applications and 
their users. Wherever possible, automated probes 
monitor the health of systems and the status of 
processes running on them. 

Various support groups, managers, developers, 
and users require timely failure notification 
dependingupon the nature of the failure, its 
severity, and duration. 

Traditional notification is simultaneously too slow 
and too fast as it reaches the support person last 
and the end user first. An outage is first noticed 
by the application end-users, who notify the 
application developers, who in turn notify the 
systems or database administrators. We would 
argue, however, that such an arrangement delays 
unnecessarily the troubleshooting process. The 
deployment of three automated systems, namely: 
Gryphon, Proteus, and Bing, has helped reverse 
the traditional notification chain. Gryphon 
monitors for outages (and, as the knowledge base 
grows, predicts them); Proteus [Desmond, 1994] 
tracks problem resolution process; and Bing 
notifies the appropriate parties (see Figure 1). The 
new arrangement not only expedites problem 
resolution, but also extends support scope: by the 
time users are notified, problem resolution has 
begun and there is a likely schedule for service 
restoration. 

Aute>ma.tie>n Support 

~ 
Monitor Record 

Figure 1: Support Information Flow 
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The main notification challenge is to correctly 
notify the responsible people every time. By 
increasing the set of notified parties, we can 
guarantee access to the responsible people every 
time, but we also increase the likelihood of 
nuisance alerts. 

Conversely, by decreasing the set of notified 
parties, we minimize the likelihood of a mistaken 
notification, but also reduce the chance to access 
all needed people. For precise management of 
contact requirements in every crisis scenario, we 
need to strike a balance between these two 
conflicting approaches. 

Quick and precise management of vast amounts 
of data is notoriously hard because of the 
complexity of distributed systems [Lirov et al, 
1993, 1995]. Worse, the peripatetic nature of 
support personnel in a distributed computing 
environment exacerbates the situation. At any 
time administrators may be away from their desks 
and fixing something in another part of the 
building, logged in or not. A "system" now spans 
thousands of hosts, and hundreds of servers, 
applications, and support people. Additionally, a 
lot of support is delivered by telecommuting from 
home. As a result, all of our support personnel 
carry alphanumeric pagers, and our notification 
system is built around them. Finding the right 
person in a crisis can be a logistical nightmare. 

Earlier attempts to address this problem include 
the system decribed in [Rice 1995]. It consists of 
two subsystems: monitoring and notification. The 
monitoring scheme is a proprietary finite state 
machine, while the notification uses a simple, non­
queued method of dialing a static list of numeric 
pagers. Our approach extends the notification 
methodology in both the time and space 
dimensions. First, because of the need to provide 
coverage at all hours, our system provides for a 
time dependent notification list. Second, because 
of the size of our network and the extent of our 
monitoring, our approach manages the 
determination of the service group and the person 
within the group to be notified for particular 
classes of alarms. 
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Finally, we use alphanumeric paging to provide as 
much information as possible in the initial 
notification, and deliver the pages through a 
queued mechanism that requires active 
acknowledment and manages an escalation chain 
for unacknowledged pages. 

Notification knowledge representation maps our 
understanding of production dependencies 
between networks, servers, applications, and 
users. Given outage symptoms, it enables 
automated deduction of associated support 
personnel and impaired applications. We 
approach knowledge acquisition, the traditional 
bottleneck of artificially intelligent systems, in 
two phases: manual and automated. We acquire 
manually the production dependency information 
for all entities except the hosts. We acquire 
automatically the host information and their 
relations to the applications and servers. This 
paper presents Bing, a system that manages both 
the informational and operational aspects of 
notification. First, it manages rosters of contacts 
and their relationships to various supported 
entities such as hosts, databases, and applications. 
Second, it facilitates notification by pager and 
email with acknowledgment and escalation 
features. The paper proceeds in three major 
sections. First, a case study will be presented 
which highlights the need for such a system and 
some of the complexities in the requirements. 
Second, a theoretical discussion of the roster 
management and notification problem is 
presented. Finally, we discuss the architecture of 
the Bing system implemented at Lehman Brothers. 

2 Systems Administration 24 hours 7 days a 
week 

In the traditional support model, each subnetwork 
or administrative domain has its own primary and 
backup system administrators who receive all 
support calls for that domain regardless of the 
hour. This leads to a fragmentation of support and 
difficulties in dealing with vacations, sick days, 
and multiple concurrent problems. A support 
model that requires an expert for every problem 
does not deliver effectively on a bad day, and 
certainly cannot scale up efficiently. 

Copyright© 1995 Software Engineering Press 



2.1 A New Paradigm - Team-based Systems 
Administration 

Using a single software template, and only three 
possible disk configurations makes all of our Sun 
desktops and servers identical. As hosts and 
procedures become increasingly unifonn, any 
member of the support team can handle a wide 
variety of the support requests that come from 
anywhere in our span of control, and are 
encouraged to do so. We estimate that over 80% 
of the routine support requests can be handled by 
any administrator on the team. If the vast 
majority of support problems can be handled by 
any administrator, then there is no need to wake 
up every administrator for night problems every 
night. Instead, we instituted a rotation, so that one 
administrator was on call each night. 

DATABASE 
HOST 

All of our support staff can log into our systems 
from home, and the administrator on call is issued 
a portable telephone to answer pages while not at 
home. 

2.2 Roster Management and Notification 
Requirements for Team-Based Support 

With the introduction of an off-hour support 
rotation, the problem of whom to notify of an 
event on a given host became time dependent 
We have become increasingly dependent upon 
automated monitoring of our systems, and it is 
essential that the monitors be able to initiate the 
proper notification without human intervention. 
Therefore, we required an additional layer of 
intelligence above our nonnal email and 
alphanumeric paging commands. 

USERS 

Figure 2: Directed Graph of Support Dependencies 
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This layer has 5 requirements: daytime 
notification shall go to the primary SA for the 
network or host; night time notification shall go to 
the SA on call; unacknowledged notifications 
shall be dispatched up an escalation chain, 
including the backup SA and the SA manager; a 
"panic button" facility shall notify the entire SA 
group by day and the off-hour escalation chain by 
night; the daytime notification shall skip the 
primary SA the day after that SA was on call. 

3 Notification Knowledge Representation 

Notification knowledge base operates three basic 
concept~: groups, entities, and domains. A 
"group" is a set of login-ids representing an 
administrative organization or a meaningful 
collection of users (e.g. using a particular 
application); sa, dba, and prod are administrative 
groups. An "entity" is a unit of responsibility (a 
host, subnet, dbserver, batchlonline application 
e.t.c.). Groups are responsible for one or more 
"domains" (i.e. sets of entities for which there are 
separate duty schedules). The Bing Database 
contains tables for: information about each 
contact; primary.secondary admins, domain; work 
shifts, rotation, etc.; log of pages and when/if 
acknowledged; on-call admins by domain; entity 
to entity dependency relations; and company 
observed holidays. Figure 2 uses a directed graph 
to illustrate the relationships and dependencies 
between various entities. 

For each responsibility domain there is a dayshift, 
nightshift, and weekend/holiday shift. 

The starting times of the three shifts are kept in 
the database. Administrators are assigned to 
entities. These assignments are what the system 
uses during the dayshift. If there is no assignment, 
the system looks for a day schedule. For 
scheduled duty a rotation is kept in the database 
which is used to generate an initial schedule for 
the month. At the end of each month the 
administrative group's manager runs a utility 
which creates the schedule and outputs a flat file 
$HOME/domain.Month containing a line for each 
day of the month with primary and secondary on­
call assignments. A utility command allows single 
entry updates to the database schedule directly. 

288 

But, if a significant number of changes are 
anticipated to the generated schedule, the user can 
vi the flat file and update from it. 

Each of the supported entities (the rounded boxes 
in figure 2) has its own primary support group. 
The network domain and the various types of 
hosts are the responsibility of the Systems 
Administrators. The database backends are the 
responsibility of the Database Administrators, the 
batch cycles are the responsibility of the 
Production Administrators, and the applications 
are the responsibilities of their developers. The 
notification chain for a condition affecting one of 
the entities on this graph is derived from the 
dependencies on that entity and the severity of the 
condition. For example, a hardware failure on a 
database host will certainly require notification of 
the SA responsible for the host and the DBA 
responsible for the database backend (at the time 
of the error). Depending upon the severity of the 
error and the length and timing of any downtime, 
the batch production group, application support 
group, and the user community may need to be 
notified. 

In general, a notification system provides five 
basic services: maintain rosters and shift 
schedules for multiple support and development 
groups; maintain dependencies (or registration of 
interest) on supported entities by multiple groups; 
allow selective notification of a subset of all 
groups interested in a given entity; distinguish 
between action notifications (requiring 
acknowledgment) and information notifications 
(acknowledgment not required); and log all 
notifications and acknowledgments. 

4 Implementation 

Bing, a knowledge-based roster management and 
notification system is a set of utilities which are 
wrappers around email and paging commands, or 
provide for database query and update. Because 
the system requires high availability, the 
knowledge base is contained in a Sybase 
relational database, which is duplicated on a hot 
standby system and kept in synchronization using 
periodic transaction log dumps. 
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In the remainder of this section we first describe 
the set of knowledge management and 
notification functions that are currently 
implemented and then describe work in progress 
to automate parts of the knowledge acquisition 
process. 

4.1 Knowledge Management 

The database contains rosters for the various 
support groups, including contact information and 
shift schedule information. For each support 
group an entity encodes that group's primary 
responsibility. Characteristics of the entity include 
identifying information, such as hostname, 
network address or dataserver name, as well as 
the primary and secondary daytime contacts. 
Gronps may express interest in an entity that is 
the primary responsibility of another group, for 
example, the DBA group is interested in 
notifications relating to the host for a database 
backend. 

We distinguish between maintenance and 
notification commands. Maintenance commands 
allow the support manager to adjust rosters, 
schedules, and entity contacts, as well as allowing 
any user to list contact information without 
actually initiating a notification. The notification 
commands allow action or information 
notifications of either all interested groups or 
some subset. The notification of each group is 
controlled by that group's contact list and shift 
schedule. For action notifications, an 
acknowledgment must be issued by one of the 
contacts or the notification will escalate through 
the secondary contact or if necessary the group 
manager. 

The system logs all notifications and 
acknowledgments. Utilities allow the support 
manager to scan the log, which provides a 
convenient summary of what happened, for 
example, during a particular night shift 

4.2 Automated Knowledge Acquisition 

We are currently exploring three avenues for 
acquiring additional knowledge through 
automated means. In every case, we are looking 
for ways to identify the users who are associated 
with a given entity. 
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We have focussed on user identification because 
that population is continually changing, and is 
difficult to track manually. 

An application usage accounting system that 
tracks usage of various in-house applications 
serves as a highly accurate knowledge base of 
who needs to be notified for faults affecting a 
particular application. Specifically, it contains 
information ranging from all users who have ever 
used application X to the set of users who 
currently have session of application Y running 
on their workstations. 

Another way to associate users with applications 
is to look at their database backends, which are 
dedicated to each application. We can log 
connections to the database by user or host As 
with the usage database, this gives us a picture of 
who is actively using the application at any given 
time, and, in particular, who will be affected by 
faults relating to the database backend. 

Another important problem is that of defining the 
community of interest for problems with NFS 
servers. While everyone with a given server in 
their automount maps is potentially an interested 
party, we might really only be concerned with 
people who actually access it. Using network 
sniffing software, we can look at what users are 
generating NFS traffic with a given server, and 
from where. 

4.3 Examples 

The system uses two basic commands for 
notification and acknowledgment: bing, and back. 
For instance, 

bing DEVIl..S 

bing sunbond 

application? 

back1917 

#server is downufider 

#has the market crashed 

or is it just my 

#acknowledged msg from 

Russia # Revolution 

back user frankw boris#acknowledged all 
messages 

from Frank or Boris 
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HOST A 

BATCH 
CYCLE 

SUBNET 

HOSTB 

USRGRP 
1 

USRGRP 
1 

USRGRP 
2 

USRGRP 
3 

Figure 3: Tree of Entity Dependencies 

back admin wizkid #acknowledged all msgs 

for whizkid 

The bing command waits for acknowledgment 
from an administrator. Calls are acknowledged by 
running a command with the log number of the 
message. The log# is obtained by a listing the 
outstanding messages. A retry time is specified by 
domain within the database. 

The system first tries to contact the primary 
administrator(s) for the appropriate shift and 
responsibility entity. After the retry time has 
expired, it tries the primary again. Then it goes to 
the secondary administrator(s) on duty. It tries 
him also a second time and then escalates to the 
group manager. The system gives up when the 
manager has been beeped twice and there is still 
no acknowledgment. Email is sent to an 
administrator when he is beeped. 

Three command line options generalize the 
functionality of the basic commands in three 
ways: scope, action, and time. 
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Specifically, the scope option includes four 
possibilities: 1 for primary group's administrators, 
2 for secondary groups' administrators, 3 for 
application developers, and 4 for user groups. 
These values are not exclusive and multiple codes 
may follow -s. 

The action option allows to specify a subset of 
possible actions (mail, tell, zephyr, etc.). For 
instance, bing RISKPROD_A -sl -a13 -s234 -a2 
asteroid falling on datacenter, means "notify 
primary administrators via email and beeper, and 
secondary administrators, developers, and 
application users via Zephyr only." The action 
option enables the Bing user to specify a subset of 
the full scope of an entity which can also be 
represented as a subtree of the entity dependency 
tree rooted at the impaired entity. 

Time dependence may be optionally specified. 
The database contains the days and hours of the 
week in which various user groups require 
applications up. The time dependence is 
represented as a bitmap. 
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The value of the bitmap for each node is 
determined by OR-ing together the bitmaps of all 
the children of the node. A -t option on the 
command line indicates that the time dependence 
bitmap should be utilized to filter the dependence 
relation represented by the entity tree. 

Although generally administrators are assigned to 
entities by day and to a duty schedule by night, 
the system allows day schedules and night 
assignments. For some entities an override may 
be specified for the entity which demands 
selection of the assigned admin even though for 
the given domain a duty schedule might normally 
be consulted. 

Suppose that usrgrpl requires application! 
between 9:30AM and 4:30PM and usrgrps2 and 3 
require applications2 and 3 respectively between 
7:30AM and 5:30PM. host b crashes at 5:00PM. 
Then, of course, the primary administrators of 
host b (sa's) would be called regardless of time. 
Usrgrpl does not need its application at 5PM but 
usrgrps 2 and 3 do. So those groups and the 
administrators of the entities above them 
constitute the set of potential notification targets 
in this case. The scope option in the Bing 
command would indicate which of these to 
include. 

SSummary 

Reliable notification of primary support personnel 
and interested parties is an essential tool in the 
management of large distributed computing 
networks. Team-based support paradigms add 
complexity to the notification problem because 
the notification chain is time dependent. In 
addition, because the work of various support 
groups is interrelated, events for an entity 
supported by one group may require notification 
of the contact list of another. 

A set of tools has been developed to manage 
rosters, entities and relationships, and to perform 
notification with acknowledgment and escalation. 
These have been deployed as part of a large 
distributed systems monitoring environment. Our 
experience is that this has taken the guesswork 
out of many notifications scenarios, and has 
resulted in fewer missed pages and increased 
reliability and accountability. 
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Intelligent Batch Testing of Distributed Interactive Applications 

Aaron Goldberg and Yuval Lirov 
Fixed Income Research Infrastructure 

Lehman Brothers, Inc. 
New York, NY 10285 

Abstract 

The increasing frequency of new software 
releases conflicts with the need for stable and 
reliable systems. A Polymorphic Application 
Specific Test Encoding Language (PASTEL) 
captures application level primitives and exploits 
artificial intelligence to facilitate and expedite 
release testing. PASTEL descriptions are used to 
set up tests which replicate full production 
conditions, running applications across hundreds 
of workstations and testing difficult to model 
shared system resources before software reaches 
the trading floor. 

1 Introduction 

Computerized trading and sales systems provide 
investment banks with a critical competitive edge 
in today's global markets. However, the 
competitive nature of these dynamic markets sets 

up a fundamental conflict for applications 
developers. On the one hand, systems must be 
absolutely reliable to insure there are no problems 
during the business day. On the other, systems 
must continuously change to incorporate new 
financial instruments, currencies, and analytic 
techniques. To balance change and reliability, 
applications developers require advanced release 
testing technologies that detect problems before 
software reaches the trading floor. However, full 
release testing is extremely difficult because of 
the inherent complexity of distributed systems. 
For example, the aggregate behavior of the 
distributed system depends on the individual 
actions of all its users. 

Our goal is to create a system load (Figure 1) that 
mimics the actions of potentially hundreds of 
independent human users executing a complex 

Measure production 
a Iication usa e 

Update PASTEL tape 
and in uratio 
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roduction performance 
signature ignature 

No 

xecute test in LoadRunne 
on release software 

Figure 1: Test Calibration Process 
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trading system. Ultimately, we use our knowledge 
representation to map application usage scenarios 
into computational load patterns, providing a 
mechanism for validating system performance. 
We currently have an operational prototype of a 
batch load testing system that is regularly used in 
the release cycle to reproduce the workload of 
fifty distinct users executing different application 
paths across fifty workstations. 

The basic problem is to represent the system 
under test. We distinguish two kinds of 
knowledge: local application usage patterns and 
global resource performance loads The local 
patterns consist of sequences of elementary 
application primitives such as trade entry and 
trade edit. Our PASTEL testing paradigm 
supports both classes of knowledge. Usage 
patterns are represented as tapes that contain lists 
of application primitives. Global resource loads 
are represented as graphs of resource utilization 
(performance signatures). 

Knowledge acquisition consists of enumerating 
application primitives, characterizing application 
usage patterns, and collecting shared resource 
performance signatures. While primitive 
enumeration can be performed by human 
developers and business analysts, the amount of 
data • required both to characterize application 
usage and to capture a performance signature is 
too vast for humans to collect manually. Both 
tasks are automated as described later in the paper. 

Our prototype combines four concepts. First, we 
exploit commercially available Graphical User 
Interface (GUI) testing software to develop a 
driver that allows us to execute interactive 
applications in batch mode. Second, we create a 
set of application specific test languages to 
encode our tests. Third, we describe techniques to 
characterize normal application behavior. And 
finally, we show how to validate the test, 
checking that it accurately replicates the real 
world workload. 

2 Remote Batch Test of Interactive Applica­
tions 

Our implementation relies on the LoadRunner 
GUI tester from Mercury Interactive. The test 
designer invokes LoadRunner in learning mode 
and executes the operator test sequence. In 
learning mode, LoadRunner acts as a virtual 
window display server, making note both of user 
inputs such as mouse movements, button clicks, 
and keystrokes and of high level application 
responses like a new window being brought up. 
LoadRunner automatically stores the sequence of 
inputs and outputs in a file using a batch scripting 
language with primitives like 
click(MiddleButton)and 
wait_window( "File Menu"). Thus, with 
the help of the LoadRunner GUI tester, the test 
designer transforms a high level interactive 
application test into a batch script. Invoking 
LoadRunner in batch mode, the learned script can 

Table 1: Developing PASTEL for Trading System 

Application Primitive PASTEL Construct 

Edit a trade Edit Trade <Offset> 

Enter a trade RegularTrade <Bond Offset> <Price> <Quantity> 

View current yield curve YieldCurveRefresh 
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be played back, running the application and 
entering user input at the appropriate points. 
Further, LoadRunner is designed for remote batch 
test and it allows the user to designate the set of 
remote hosts where the test will be run. 

3PASTEL 

The key to empowering developers to create their 
own application tests is developing an encoding 
specific to the application. We ref er to this 
knowledge representation approach as PASTEL, 
or Polymorphic Application Specific Test 
Encoding. The first portion of this section 
introduces PASTEL via an example. The second 
portion gives the flavor of the actual 
implementation. 

The Taxable Fixed Income Risk group needed to 
develop a batch, performance test of their trade 
entry and risk analysis system. Development 
began with a 30 minute meeting to discuss the 
basic primitives of their system. Attendees at the 
meeting included both the application developers 

function refresh_yield_curve() { 
# bring up yield curve 

and the Business Analysts (BA's)who support the 
application on the trading floor. The BA's 
described their perception of how traders use the 
system. The application developers helped to 
collapse the set of primitives by noting user input 
sequences that were functionally equivalent in the 
code. This meeting was followed up with a half 
hour session with one of the lead developers to 
formalize the basic primitives into an application 
specific test encoding language. A subset of the 
primitives selected in the initial meeting and final 
language developed in conjunction with the 
developer are shown in Table 1. Because, the 
developers and business analysts are intimately 
familiar with their application domain, the 
knowledge acquisition process is straightforward 
and inexpensive. 

The PASTEL interpreter is written in the Test 
Scripting Language (TSL) provided with the 
LoadRunner software. Figure 1 provides example 
TSL implementations of a primitive and an 
extract from the main interpreter loop. In addition 
to the primitives, the prototype interpreter 

select_display_menu(); move_locator_rel(0, 45, 1); click("Left"); 
if (!wait_window (60, "", "Yield Curve", -1,-1,-1,-1)) { 
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report_msg("Yield curve window did not come up; Exiting"); 
return; 

} 

# press refresh button 
move_locator_abs( 675,610, 1 ); click("Left"); 
wait(lO); 
# dismiss yield curve 
move_locator_abs(1041,610, 1 ); click("Left"); 

while ( getline hostline < tapefile ) { 
fields = split(hostline, hostarr, " "); 
if (hostarr[l] = "EditTrade") { 

edit_trade(hostarr[2]); 
} else if (hostarr[l] = "RegularTrade") { 

regular_trade(hostarr[2], hostarr[3], hostarr[4]); 
} else if (hostarr[l] = "YieldCurveRefresh") { 

refresh_yield_curve(); 
} else if ..... 

Figure 2: PASTEL Implementation (primitive and interpreter loop) 
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Figure 3: Disk Performance Signature 

provides limited control flow and 
synchronization constructs. PASTEL programs 
are structured as sets of files called tapes, with 
control flow changes accomplished by 
executing RunTape <next-tape-file> 
to transfer control to the top of the named tape. 
The prototype interpreter does not yet support a 
stack so PASTEL does not provide call/return 
semantics. Synchronization is implemented 
assuming a shared file system, with a touch/ 
synch pair supporting a blocking rendezvous 
where touch creates a file and synch waits 
for the removal of the file. There is also a 
delay (seconds) construct to insert pauses 

4 Characterizing Application Behavior 

PASTEL provides a platform for executing a 
sequence of application primitives over a set of 
hosts. It does not, however, address the problem 
of characterizing application usage: "Who 
executes what sequences of primitives at what 
interval?" The problem is particularly 
challenging because simple statistical models 
are inadequate. When an employment number 
comes out or the Fed announces a rate change, 
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many traders simultaneously access the system To 
capture these effects, the developers instrument 
the existing application code to log each time 
application primitives are invoked by each user. 
Then, PASTEL tapes are constructed to recreate 
the actions of specific users at specific times of 
specific days. The actual load test is driven by a 
configuration file that has one ordered triple for 
each test user containing: (hostname, usemame, 
initial-tape). Typically, the last two lines of the 
initial-tape will be 

synch start_test 
RunTape nextape.USERNAME 

The file start_test is deleted to allow the test 
to proceed, and each user begins executing a 
designated PASTEL script. 

5 Calibrating the Test with Performance Signa­
tures 

The technology described in the previous section 
allows us to execute a full performance test, but 
how do we calibrate the test, to insure that it does 
in fact represent the behavior of the true 
production system? We address this problem with 
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shared resource performance signatures. Our 
applications all depend on shared resources. In the 
trading application discussed earlier, the key 
shared resource is the Sybase dataserver. To 
capture its performance signature, we collect CPU 
and Disk Utilization versus time using the 
standard UNIX iostat command as well as 
information on the number of active client 
connections. Figure 2 illustrates a typical disk 
performance signature. Figure 3 shows the 
calibration process. There are two inputs to the 
process: the performance signature from the 
instrumented production dataserver and the test 
load (PASTEL tapes) that are intended to 
reproduce this signature. We run the PASTEL 
tapes under LoadRunner and monitor the 
dataserver to collect a performance signature. 
Finally, we compare the production and test 
signatures, iterating if the match is inadequate. 
Currently, this is a manual trial and error process, 
though we expect to apply pattern filtering 
techniques to compute quantitative measures of 
closeness of match between the production and 
test signatures [Leclerc 1994]. Once the match is 
sufficiently close, the PASTEL workload is 
applied to the new version of the application 
software 

6 Experience and Future Work 

We have presented a new framework for 
application release testing that reduces the risk of 
introducing bugs into production software. The 
PASTEL system represents a significant step 
forward because it allows the developer to 
reproduce full distributed production workloads. 
In a real world trading application, we developed 15 
PASTEL primitives with less than three hours of 
developer interaction, encoded these primitives in 
perhaps eight more hours, and had the developers 
running 50 workstation tests on their own. PASTEL is 
a system where proper knowledge representation 
empowers developers to test applications code under 
controlled production conditions. 

In practice, PASTEL has isolated two classes of 
problem and allowed us to quantify performance 
improvements across releases. First, while 
developing the primitives, we tried numerous 
arbitrary interleavings of primitives, encountering 
one that simply did not work because of a bug in 
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the code. Second, under a full production load, we 
drove the Sybase dataserver to deadlock in a pre­
release version of the application. Finally, by 
running the workload in a loop for a twenty 
minute period before each release, we have been 
able to develop the "Peak trades/minute" metric 
which allows us to compare performance across 
releases. 

While the PASTEL prototype is in production 
use, several areas would benefit from 
improvement. One limitation of the LoadRunner 
software is that it runs all software as a single 
UNIX user ID. For our current test, this is not a 
significant problem, because the application has 
its own user identification system, disjoint from 
the UNIX system. However, it does present 
obstacles to accurately testing certain other 
Lehman products. 

A second limitation is the complexity of 
implementing a full set of primitives. For 
example, the 15 primitives available in the system 
test described in this paper ignore many features 
of the application. We overcame this shortcoming 
with human agents: two or three developers 
exercise bring up the application while the batch 
test is running to exercise the "exotica". 
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Abstract When trying to forecast the future behavior of a real-world system, two of the key 
problems are nonstationarity of the process (e.g.; regime switching) and overfitting of the model 
(particularly serious for noisy processes). This articles shows how gated experts can point to solutions 
to these problems. The architecture, also called society of experts and mixture of experts consists 
of a (nonlinear) gating network and several (nonlinear) competing experts. Each expert learns a 
conditional mean (as usual), but each expert also has its own adaptive width. The gating network 
learns to assign a probability to each expert that depends on the input. 
This article first discusses the assumptions underlying this architecture and derives the weight update 
rules. It then evaluates the performance of gated experts in comparison to that of single networks, 
as well as to networks with two outputs, one predicting the mean, the other one the local error bar. 
This article also investigates the ability of gated experts to discover and characterize underlying the 
regimes. The results are: 

• the gating network discovers the different regimes that underlie the process: the outputs of the 
gating network segment the data correctly into the different regions 

• the widths associated with each expert characterize the sub-processes: i.e., the variances give 
the expected squared error for each regime 

• there is significantly less overfitting compared to single nets, for two reasons: only subsets of the 
potential inputs are given to the experts and gating network (less of a "curse of dimensionality"), 
and the experts learn to match their variances to the (local) noise levels, thus only learning as 
much as the data support. 

This article focuses on the architecture and the overfitting problem. Applications to a computer-generated toy problem 
and the laser data from Santa Fe Competition are given in [Mangeas and Weigend, 1995], and the application to the 
real-world problem of predicting the electricity demand of France are given in [Mangeas et al., 1995]. 

1 Introduction 

Conventional time series models are global models. They can be linear, assuming that the next is superposition 
of preceding [Yule, 1927, Chatfield, 1989], or they can be nonlinear, typified as neural networks with hidden units 
[Lapedes and Farber, 1987, Weigend et al., 1990]. Global models are well suited to problems where the underlying 
dynamics is stationary. 

However, man real-world time series are not stationary, but rather switch between different regimes. For example, the 
regimes of electricity demand depend on the seasons, and regimes of financial forecasts depend on the economy ( e.g., 
recession or growth) [Granger, 1994, Hamilton, 1994]. Although-in principle-a single global model can emulate 
any function, including regime switching, in practice it might be very hard to learn. A typical problem in trying to learn 
regimes with different noise levels by a single network is that the network starts to extract features in some regime that 
do not generalize well (local overfitting) before it has learned all it could have in another regime (local underfitting). 

1.1 Gated experts 

We here present a class of models for time series prediction that we call gated experts. They were introduced into the 
connectionist community as mixture of experts [Jacobs et al., 1991]; [Rumelhart et al., 1995] use the term society of 
experts. The basic idea behind gated experts is simple: rather than using a global model, we try to learn from the data 
several local models (experts) simultaneously with the splitting of the input space. 

*http://www.cs.colorado.edu/~andreas/Home.html 



We use the term gated experts for nonlinear gated nonlinear experts: the input space can be split nonlinearly by 
using the hidden units of the gating network, and the sub-processes can be nonlinear through the hidden units of the 
expert networks. In contrast to related work (e.g., [Hamilton, 1994, Jordan and Jacobs, 1994]) we allow the noise­
level parameter associated with each individual expert to adapt separately to the data. Different regimes can thus be 
approximated with different precision. This turns out to be a new approach to the problem of overfitting, of matching 
model-complexity to data-complexity. 

Apart from excellent predictive performance and robustness against overfitting, gated experts lend themselves to a 
rigorous statistical interpretation that allows to segment the series and identify the underlying regimes. This approach 
is more fundamental than previous connectionist methods for segmentation, based on the errors [Elman, 1990], and on 
the activations of the hidden units [Doutriaux and Zipser, 1990]. In order to achieve reliable convergence and numerical 
stability, we had to combining the EM algorithm (explained in Section 2.3) with a second-order method for the nonlinear 
optimization. Given our experience so far, we expect this class of models to scale up well to larger problems. 

1.2 Organization of the article 

Section 2 gives a mathematical and probabilistic perspective on the architecture, the cost function and the search. 
Section 3 analyzes why the gated experts help avoid overfitting and compares gated experts with a method to determine 
local error bars introduced in [Weigend and Nix, 1994]. This is done on the task of predicting the electricity demand 
of France. 

1.3 Related Work 

The idea of splitting an input space into subspaces is not new. In the time series community, one of the first examples 
is the threshold autoregressive (TAR) model [Tong and Lim, 1980]. In contrast to gated experts, the splits there are 
very simple and ad hoc; there is no underlying probabilistic interpretation.1 More closely related to gated experts are 
the mixture models of the econometrics community [Hamilton, 1990, Hamilton, 1994]. Expressed in connectionist 
language, the mixture models used there do not have any hidden units: both the gate and all the experts are linear. 
To our knowledge, neither the double-nonlinear gated experts used here nor the flexible individual noise levels for the 
different regimes have been used in economics or econometrics [Granger and Teriisvirta, 1993, Hamilton, 1994].2 The 
rigorous probabilistic interpretation of the linear gated experts fully generalized to the gated experts discussed here. 

An important inspiration for our work has been the introduction of mixture models into the connectionist 
community by Jacobs, Jordan, Nowlan and Hinton (1991),3 and the convergence proof [Jordan and Xu, 1995]. 
[Jordan and Jacobs, 1994] developed a related architecture of a hierarchical mixture of linear experts (with fixed 
widths). [Waterhouse and Robinson, 1995] applied this architecture to time series prediction of the sunspots 
[Weigend et al., 1990, Nowlan and Hinton, 1992] and for nonlinear regression on an example of noise heterogene­
ity [Weigend and Nix, 1994]. Further related work is [XU, 1994] who applies this architecture to two linear AR(2) 
processes, and [Muller et al., 1994] who use "hard competition" for a similar task. 

Before turning to the theory, we would like to point out that gated experts do not just simply average different "experts:" 
in contrast to an additive model where the weights of the individual predictors are fixed, the outputs of the gating 
network vary dynamically with the input. This allows the experts to specialize and learn the areas of their responsibility, 
whereas simple averaging (e.g., as in [Perrone, 1994]) requires all sub-models to be equally responsible over the entire 
space. 

1TAR models still are quite popular in economics and econometrics. Typically, a cut in one of the input variables is introduced, 
and two hyperplanes are fitted, each of them to the points in each corresponding subspace. The constraint of continuity across the 
cut is introduced by hand (whereas it emerges naturally for gated experts). Successful applications of TAR models are typically 
on problems with relatively few data points (0(100)) and splits now splits are often made in an exogenous variable, such as the 
volatility [Engle, 1982, Bollerslev, 1986, Bollerslev et al., 1990]. A more flexible model of multivariate adaptive regression splines 
(MARS) [Friedman, 1991] has recently been applied to forecasting of financial data [Lewis et al., 1994]. 

2The problem of estimating local noise levels is known in the statistics literature as noise heterogeneity [Seber and Wild, 1989]. 
Statistics, however, tends to assume a specific, often rather stringent model for the noise as a function of the input. 

3Steve Nowlan suggested the application of Gaussian mixture models to time series analysis to us in 1991; the present article 
summarizes the work done since and includes some of the results presented at an invited talk at IEEE Workshop on Neural Networks 
for Signal Processing and at Neural Networks in the Capital Markets (NNCM) in 1994. 



2 Theory of Gated Experts 

This section describes the ingredients needed to specify a connectionist model: the architecture (network topology and 
activations functions), the cost function (in a maximum likelihood framework related to an error model), and the search 
algorithm that minimizes the cost function. 

2.1 Architecture 

Fig. 1 shows the architecture of the gated experts model. The entire model consists of K experts and one gating 
network. The task of each expert is to approximate a function over a region of the input space. The task of the gating 
network is to assign to each input vector one expert. Both the experts and the gating network have access to the inputs. 
The teacher signal that is directly available is the target (i.e., the next value in time series prediction)-the splitting 
of the input space is not known. To solve the problem, we need to blend supervised and unsupervised learning: the 
supervised component learns to predict the next value, and the unsupervised component discovers the (hidden) regimes. 

E[y Ix] 
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Figure 1: The architecture of gated experts. The inputs x 
are at the bottom of the figure. The boxes indicate nonlin­
ear neural networks. The gating outputs g;(x) weight the 
expert outputs Yi (x); the expectation value of the output is 

Lf=l Yi(x)yi(x). 

yl 
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Figure 2: Probability density function given 
by a mixture of Gaussians (Eq. 6). The out­
puts of the experts, Yi (x), give the centers of 
the Gaussians and vary with the input. The 
widths, indictated by ui are indpendent of the 
input. The three Gaussians densities sketched 
are multiplied with different gates Yi. 

In more detail, expert j learns a function Yi(x), implemented as standard neural network with tanh hidden units and a 
linear output unit. The output Yi can be interpreted as a parameter of a conditional target distribution. For example, if it 
parametrizes a Gaussian, Yi corresponds to its mean.4 The other parameter of a Gaussian, its width Uj, is a property of 
the expert; it does not depend on the specific input vector, but it adapts during learning to the noise level in the regime 
it is an expert for (see Eq. 19). 

The gating network has one output for each expert. The goal of outputj is to estimate the probability that a given input 
was generated by expert j. We use normalized exponentials ( also called "softmax" -units) for the outputs of the gating 
network to incorporate into the architecture the constraints that the outputs should be positive and sum to unity. The 
first level of the gating network is an ordinary single network with hidden units. The hidden unit activations e are then 
combined with a weight vector wi for each j = 1, 2, • • •, I{ into an intermediate activation 

Si = Wj • e + Ci (1) 

where the dot product implies the sum over the hidden units and Cj is a constant ("bias") term. The Sj are then 
exponentiated and normalized to sum to unity, giving for the weighting of jth expert 

(2) 

4If there is only a single expert and we assume a Gaussian error model with constant-noise level (variance), then this is 
equivalent to minimizing the squared error between the output and the target value (as can be seen by taking the negative logarithm 
of the Gaussian) [Rumelhart et al., 1995]. If we allow the width of the Gaussian to become a function of the inputs (e.g., by 
adding a second output unit to the network to predict the local error bar), we obtain a model for estimating the local noise level 
[Weigend and Nix, 1994, Nix and Weigend, 1995]. 



The gating network can be viewed as generating K mutually completing probabilities as a function of the input x. The 
built-in constraint of outputs of the gating network summing to unity implements a competition between the experts. 

Having described the topology and activation functions, we now need to specify the cost function. The next section 
uses a maximum likelihood framework to derives a cost function. 

2.2 Cost function 

We begin by defining the variables we use: 

• x is the input vector 

• d is the target ( or "desired output value") 

• Yi is the output of expert j ( corresponds to the mean of the Gaussian)5 

• ai is the width of the Gaussian represented by expert j 

• P(Y = y I x, j) is the probability density associated with the jth expert for the stochastic variable Y to take 
the value y 

• gi ( x) is the probability the pattern is generated by the jth expert, given the input x 

• hi ( x, d) is the posterior probability that the pattern was generated by the jth expert, given input x and target d 
• j denotes the event that the pattern is generated by the jth expert, (1 ::; j ::; K). 

We now make an important assumption: only one expert is responsible for a pattern, i.e., we assume that the events of 
choosing the experts are mutually exclusive, allowing us to write for the probability of observing the data point d given 
the input and the model:6 

K K K 

P(Y =YI x) = LP(y,j Ix)= LP(j I x)P(y I x,j) = Lgi(x)P(y I x,j) 
i=I 

where the sum extends over the experts. 

i=I i=I 
(3) 

Eq. 3 is written in terms of probability distributions. In order to give a single number as "the prediction," we take the 
expectation value of the probability density.7 It is given by the linear combination of the expectation values of the 
individual experts, Yi = E [y I x, j], weighted by the gi 's: 

K 

ii= Lgi(x) Yi(x) (4) 
i=I 

Note that this model is not included in the usual class of feed-forward networks: the expectation value is a product 
of the outputs of single networks. However, as usual, the y is a deterministic function of the input, and the noise is 
included in the assumption of an error model [Rumelhart et al., 1995]. 

We now want to evaluate goodness of the model by how well the data are predicted by the model. To be specific, we now 
assume each experts to describe a Gaussian. The probability of generating a value y by expert j is then proportional to 

P(ylx,0i)= ~exp(-(Y-Yj(~,Oi))
2

) (5) 
21T<T? 2 (Ti 

J 

The parameters 0i and the variance aJ characterize expert j. Pis the probability density of observing a Y = y where 
Y is a stochastic variable. 

51n this article the output is a scalar; the generalization to a vector is straightforward. 
6If k events (A;)ie{i,2, ... ,k} are mutually exclusive, then P(A; I\ Aj) = 0 if i =f. j, and P(A1, A2, ... , AK) = I::1 P(A;). 
7The expectation value is only a good statistic if the distributions is more or less unimodal. If the assumption that each pattern 

was generated by a single expert is correct, the g's should during learning become binary. In that case only one Gaussian remains 
active for every data point, and the goal of a point-prediction is well justified. It is a good idea to check the distribution of the g 
values; if it remains at intermediate levels, there might be a mis-specification of the model (e.g., nothing is gained by splitting the 
data into different regimes) or the task (e.g., predicting a single value is not appropriate. There are approaches to predicting arbitrary 
probability densities; the mixture ofGaussians prior to taking the expectation value can be used [Bishop, 1994]; an alternative is the 
nonparametric "fractional binning" technique [Weigend and Srivastava, 1995]. 



The probability density of the mixture in response to an input pattern x is given by the weighted sum of the individual 
Gaussians (see Fig. 2) 

K 

LYi(x,09) P(y I x,0j) (6) 
j=l 

Assuming statistical independence (the superscript t enumerates the patterns, their total number is N) allows us to 
obtain of the full likelihood by taking the product of the likelihoods of the individual patterns: 

N N K 
C = IT P(Y = d(t) I x(t)) = IT L Uj(x(t), 09 ) P(it) I x(t), 0j) (7) 

t=l t=l j=l 

fri=gj(x(t),0g) 1 2 exp (-(d(t)_y~~(t),0j))2) 

t=lj=l M J 

(8) 

The cost function C is given by the negative of the logarithm of the likelihood function: 

(9) 

Having described the global probability model, we now proceed to the estimation of the parameters 
09 ,01,02,· • •,0K ,u1,o-u • •,<TK. The usual way of minimizing the cost function·c with respect to the parameters through 
gradient descent did not work out here: it turned out to be too hard for simple backpropagation of this cost function to 
learn at the same time both the individual maps of the experts as well as the splits of the input space through the gating 
network. Note that the sum inside the logarithm makes the cost function significantly more complicated than in the 
case of a single network. 

Following [Hamilton, 1994, Jordan and Xu, 1995], we now use the Expectation-Maximization algorithm to solve the 
optimization problem. This algorithm is based on the assumption that some binary variables are missing. In our case, 
the information that is missing is which expert it was that generated a given pattern. 

2.3 Search: Expectation Maximization 

The cost function Eq. 9 is quite difficult to minimize with backpropagation (gradient descent). However, we can 
reformulate the problem such that it allows us to apply the Expectation-Maximization algorithm (EM). To map the 
problem onto EM, we first need to identify some missing (or "hidden") variables. We choose as the missing variables 
the probabilities that a given pattern (t) was generated by expert j; j = 1, • • •, K. Second, to get rid of the awkward 
sum inside the logarithm, we assume (consistent with Eq.3) that only a single expert generated the pattern; this is 
implemented by an "indicator variable." We thus choose the missing data to be a set of indicator random variables 

Ymis = {Iy),j= l, ... ,K,t= 1, ... ,N}with 

/t) _ { 1 if pattern (t) is generated from the jth model 
i - 0 otherwise. 

This allows us to rewrite the likelihood, replacing that sum over experts by a product over experts-this is ok since the 
indicator variable filters out all but the true term. 

Now, the problem is that we do not know the values of Ij. This is where the two-step EM algorithm comes in. In the 
first step (E), we compute the expectation values for Ij (assuming that all the network parameters are known). And in 
the second step (M), we update our the parameters of the model (assuming that the Ij 's are known: we just take those 
from the E-step ). 

More formally, we assume that the distribution of the "complete-data" (Y, Y mis) is given by the following likelihood 
function: 

N K 1<•) 
P(Y, Y mis I 8) = II II [uj (x(t>, 0g) P(it) I x(t), 0j)] i (11) 

t=lj=l 



where 0 = ( 0 u, 01 , 02, • • • , 0 K, 0-1, 0-2, • • • , o-K). So far we have chosen two distribution, one for Ymis (Eq. 10), and 
one for (Y, Y mis) (Eq. 11). Note that when we integrate out Ymis, we obtain the probability of Y given 0 (Eq. 8) as 
the marginal distribution, P(Y I 0) = J P(Y, Y mis I 0) dYmis . 

Unfortunately, we cannot directly use this new likelihood (Eq. 11) because we do not know the missing variables. So, 
the idea of the EM algorithm is to replace the missing variables J(t) by their expectation values h)t) (The superscipt i 
denotes the iteration number; we iterate back and forth between the E-step and the M-step). These expectation values 
are computed in the E-step: 

-

E [1Y) I Y,0Ci)] = P(j I xCt),d(t)) 

P(j, d(t) I xCtY) P(j I x(t)) P( d(t) I xCt), j) 
P(d(t) I x(t)) - P(d(t) I x(t)) 

gj (x(t), 0~i)) P( d(t) I x(t), 0Y)) 

Lf=1 gk (x(t), 0~i)) P( d(t) I x(t), 0~i)) 

(12) 

(13) 

(14) 

Assuming Gaussian distributions for the experts, we can express h entirely through the easily available quantities g, d, 
and Yi (and the parameters o- and 0): 

(15) 

Taking the negative logarithm of Eq. 11, and replacing the I's by the h's (i.e., their expectation values) allows us to 
arrive at the EM cost function: 

N K 

CEM = -LLhf)1n[gj(xCt),00 )P(it)lxCt),0j)] (16) 
t=l j=l 

- ~~ h\t)ln [g·(x(t),0) 1 exp (- (d(t) _ Yj(x(t),0j))2)] 
~~ J J g r,;::::.i. 20-? 
t=I j=I y 21ro-j 3 

(17) 

·= -~~h\t)[1n(g·(x(t) 0)-(d(t)_Yj(xCt),0j)/ _!ln21ra-?] 
~ ~ 3 3 ' u 20-? 2 3 
t=I j=I J 

(18) 

The M-step uses this cost function and adjusts the parameters of the network in order to minimize it. 

Specifically, the updates for the variances can be computed directly: 

N 2 L h?) ( it) - Yi (x(t))) 
o-J:= _t=_I ___ N _____ _ (19) 

Eh?) 
t=l 

The variance of the jth expert is set to a weighted sum of squared errors; the weight is given by the posterior probability 
that expert j generated that pattern. The denominator normalizes the weightings for that expert. 

Since we use nonlinear hidden units, the weights of the networks cannot be computed but are found through gradient 
techniques. The weight change is proportional to the difference between the desired value d and the expert output Yi, 

acCt) 
EM = -h\t) _!_ (d(t) - y· (x(t) 0~)) (20) ow J ~ J , J 

This leaning rule adjusts the parameters such that the expert output Yi moves towards the desired value d. However, 
note the two factors in front of the usual difference between desired value and prediction: 



• The first factor, hy), modulates the weight change proportional to the importance of that expert for the pattern. 

• The second factor, 1 / a-J, modulates the learning according to the general noise level in the regime of expert j. 
If the average squared error (Eq. 19) in the regime is large, the influence is scaled down. If the regime is 
believe to only have little noise, small differences in ( d - Yi) are exaggerated by dividing through a small 
number. This can be interpreted as a form of "weighted regression," increasing the effective learning rate in 
low-noise regions and reducing it in high-noise regions. As a result, the network emphasizes obtaining small 
errors on those patterns where it can (low a-2); it discounts learning patterns for which the expected error is 
going to be large anyway (large a-2). 

We have found it useful to introduce a lower bound for a-2 ; its exact value depends on the specific problem. For the laser 
data of the Santa Fe competition, for example, we set it to the experimental resolution given by the analog-to-digital 
converter. This hard limit corresponds to the assumption of a prior distribution for the variance that is flat above the 
cut-off and zero below the cut-off. Choosing an appropriate prior is an important part of modeling, particularly for 
short and noisy data sets. 

The weight changes of the gating network are proportional to the gradient of the cost function with respect to the 
intermediate variable Sj (prior to exponentiation and normalization in the "softmax" part, see Eq. 1): 

3c(t) 
EM=_ (h~t) _ g·(x(t) Bi)) 

8s • 3 3 
' 9 

J 

(21) 

This parameters are adjusted such that P(j I x) = gi (xCt), 0~) gets pulled toward P(j I x, d) = h)t) Note the difference 
between the g's and the h's. hi is the posteriori probability of using the jth expert-its computation uses both input 
and output information. gi is only a function of the input; it tries its best to approximate hi without knowing the target 
value. In learning the g's move toward the h's; a scatter plot of gi vs hi where each pattern gives an entry is a good 
diagnostic. 

In all of our experiments, the gating network and the expert networks are nonlinear, and we use a second-order 
method to update the parameters in the M-step(the Broyden-Fletcher-Goldfarb-Shanno algorithm, or BFGS, see 
[Press et al., 1992]). This batch method computes a descent direction as function of the first and second derivatives, 
and chooses the best step in this direction in order to minimize the cost function. 

2.4 Comparison to other cost functions 

We close this section by interpreting the cost function that we minimize (for clarity suppressing the implicit dependencies 
on the parameters, and by comparing it related cost functions. Dropping also the sum over patterns t, i.e., writing it as 
per-pattern cost function, we started out with a mixture of Gaussians, 

(22) 

(as the exact cost function), and in the EM implementation after introducing hi as posterior probability that a pattern 
was generated by expert j 

1 [(d-y·)2 l 
CEM=y-hjlngi+ 2yhj a-JJ +lna-J+ln21r (23) 

The first term here can be viewed as an entropy term. Since gi gets pulled to hj (Eq. 21), the term can be approximated 
by Lj gj ln 1/ gj. This entropy is a measure of "disorder" of the experts: it is cheapest if there is most order, i.e., if 
only one expert is fully responsible for the pattern. The cost increases if more than one expert gets gated in and reaches 
is maximum if all gj = 1/ I{, i.e., if an average over all experts is taken. 

The expression in squared brackets, weighted for each experts by its relevance, is identical to the cost function derived 
in [Weigend and Nix, 1994] for the case of predicting "local error bars" (i.e., of a network with two output units, one 
for the conditional mean, the other one for the conditional variance), 

1 [ ( d - y( X)) 
2 

2 l 
CLEB = 2 a-2(x) +lna- (x)+ln21r (24) 



where LEB stands for "local error bars". This architecture is more complicated in that the variance u2 ( x) is an explicit 
function of the input, and it is more simple in that there is no gating network. Eq. eq:CLEB, and the square bracket 
in Eq .24 share an important feature: there is a trade-off between the two terms containing u2. The squared-error term 
could be made small by a large value of u2, but the cost increases logarithmically with u2. The minimum w.r.t. u2 just 
corresponds to setting u 2 to the expected squared error, see Eq. 19. 

A standard least mean square minimization of • 

C = ! [(d-yj(x))
2 

+lnu2 +ln21r] 
LMS 2 u2 

(25) 

assumes that u2 is a constant. If we are only interested in finding the minimum, dropping all constants from 25is 

equivalent to minimizing the squared error, ( d - Yi ( x)) 2 . 

3 Avoiding Overfitting by Estimating the Noise Level: Weighted Regression 

To investigate the learning dynamics, we compare three architectures: gated experts (Fig. 3), learning the variances 
(Fig. 4), and a single neural network (Fig. 5) on the problem opfpredicting the energy demand of France. Details are 
given in [Mangeas et al., 1995]. In all cases, we plot as a function of training time (on the same scales) the normalized 
mean squared error 

Lt ET ( observationk - prediction)2 
ENMS = · 2 

LtET(observatlont - meanr) 
(26) 

ENMS compares the performance of the model on set T to simply predicting the mean on that set. 
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Figure 3: The normalized mean 
square error ENMS (Eq. 26) as func­
tion of training iterations for gated 
experts. The solid line is the in­
sample error (training), the two bro­
ken lines are out-of-sample errors. 
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Figure 5: ENMS learning curves for a 
single network trained by backprop­
agating the squared errors. In this 
case the cost function is identical to 
the plotted ENMs performance. 

Note that the in-sample error ( solid line) is significantly lower for the single network than forthe other two architectures. 
However, the out-of-sample performances (broken lines) never reach as good minima as the other two methods, 
Furthermore, the single network overfits significantly worse, i.e., determining the exact stopping point becomes very 
important. 

Analyzing the costs as functions of training time (not shown here) shows significant overfitting on the respective costs 
in all three examples. However, Figs. 3-5 show that the pe,formance differs significantly. Whereas the gated experts 
show very stable learning and do not overfit much (Fig. 3), the local error bar network is somewhat worse (Fig. 4), and 
the single network (Fig. 5) a lot worse. 

It is thus important to distinguish between the full cost (which might include penalty terms, robust errors, etc.) and the 
performance term we are ultimately interested in (which we take here to be squared error, but it could be anything from 
percent correct, to the profit a neural network trading strategy makes). In our experience with flexible neural networks 
and noisy data, the cost function almost always overfits [Weigend, 1994]. The key is to choose the cost function that it 
learns features that generalize well such that its overfitting has little effect onto the true performance we are interested 



in. Distinguishing between the cost function and the performance part is an important degree of freedom in modeling, 
particularly for short data sets and noisy problems [Weigend et al., 1990]. 

4 Application to financial data 

We have applied gated experts on the financial problem of foreign exchange trading. The main architecture have been 
outlined here; the size of the data set (both the number of inputs and the record length) was comparable to the problem 
reported here (and similar to [Weigend et al., 1995]). The key feature we found for the gated experts was that two of 
the experts become active on about 1110th of the trading days (active being defined as g > 0.8). On those days, their 
out-of-sample accuracy is larger than 70%. This architecture manages to find regimes where the variance is lower than 
average, and allows for successful modeling of the dynamics in those lower-noise regimes. 
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This paper introduces the idea of clearning, of simultaneously cleaning data and learning the un­
derlying structure. The cleaning step can be viewed as top-down processing (the model modifies. 
the data), and the learning step can be viewed as bottom-up processing (where the data modifies 
the model). After discussing the statistical foundation of the proposed method from a maximum 
likelihood perspective, we apply clearning to a notoriously hard problem where benchmark perfor­
mances are very well known: the prediction of foreign exchange rates. On the difficult 1993-1994 
test period, clearning in conjunction with pruning yields an annualized return between 35 and 40% 
(out-of-sample), significantly better than an otherwise identical network trained without cleaning. 
The network was started with 69 inputs and 15 hidden units and ended up with only 39 non-zero 
weights between inputs and hidden units. The resulting ultra-sparse final architectures obtained with 
clearning and pruning are immune against overfitting, even on very noisy problems since the cleaned 
data allow for a simpler model. Apart from the very competitive performance, clearning gives insight 
into the data: we show how to estimate the overall signal-to-noise ratio of each input variable, and we 
show that error estimates for each pattern can be used to detect and remove outliers, and to replace 
missing or corrupted data by cleaned values. Clearning can be used in any nonlinear regression or 
classification problem. 

1 Introduction 

Traditionally, observed data are assumed to be "the truth," and model building reduces to data fitting. In contrast, 
in human reasoning, people constantly use their internal model of the world to (re-)evaluate and possibly discard 
observations. This can be called the observer-observation dilemma: Neglecting the data entirely reduces to dreaming 
or hallucinating, and neglecting the model entirely without building models and hypotheses prevents us from forming a 
consistent view of the world, recognizing outliers, etc. Winograd and Flores (1986) nicely describe the use of implicit 
knowledge and top-down processing in human perception and cognition, and how it could be applied in the computer 
sciences. 

Most mathematical modeling assumes noise-free inputs: the model is built from the data in bottom-up fashion. Our 
basic assumption is that the data is noisy and the data set size is limited, conditions surely fulfilled when modeling 
financial data on the time scale or daily data. The method we propose here also includes top-down processing: the 
emerging model is allowed to modify data if the cost of moving the data is smaller than the gain in cost associated with 
the output error. 

This paper introduces a formalism for building numerical models that uses the top-down information from the model 
in order to correct outliers and characterize and understand the inputs better. Conceptually, the method consists of two 
steps: 

1. learning: use the data to modify the model (structure); 

*http://www.cs.colorado.edu/~andreas/Home.html 



2. cleaning: use the structure to modify the data (observations). 

We use the term clearning to describe the simultaneous application of both steps in model building. Note the trade-off 
between the belief in the data and the belief in the model, the observer-observation dilemma. 

The idea is broadly applicable; as motivation, we give an example of classification, as it occurs in financial decision 
making. Let us consider the case of two classes ( e.g., input patterns of the first class belong to a trending market, input 
patterns of the second class represent a side market). On the one hand, if these clusters are well separated, it is easy to 
find a decision boundary. On the other hand, if the clusters overlap, a flexible model will be able to find a complicated 
boundary that will not generalize well to new patterns. Cleaning the data corresponds to moving patterns on the training 
set closer to their centers, reducing the overlap on the training set, and allows a simpler decision structure to match the 
cleaned data. 

Although the proposed method is useful for decision making ( classification) and portfolio applications, this paper focuses 
on its application to forecasting or time series prediction, essentially a regression problem. So far, all connectionist 
models for regression assume noise-free inputs and try to find a regression surface that approximates the targets ( desired 
values) associated with the inputs as well as possible. The standard approach breaks the potential symmetry between 
inputs and outputs. Particularly in univariate time series prediction where the inputs are just lagged values of the output, 
this assumption is clearly inconsistent. 

When trying to work with financial data, there are several sources of errors. One source is the entering of the data 
(such as wrong numbers, sometimes as blatant outliers), or unreliable timing in quotes (no longer tractable). Even 
if the available data are entered correctly, they might be poor indicators for the underlying economic processes (e.g., 
industrial production and unemployment). Another source stems from the uncertainty in measuring quantities such as 
the GNP or the tax revenue, quantities that are difficult to assess and typically revised. Finally, there always are external 
influences that are not captured by the inputs into the model. They show up as noise. 

Having very noisy data and very flexible methods (such as neural networks) is potentially a dangerous combination: if 
the model is too flexible, it will not only model the signal but also the noise, and yield poor out-of-sample performance. 
In particular, outliers absorb resources: In case of an outlier, the network moves a hidden unit to the outlier in order to 
reduce the error. As a consequence, there are not enough resources left to approximate the true structure in lower-noise 
regions. The many attempts of applying neural networks to financial problems have made one fact clear, that the 
pro~lem of controlling the flexibility of the model is central. 

In order to obtain good generalization (out-of-sample performance) on problems with finite, noisy data sets, such 
flexible models require regularization. We briefly describe some of the methods that are useful on financial data. One 
of them, pruning, will play a crucial role in combination with clearning ( discussed in the Section 2). 

• Stop early. Backpropagation is an iterative procedure: the complexity of the model gradually increases with 
training time [Weigend, 1994]. Starting training with small weights and stopping early introduces a preference 
for linear models since the weights do not have enough time to grow large enough to express significant 
nonlinearities. This can be a serious problem when trying to find nonlinear structure in noisy data. In any 
case, we al ways monitor an error on a cross-validation set; when it starts going up as function of training time, 
we begin to bring in some of the other techniques. 

• Penalize network complexity. Adding a complexity term to the cost function that effectively counts the 
number of significantly sized weights is known as weight-elimination [Weigend et al., 1990]. This method 
treats the weights as independent; it has first been applied to financial data in [Weigend et al., 1991]. 

• Prune weights. To evaluate the reliability of the information coded in a weight, we use the size of the weight 
relative to the standard deviation of its fluctuations. (The fluctuations occur in response to the training inputs 
on a pattern-by-pattern basis.) We start with an oversized network, rank all weights in terms of a test statistic 
(Eq .9), and remove those oflow significance in order to obtain a sparse network topology [Finnoff et al., 1993]. 
The pruning step is performed in conjunction with early stopping. This pruning limits the ability of the network . 
to memorize the training data without introducing a bias towards linear models-this is an important distinction 
to the use of early stopping alone [Weigend and LeBaron, 1994]. 



• Neuro-fuzzy methods. Constraints, extracted from humans in the form of logical rules, can be used to 
constrain the network architecture and learning. In terms of overfitting problems, this corresponds to building 
a model that is resistant against outliers. A recent example is the insertion of priors that describe the derivative 
of the outputs with respect the inputs [Neuneier and Zimmermann, 1995]. 

• Hints. [Abu-Mostafa, 1995] gives the example of the symmetry-hint for predicting foreign exchange data 
This hint corresponds to viewing exchange rate returns first from one country, then from the other country. 
The hint suggests that the dynamics should be the same. During training, the cost functions switches back 
and forth between gradient descent in the performance cost function (i.e., learning to predict the returns), and 
learning the hint (i.e., learning to minimize the difference in response to a pattern and to the flipped version of 
the pattern). 

• Pseudo-data: add noise to inputs that reflect our belief in their accuracy. The idea is best explained 
through an example. Let us assume that we believe that the response of the network to a certain pattern 
should be the same also when the pattern is slightly compressed or stretched in time. Backpropagation is an 
iterative procedure; at each presentation of a training pattern, we allow for some stretching or compressing of 
the pattern by repeating or dropping an observation of the time series with a certain probability. The network 
thus learns to also recognize stretched and compressed versions of the training patterns. It will subsequently 
generalize better on the test set if this belief about the data is indeed correct. The difference between hints and 
pseudo-data is that any input vector can be used to descend on the hint, whereas pseudo-data tend to stay close 
to the actual data since the added noise has them explore the vicinity of the data points [Weigend, 1995]. 

Our approach here is quite different.1 Rather than adding different random noise to the inputs at each training iteration 
in order to prevent the network to overlearn outliers, we prevent the network from overfitting by continually moving the 
inputs to a more likely point by using information from the observed output and the model. There are two assumptions 
involved. First, that there is a clean or "true" input value. This gives us the hope of building a better model, i.e., a 
model with less stochasticity. Second, that cleaning moves the inputs closer to that true value; we will show in the next 
section how this is achieved with gradient descent in a backpropagation framework. Note that during training, we both 
use the data to adjust the model and the model to adjust the data: cleaning is only possible through a model. 

2 Cleaming = Cleaning and Leaming 

We here derive the regression case; the method can also be applied to the classification case (using sigmoid outputs for 
predicting the probability of increase of the price of an asset), and to the portfolio case (using normalized exponentials). 
Suppressing pattern indices, the total per-pattern cost is given by the sum of two terms, 

E = !1] (y- yd/+ !x; (x - xd/. 
2 2 

The first term, EY = ½11 (y - yd) 
2

, is the usual squared error term between network output 

y=y(x,w) 

(1) 

(2) 

and the desired value of the output yd. (The symbol w denotes the vector of model parameters.) The second term, 
E'c = ½ x: ( x - xd) 

2
, is the squared deviation between the cleaned input x and the data input xd. 

There are two sets of update rules, the update rules for the weights, and the update rules for the input values. The 
gradient descent update rule for the weights is identical to standard backpropagation 

8E d 8y 
Wi+I = Wi - - = W; - 1J (y - Y ) - (3) 

8w 8w 
The update rule for the cleaned input x; at iteration i is given by 

8E 
Xi+I = Xi - -8x 

(4) 

1This approach can be related to the method of total least squares [Huffel and Vanderwalle, 1991] (in the context of linear 
models), to error in variables [Seber and Wild, 1989] and to methods dealing with missing data [Buntine and Weigend, 1991, 
Tresp et al., 1994]. 



Rewriting xi as a sum of the original data point xd and a correction term (Li;, also at iteration i), 

Xi= Xd + Li; ' 

the update rule can be expressed most easily as 

( d) fJy Li;+! = (1 - K)Li; -1] Y - Y -
fJx 

The elements of the update rule for the input correction term are: 

• Exponential decay of .tl. 
Without new impulses, .tl shrinks back to zero, proportional to 1 - "'· (0 :a:; "' :a:; 1). 

• Proportionality to the output error (y - yd). 

(5) 

(6) 

This is the same proportionality as in "normal" error backpropagation: the larger the deviation, the larger its 
effect on the update (in this case on the cleaning). Note that 17 enters here since it describes the scale of the 
output error. 

• Proportionality to the sensitivity of the output with respect to the input, fJy / fJx. 
This quantity describes the slope (gradient) of the surface at the present operating point x (the cleaned value-the 
network does not see xd any more). (This quantity is already computed in error backpropagation.) 

Note that there are two step-sizes involved, the learning rate 17, and the cleaning rate"'· From the perspective of classical 
mechanics, they can be interpreted as spring constants (E = ½kil2); from the perspective of statistics as the inverse of a 
noise variance. 

A mechanical interpretation of the cost function and the (relative) learning and cleaning rates is given in Fig. 1. The 
standard case (without cleaning) can be viewed in the following way. The data points are put in the (input x output) 
space. The regression output (network response) can be viewed as a surface above the input space. The data points 
are vertically attached to the surface with springs; these springs store the (internal) energy. The model complexity lies 
in the trade-off between the stiffness of the regression surface and the stiffness 17 of the springs. In the one extreme, 
an infinitely flexible model would just go through all of the data points. On the other extreme, infinitely weak springs 
would not modify the model from its prior value (e.g., from a hyperplane). 

The new addition are the springs in the input space, between each input data point xd and its cleaned value x. The 
energy stored in that spring is ½Kil2. "'is the spring constant and .tl = xd - x the amount the spring is stretched. 
Minimizing the total cost function (Eq. 1) corresponds to minimizing the total energy stored in the input springs and the 
output springs (averaged over all patterns). The ratio between 17 and"' describes the trade off between the stiffnesses 
( or importances) between the output errors and input errors. 

A statistical interpretation of the cost function can be given in a maximum likelihood framework 
[Rumelhart et al., 1995]. We assume that each pattern was generated by a "true" input (estimated by x) and a "true" 
output (estimated by y). We then assume that it is corrupted by Gaussian noise (additive to all the inputs and all the 
outputs, independent in each component). This statistical interpretation, in conjunction with the model that we have 
obtained, allows us to characterize the inputs by their noise levels. The total variances of the inputs (i.e., sum of the 
noise and the signal) are easily computed (and, in connectionist modeling, used to scale the inputs). The present method 
allows us to estimate the two parts (the noise level and the signal level) separately2 by using the model that we have 
learned already. We record the squared deviations .tl2(t) of each input as functions of the pattern index t (the time when 
each prediction is made). This allows us to gain insights that cannot be obtained otherwise into the process: 

• Detect outliers. Plotting the squared errors of all the inputs and the outputs for each pattern as a function 
of time (like a spectrogram) allows us to extract three signatures: Individual spikes point to a typo-like error. 
Horizontal bars points to an outlier in the input that has been generated by a smoothing operation ( e.g., a moving 

2This is in principle an ill-defined problem: there are many ways of writing one number as the sum of two numbers (Jerry 
Friedman, public communication, NIPS'90). However, since the final model is quite respectable asjudged from the out-of-sample 
performance, the estimates of the noise levels are also reasonable. 



Figure 1: Mechanical analogy of the trade-off between learning and cleaning. In contrast to error-free input modeling, 
we here attach a spring to the data point xd and allow that spring to be stretched to x for a price: the energy stored in 

that spring is 1/2i;, ( xd - ~ where i;, is the spring constant. The ground state is reached when the sum of this energy 
and the energy stored in the spting in the output (next to 'r/ in the figure) is minimal. J 

average training signal). Horizontal bars point to outliers in the output: several inputs try to compensate for 
the output outlier; the output itself also has a large error. 

• Characterize input variables by their stochasticity. Taking the mean of the squared errors across time (i.e., 
computing the mean squared errors of each of the inputs) allows us to characterize the signal-to-noise-ratio of 
each input feature. This is not possible without using a model. 

• Error covariance matrix. Computing the covariance matrix of the errors allows us to investigate the validity 
of the assumption of statistical independence of the noise of the inputs. If there are significant non-zero 
off-diagonal contribution, the modeling can be improved by transforming the data by the inverse of the noise 
covariance matrix. 

• ARSCH Models (AutoRegressive Special Conditional Heteroskedasticity). Estimating the noise levels 
enables us to generalize ARCH and GARCH models [Engle, 1982, Bollerslev, 1986, Bollerslev et al., 1990]: 
since we allow for nonlinearities at every level, we call these models where we input the noise levels 
averaged over an exponentially decaying window in time ARSCH models (AutoRegressive Special Conditional 
Heteroskedasticity ). 

The remainder of this section discusses how models that were built on cleaned data are to be used for prediction. We 
first discuss the case of point predictions where the goal is to predict the expectation value. We then give an algorithm 
that exploits the noise structure in the inputs to obtain a probability distribution over the output values. 

Predicting the expectation value (point predictions). Once we have built the model, point predictions are obtained 
by a simple feed-forward pass through the network. In principle, we use cleaned data whenever available: e.g., any 
lagged variable in the input should be replaced by its cleaned value.3 In practice, however, when the majority of 
variables are not simply past values of the outputs but more complicated indicators, we simply use the raw data to obtain 
the predictions. The results reported in this papers were obtained with the raw inputs in the final feed forward step. 

Predicting the probability density of the next step. We have emphasized the importance of knowing the accuracy 
of the prediction from a number of sources.4 The clearning algorithm puts us in the fortunate position of being able to 

3This also applies to variables derived from cleaned inputs; e.g., a moving average should be replace by its cleaned value. This 
process can be iterated. 

4Examples are (1) estimating uncertainties due to the splitting of the data [Weigend and LeBaron, 1994]--crucial when 



estimate the error in the outputs due to the uncertainty in the inputs. We start by computing the matrix of empirical 
input errors Ll(t); this matrix consists of one vector (across inputs) for each time step (or pattern). In order to forecast 
the probability density of the next value, we use today's input vector (as in the case of point predictions), randomly 
pick one of the empirical noise vectors, and add it to today's input, and record the resulting output. We then draw (with 
replacement) a second vector from the set of empirical noise vectors, add it to today's ( original) input, and generate and 
record the corresponding output. We repeat this procedure typically with several hundred to a thousand resamplings. 
We then present the prediction for tomorrow as a histogram of these predictions. 

This section has discussed the clearning strategy, and indicated how predictions are to be obtained. To not clutter the 
presentation, we have omitted the details of the pruning that is done in parallel with the clearning. The next section 
discusses our pruning algorithm. 

3 Pruning 

In Section 1, we discussed the standard methods of regularization in neural networks. In Section 2, we discussed how 
to use the evolving model to modify the input data. We now combine the two concepts; using cleaned data instead 
of the noisy data allows us arrive at even smaller networks since there are fewer irregularities in the data that would 
absorb resources that are not supported by the underlying dynamics: simpler data allow for a simpler model. In our 
experience, we were able to obtain truly ultra-sparse models, unprecedented in what has been done before. We typically 
end up with fewer weights than inputs! The final networks are immune against overfitting; having found the nonlinear 
structure in the data, we train the resulting ultra-sparse networks to minimize the error on the test set as well as they 
still can. 

In more detail, we clearn until we observe overfitting, measured by an increase of :Z:::(Y - yd)2 on the validation set. 
Our goal is to thin out the connections between input and hidden units; we want to remove the weights that respond 
most to the noise. Consider a specific weight in the network; w denotes its present value in training. The key idea is 
the following: we present one epoch (iteration) of input patterns t = I, ... , N. We then compare the size of the weight 
( at the end of the epoch) to its fluctuations in response to the inputs during that epoch. 

Let et denote the weight change in response to pattern t. (In gradient descent: et ex: -a Et/ aw). The mean and standard 
deviation of the weight change over the epoch are given by 

I N 

mean(e) = N L)t mean weight change ( over epoch) , 
t=I 

and 

std(e) = ~ = 

This allows us to formulate the following test statistic: 

lw + mean ce) I 

test value : std (O 

rms weight change (fluctuations) 

I weight at end of epochl 
fluctuations during epoch 

(7) 

(8) 

(9) 

If this test value is large, we keep the weight since it is well determined (the fluctuations are small compared to size 
of weight). If the test value is small, we prune the weight since it is not well determined (the size of weight is small 
compared to its fluctuations). We are primarily interested in pruning connections from the inputs to the hidden units.5 

All the weights of the input-to-hidden layer are ranked according to their test value. 

cross-validation sets are set aside to determine meta-parameters, (2) estimating confidence intervals for unimodal distributions 
[Weigend and Nix, 1994]-useful for problems that consider Sharpe ratios, (3) obtaining essentially.model free arbitrary distributions 
with the method of fractional binning [Weigend and Srivastava, 1995]-important for multi-modal processes, e.g., when we expect a 
big move that could go either up or down, and (4) finding trading days where we can trust our model to a higher than average degree, 
using the method of gated experts [Weigend and Mangeas, 1995]-important for very noisy processes. 

5We are particularly interested in removing inputs completely; an alternative method for variable subset selection based on the 
information theoretic measure of mutual information is described in [Bonnlander and Weigend, 1994]. 



Figure 2: Distribution of test values (Eq. 9) for the weights for the final network trained on exchange rate prediction 
with pruning only. (Screendump from the SENN simlulator.) The top two rows are for the weights that are active; the 
bottow row for the weights that are pruned away. 

One further decision has to be made: we have the choice of evaluating the test value using the raw or the cleaned inputs. 
We here compute this statistic on the raw (uncleaned) data for two reasons: 

1. The fluctuations of the weights mirror the noise present in the data. In this sense it can be viewed as noise-filter. 

2. In prediction mode, the very recent inputs are only available in uncleaned form. Using the raw inputs in 
pruning is thus closer to the final task. 

Furthermore, the fluctuations of the data are mirrored in the fluctuations of the weights. Removing the part of the 
network that is in resonance with the external noise can be viewed as a nonlinear noise filter. Fig. 2 shows the typical 
histograms of the test values (Eq. 9), both for the active weights and the pruned weights. 

After one pruning epoch, we return to clearning. At overall early stages of the entire procedure, we reinitialize the now 
smaller network with a new set of random weights (0(10-4)) and also reset the cleaning correction vector ll to zero. 
This restart of the smaller architecture corresponds to a search in a reduced sub-space. At the later stages of the entire 
procedure, we omit the re-initialization part. Re-initialization presents, just like early stopping, a strong bias towards 
linear models that we want to avoid at the final model. Only sufficiently long learning allows the network to extract the 
nonlinearities present in the data. 

When does the entire process stop? The test statistic is evaluated on all weights, not only the survivors. If the test value 
of weights that were pruned away becomes large again, this is an indication for overpruning. We then revive these 
overpruned weights by resurrecting them, and finally train to the local minimum. Given the ultra-sparse architectures 
we have reached, there is no overfitting left. Fig. 3 shows the remaining network of the example discussed in the next 
section. 



Figure 3: The weight diagram of the weights between inputs and hidden units for the exchange rate example. The 
larger the weight, the darker the field. (In gray-scale rendering, we lose the information about the sign of the weight.) 
A gray "X" means the weight has been pruned away. Note that more than half of the potential inputs are completely 
disconnected. In this sense the clearning and pruning procedure acts also as feature selection. 

4 Example: Exchange rate predictions 

We demonstrate the proposed method on the problem of predicting daily foreign exchange rates between the US Dollar 
and the German Mark. The entire time period ranges from January 15, 1985 through January 27, 1994. We first set the 
test data aside as out-of-sample data: we pick the last 216 days for the test period, covering the prediction for January 
4, 1993 through January 27, 1994. From the remaining block, we put aside every fourth day as our cross-validation set 
to estimate the generalization performance. 

The architecture is a simple feed-forward network with 15 tanh hidden units.6 There are 69 inputs. 12 inputs reflect 
chart information derived from the series itself (relative strength index, skewness, point and figure chart indicators, ... ). 
57 inputs reflect fundamental information beyond the series itself (indicators depending on exchange rates between 
different countries, interest rates, stock indices, currency futures, ... ). These inputs contain information from six 
countries (France, Germany, Japan, Switzerland, UK, and USA). The network has 3 outputs. The first output predicts 
the return ( we use a normalized version of the return; we divide it by the standard deviation computed over the last 10 
trading days. In our experience, solely training the network on the one-day forecast makes it hard to capture long-term 
dynamics of the market. We thus add two further tasks, provide the network with information about" the next turning 
point, defined as the next maximum or minimum of the daily series. The two additional outputs are the number of days 
to next turning point, and the return between today and the next turning point ( divided by the standard deviation of the 
data). 

When computing the return on investment on the test set, we take the position size as given by the sign of the first 
output (return output). The profit and loss curves shown in Fig. 4 include a transaction costs of 0.001. We were able 
to reduce the network with pruning alone to 60 weights between the inputs and the hidden units. Using clearning in 
conjunction with pruning, we manage to arrive at the ultra-sparse architecture of only 39 weights. The annualized 
return on investment is significantly above 30% in the difficult 1993/94 period. 
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Test Set: 4/1 /93 - 1 /27 /94 
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Figure 4: We compare clearning to learning without clearning (both with pruning) on the held-out test set, ranging 
from April 1, 1993 to January 27, 1994. The top curve is with cleaning. The curve below without cleaning. The scale 
on the left corresponds to these profit and loss curves. We also give the exchange rate during this time period (bottom 
curve); its corresponding scale is indicated on the right. 
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